JPH0580496B2 - - Google Patents

Info

Publication number
JPH0580496B2
JPH0580496B2 JP27504085A JP27504085A JPH0580496B2 JP H0580496 B2 JPH0580496 B2 JP H0580496B2 JP 27504085 A JP27504085 A JP 27504085A JP 27504085 A JP27504085 A JP 27504085A JP H0580496 B2 JPH0580496 B2 JP H0580496B2
Authority
JP
Japan
Prior art keywords
propylene
ethylene
polymerization
reaction
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27504085A
Other languages
Japanese (ja)
Other versions
JPS62135509A (en
Inventor
Tadashi Asanuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP27504085A priority Critical patent/JPS62135509A/en
Publication of JPS62135509A publication Critical patent/JPS62135509A/en
Publication of JPH0580496B2 publication Critical patent/JPH0580496B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプロピレンのブロツク共重合体の製造
方法に関する。詳しくはプロピレン自身を液状媒
体とする塊状重合法によつてプロピレンのブロツ
ク共重合体を製造する方法に関する。 従来の技術 ポリプロピレンの耐衝撃性、特に低温でのそれ
を改良することを目的として他のα−オレフイン
特にエチレンの共重合を行うことは良く知られて
おり、又プロセスの簡略化或いは液状媒体への可
溶性ポリマーの減少等を目的としてプロピレン自
身を液状媒体する塊状重合方法もよく知られてい
る。 しかしながら塊状重合法でブロツク共重合体を
製造する際の問題点としては、プロピレン/エチ
レンの反応比を小さくするためにはエチレンの使
用量を増加して全体の圧力を高くする必要があ
り、より後段でよりプロピレン/エチレンの反応
比を小さくして連続的に重合することが困難であ
るという問題があり、これに対しては特開昭57−
30534、特開昭57−145114、特開昭57−145115、
特開昭57−149319、特開昭57−149320などが知ら
れている。 発明が解決しようとする問題点 しかしながら上述の連続重合と回分重合を組み
合わせる方法は、比較的プロピレン/エチレンの
反応比の小さい反応もある程度自由に行うことは
できるが、そのためにはエチレン分圧を高くする
必要があるため多量のエチレンを回収する必要が
あるなどの問題があつた。 問題点を解決するための手段 本発明者は上記問題を解決する方法について鋭
意検討し本発明を完成した。 即ち本発明はプロピレン自身を液状媒体として
始めに実質的にプロピレンのみを重合し次いでプ
ロピレン/エチレンの反応比が80/20〜5/95重
量比であるように共重合することによつてプロピ
レン/エチレンの反応比が80/20〜5/95重量比
の共重合を有機マグネシウムの存在下に行うこと
を特徴とするプロピレンのブロツク共重合体の製
造法である。 本発明において、プロピレンの重合に用いる触
媒としては公知の種々の高立体規則性のポリプロ
ピレンを与える触媒系が利用可能であり特に制限
はない。例えば固体触媒としては四塩化チタンを
金属アルミニウム、水素、有機アルミニウムで還
元して得た三塩化チタン或いはそれらを電子供与
性化合物で変成処理したものさらにはハロゲン化
マグネシウムなどの担体或いはそれらを電子供与
性化合物で処理したものをハロゲン化チタンで変
成したものなどが挙げられる。 上記固体触媒は有機アルミニウム化合物及び必
要に応じて電子供与性化合物と併用することでプ
ロピレンの重合に用いられる。 有機アルミニウム化合物としてはトリアルキル
アルミニウム、ジアルキルアルミニウムハライ
ド、アルキルアルミニウムセスキハライド、アル
キルアルミニウムジハライドが使用でき、アルキ
ル残基としてはメチル基、エチル基、プロピル
基、ブチル基、ヘキシル基が例示でき、ハライド
としては塩素、臭素、ヨウ素が例示される。 好ましい触媒系として、固体触媒としてはハロ
ゲン化マグネシウムなどの担体或いはそれらを電
子供与性化合物で処理したものをハロゲン化チタ
ンで変性したものが挙げられ、具体的には塩化マ
グネシウムと有機化合物を共粉砕したものを四塩
化チタンで処理したもの、或いは塩化マグネシウ
ムとアルコールの反応物を炭化水素溶媒中に溶解
し次いで四塩化チタンなどの沈澱剤で処理するこ
とで炭化水素溶媒に不溶化し必要に応じエステ
ル、エーテルなどの電子供与性化合物で変性処理
し、次いで四塩化チタンで処理するなどの方法で
得られるようなものが例示できる。 併用する有機アルミニウムとしては好ましくは
トリメチルアルミニウム、トリエチルアルミニウ
ム、トリプロピルアルミニウム、トリブチルアル
ミニウム、ジメチルアルミニウムクロライド、ジ
エチルアルミニウムクロライド、ジプロピルアル
ミニウムクロライド、ジブチルアルミニウムクロ
ライドなどが使用され、必要に応じ立体規則性向
上剤としてエステル、エーテル、オルソエステ
ル、アルコキシケイ素が併用される。ここで固体
触媒に対する有機アルミニウム及び立体規則性向
上剤の使用量比としては通常それぞれ0.5〜100、
0.01〜30である。 本発明においては重合媒体としてはプロピレン
自身が使用されるが、必要に応じ〜20wt%まで
のヘキサン、ヘプタン、ベンゼン、トルエンなど
の他の不活性媒体を併用しても良い。 本発明において始めの実質的にプロピレンのみ
の重合は上述の触媒系のみで行われる。この条件
下での重合量は全重合量の50〜95%とするのが好
ましく50重量%より少ないとポリプロピレン本来
の剛性が失われ好ましくなく又95重量%より多い
と耐衝撃性の改良が充分でない。 ここで実質的にプロピレン単独とは、耐白化、
透明性、光沢等を改良する目的で〜6重量%以下
のエチレン、ブテン−1、ヘキセン−1、2−メ
チルペンテン−1などの他のα−オレフインと共
重合することをも含有する。 上記反応は50〜90℃で行うのが好ましく、反応
圧力は使用する不活性溶媒或いは分子量の調整の
ための水素などにより定まる。 本発明においては次いでプロピレン/エチレン
の反応比が80/20〜5/95重量比であるように共
重合される。ここで重要なのはこの反応の際に有
機マグネシウムを存在させることである。有機マ
グネシウムとしては、エチルブチルマグネシウ
ム、ジイソブチルマグネシウム、ジヘキシルマグ
ネシウム、ジフエニルマグネシウム、エチルアリ
ルマグネシウム、或いはそれらの混合物さらには
有機アルミニウムとの錯化合物などが具体例とし
て例示される。 有機マグネシウムの使用量としては特に制限は
ないが固体触媒に対して0.5〜100重量比用いるの
が一般的であり、上述の有機アルミニウムを併用
することも可能である。プロピレン/エチレンの
共重合反応は通常30〜60℃行うのが一般的であり
圧力は所望のエチレン、及び水素の気相濃度とす
ることで定まる。 本発明においてプロピレン/エチレンの反応比
は80/20〜5/95で行なうのが好ましく80/20よ
り大きいと耐衝撃性の改良効果が不充分であり、
又5/95より小さい場合も耐衝撃性の改良効果が
充分でない。 プロピレン/エチレンの反応比が80/20〜5/
95での共重合を行う部分は全体に対して50〜5重
量%とするのが好ましく、50重量%以上では剛性
が不良であり、5重量%未満では耐衝撃性が不良
である。 効 果 本発明の方法を実施することにより効率的にプ
ロピレンのブロツク共重合体を製造でき工業的に
極めて価値がある。即ち比較的低いエチレン分圧
においてもプロピレン/エチレンの反応比の小さ
いプロピレン−エチレンの共重合体を製造するこ
とが可能であり、より低いエチレン分圧、言い換
えればより少ないエチレンの使用で所望のプロピ
レン/エチレンの反応比の共重合部を得ることが
可能であり工業的に極めて価値がある。 実施例 以下に実施例を挙げ本発明をさらに説明する。 参考例 1 固体触媒成分の調整 直径12mmの鋼球9Kgの入つた内容積4の粉砕
用ポツトを4個装備した振動ミルを用意する。各
ポツトに窒素雰囲気中で塩化マグネシウム300g、
テトラエトキシシラン60ml及びα,α,α,−ト
リクロロトルエン45mlを加え、40時間粉砕した。 上記共粉砕物300gを5のフラスコにいれ、
四塩化チタン1.5、トルエン1.5を加え100℃
で30分間攪拌処理した。次いで静置した上澄液を
除き同様に四塩化チタン1.5、トルエン1.5を
加え100℃で30分間攪拌処理し次いで上澄液を除
き、さらに4のn−ヘプタンを用いて固形分を
洗浄することを10回繰り返した。得られた固体触
媒スラリーの部分をサンプリングしチタンを分析
したところ1.9wt%であつた。 重合反応 内容積5のオートクレーブに窒素雰囲気下上
記固体触媒20mgジエチルアルミニウムクロライド
0.128ml、P−トルイル酸メチル0.06ml、トリエ
チルアルミニウム0.03mlを加え次いでプロピレン
を1.8Kg装入し、さらに水素を3.3N加え75℃で
2時間重合反応を行い次いで未反応のプロピレン
をパージしポリマーを取り出し乾燥秤量し次い
で、135℃テトラリン溶液での極限粘度数、沸騰
n−ヘプタンで6時間抽出した抽出残分の割合
(以下それぞれη,IIと略記する)を測定した。
結果は表に示す。 参考例 2 参考例1の重合反応と同様の重合を行つた。但
し、2時間の重合の後オートクレーブの温度を40
℃に降温し40℃で1時間攪拌を続け、次いで未反
応プロピレンをパージした。結果を表に示すす。 参考例 3 参考例2と同様にした。但し40℃に降温後エチ
レンをエチレン分圧が10Kg/cm2−Gとなるように
装入した。結果を表に示す。 参考例2,3の結果より重合スタート後2時間
以後の40℃の反応ではエチレンの有無にかかわら
ず重合反応が進行していないことがわかる。 実施例及び比較例 参考例2で40℃に降温し次いで表に示しエチレ
ン分圧となるようにエチレンを装入した後表に示
す。有機金属化合物を添加して表に示す条件で重
合反応を行つた。得られた共重合体の共重合部で
の反応比はカラム分別法(中部化学関係学協会支
部連合秋季大会第13回講演予稿集3A20)によつ
てエチレンとプロピレンの共重合体の全重量W1
と該部のエチレン含量W2より(W1−W2)/W2
として算出した。又ブロツク共重合体は公知の安
定剤を添加し造粒しさらに厚さ1mmのインジエク
シヨンシートを作つて以下の物性値を測定した。 メルトフローインデツクス ASTM D1238
(230℃) 曲げ剛性度 ASTM D747−63(20℃) アイゾツト(ノツチ付)衝撃強度 ASTM
D256−56(20℃、−10℃) デユポン衝撃強度 JISK6718(20℃、−10℃) 結果は表に示す。表より有機マグネシウムを添
加することで低いエチレン分圧でも比較的エチレ
ンの多い反応比で重合が進行しており、同じ反応
比で同じ共重合部とした場合、有機アルミニウム
だけで重合したものより剛性と耐衝撃性のバラン
スが良好であることがわかる。 【表】
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a propylene block copolymer. Specifically, the present invention relates to a method for producing a propylene block copolymer by a bulk polymerization method using propylene itself as a liquid medium. BACKGROUND OF THE INVENTION It is well known to copolymerize polypropylene with other α-olefins, especially ethylene, in order to improve its impact resistance, especially at low temperatures, and also to simplify the process or transfer it to liquid media. A bulk polymerization method in which propylene itself is used as a liquid medium is also well known for the purpose of reducing soluble polymers. However, the problem with producing block copolymers using the bulk polymerization method is that in order to reduce the propylene/ethylene reaction ratio, it is necessary to increase the amount of ethylene used and raise the overall pressure. There is a problem in that it is difficult to reduce the reaction ratio of propylene/ethylene in the latter stage and carry out continuous polymerization, and to solve this problem,
30534, JP 57-145114, JP 57-145115,
Known examples include JP-A-57-149319 and JP-A-57-149320. Problems to be Solved by the Invention However, although the method of combining continuous polymerization and batch polymerization described above allows reactions with a relatively small propylene/ethylene reaction ratio to be carried out to some degree, it is necessary to increase the ethylene partial pressure. There were problems such as the need to recover a large amount of ethylene. Means for Solving the Problems The inventor of the present invention has completed the present invention after intensive studies on methods for solving the above problems. That is, the present invention uses propylene itself as a liquid medium to first polymerize substantially only propylene, and then copolymerizes propylene/ethylene so that the reaction ratio is 80/20 to 5/95 by weight. This is a method for producing a propylene block copolymer, characterized in that copolymerization is carried out at a reaction ratio of ethylene of 80/20 to 5/95 in the presence of organomagnesium. In the present invention, the catalyst used for propylene polymerization is not particularly limited, and any known catalyst system that provides polypropylene with high stereoregularity can be used. For example, solid catalysts include titanium trichloride obtained by reducing titanium tetrachloride with metal aluminum, hydrogen, or organic aluminum, or those obtained by modifying them with electron-donating compounds, as well as carriers such as magnesium halides, or titanium trichloride obtained by reducing titanium tetrachloride with metal aluminum, hydrogen, or organoaluminum, or supports such as magnesium halides, or titanium trichloride obtained by reducing titanium tetrachloride with metal aluminum, hydrogen, or organic aluminum; Examples include those treated with chemical compounds and modified with titanium halides. The above-mentioned solid catalyst is used in the polymerization of propylene in combination with an organoaluminum compound and, if necessary, an electron-donating compound. As the organoaluminum compound, trialkylaluminum, dialkylaluminum halide, alkylaluminum sesquihalide, and alkylaluminum dihalide can be used. Examples of the alkyl residue include methyl group, ethyl group, propyl group, butyl group, and hexyl group. Examples include chlorine, bromine, and iodine. As a preferable catalyst system, solid catalysts include carriers such as magnesium halide, or those treated with electron-donating compounds and modified with titanium halide. Specifically, magnesium chloride and an organic compound are co-pulverized. The treated product is treated with titanium tetrachloride, or the reaction product of magnesium chloride and alcohol is dissolved in a hydrocarbon solvent and then treated with a precipitant such as titanium tetrachloride to make it insoluble in the hydrocarbon solvent, and if necessary, an ester is produced. Examples include those obtained by a method such as modification treatment with an electron-donating compound such as ether, and then treatment with titanium tetrachloride. Preferably, the organoaluminium used in combination includes trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, dibutylaluminum chloride, etc., and stereoregularity improvers are used as necessary. As such, esters, ethers, orthoesters, and alkoxy silicones are used in combination. Here, the usage ratio of organoaluminum and stereoregularity improver to the solid catalyst is usually 0.5 to 100, respectively.
It is between 0.01 and 30. In the present invention, propylene itself is used as the polymerization medium, but if necessary, other inert media such as hexane, heptane, benzene, toluene, etc. may be used in combination up to 20 wt%. In the present invention, the initial polymerization of substantially only propylene is carried out using only the above catalyst system. The amount of polymerization under these conditions is preferably 50 to 95% of the total polymerization amount, and if it is less than 50% by weight, the inherent rigidity of polypropylene will be lost, and if it is more than 95% by weight, the impact resistance will not be improved sufficiently. Not. Here, substantially propylene alone refers to whitening resistance,
It also contains copolymerization with other α-olefins such as ethylene, butene-1, hexene-1, and 2-methylpentene-1 in an amount of up to 6% by weight for the purpose of improving transparency, gloss, etc. The above reaction is preferably carried out at 50 to 90°C, and the reaction pressure is determined by the inert solvent used, hydrogen for adjusting the molecular weight, etc. In the present invention, copolymerization is then carried out such that the reaction ratio of propylene/ethylene is 80/20 to 5/95 by weight. What is important here is the presence of organomagnesium during this reaction. Specific examples of organic magnesium include ethylbutylmagnesium, diisobutylmagnesium, dihexylmagnesium, diphenylmagnesium, ethylallylmagnesium, mixtures thereof, and complex compounds with organic aluminum. The amount of organic magnesium used is not particularly limited, but it is generally used at a weight ratio of 0.5 to 100 with respect to the solid catalyst, and the above-mentioned organic aluminum can also be used in combination. The propylene/ethylene copolymerization reaction is generally carried out at 30 to 60°C, and the pressure is determined depending on the desired concentration of ethylene and hydrogen in the gas phase. In the present invention, the reaction ratio of propylene/ethylene is preferably 80/20 to 5/95, and if it is greater than 80/20, the effect of improving impact resistance is insufficient.
Further, when the ratio is smaller than 5/95, the effect of improving impact resistance is not sufficient. The reaction ratio of propylene/ethylene is 80/20 to 5/
The proportion of the copolymerized portion with 95 is preferably 50 to 5% by weight based on the total weight; if it is more than 50% by weight, the rigidity will be poor, and if it is less than 5% by weight, the impact resistance will be poor. Effects By carrying out the method of the present invention, a propylene block copolymer can be efficiently produced and is extremely valuable industrially. In other words, it is possible to produce a propylene-ethylene copolymer with a small reaction ratio of propylene/ethylene even at a relatively low ethylene partial pressure, and it is possible to produce the desired propylene with a lower ethylene partial pressure, or in other words, using less ethylene. It is possible to obtain a copolymerized portion with a reaction ratio of /ethylene, which is extremely valuable industrially. Examples The present invention will be further explained with reference to Examples below. Reference example 1 Adjustment of solid catalyst component Prepare a vibratory mill equipped with four grinding pots with an internal volume of 4 each containing 9 kg of steel balls with a diameter of 12 mm. 300 g of magnesium chloride in a nitrogen atmosphere in each pot.
60 ml of tetraethoxysilane and 45 ml of α,α,α,-trichlorotoluene were added and pulverized for 40 hours. Put 300g of the above co-pulverized material into flask 5,
Add 1.5 titanium tetrachloride and 1.5 toluene and bring to 100°C.
The mixture was stirred for 30 minutes. Next, remove the supernatant liquid, add 1.5% of titanium tetrachloride and 1.5% of toluene, stir at 100°C for 30 minutes, remove the supernatant liquid, and wash the solid content using n-heptane from step 4. was repeated 10 times. When a portion of the obtained solid catalyst slurry was sampled and titanium was analyzed, it was found to be 1.9 wt%. Polymerization reaction 20 mg of the above solid catalyst was added to an autoclave with an internal volume of 5 under a nitrogen atmosphere.
0.128 ml, methyl P-toluate 0.06 ml, and triethylaluminum 0.03 ml were added, then 1.8 kg of propylene was charged, and 3.3 N of hydrogen was added to carry out a polymerization reaction at 75°C for 2 hours. Then, unreacted propylene was purged and the polymer was was taken out, dried and weighed, and then the intrinsic viscosity in a tetralin solution at 135°C and the proportion of the extraction residue extracted for 6 hours with boiling n-heptane (hereinafter abbreviated as η and II, respectively) were measured.
The results are shown in the table. Reference Example 2 Polymerization similar to the polymerization reaction of Reference Example 1 was carried out. However, after 2 hours of polymerization, the temperature of the autoclave should be changed to 40℃.
The temperature was lowered to 40°C, and stirring was continued for 1 hour at 40°C, and then unreacted propylene was purged. The results are shown in the table. Reference Example 3 The same procedure as Reference Example 2 was carried out. However, after the temperature was lowered to 40°C, ethylene was charged so that the partial pressure of ethylene was 10 kg/cm 2 -G. The results are shown in the table. From the results of Reference Examples 2 and 3, it can be seen that the polymerization reaction did not proceed regardless of the presence or absence of ethylene in the reaction at 40° C. after 2 hours from the start of polymerization. Examples and Comparative Examples In Reference Example 2, the temperature was lowered to 40°C, and then ethylene was charged so that the partial pressure of ethylene was as shown in the table. An organometallic compound was added and a polymerization reaction was carried out under the conditions shown in the table. The reaction ratio at the copolymerization part of the obtained copolymer was determined by the column fractionation method (Chubu Chemical Association Branch Federation Autumn Conference 13th Lecture Proceedings 3A20), and the total weight of the ethylene and propylene copolymer W 1
From the ethylene content W 2 of the part, (W 1 − W 2 )/W 2
It was calculated as The block copolymer was granulated with the addition of a known stabilizer, and an injection sheet having a thickness of 1 mm was prepared, and the following physical properties were measured. Melt flow index ASTM D1238
(230℃) Bending rigidity ASTM D747-63 (20℃) Izot (notched) impact strength ASTM
D256-56 (20℃, -10℃) Dupont impact strength JISK6718 (20℃, -10℃) The results are shown in the table. The table shows that by adding organomagnesium, polymerization progresses at a relatively high ethylene reaction ratio even at low ethylene partial pressures, and when the same reaction ratio and the same copolymerization part are used, the polymerization is more rigid than that obtained by polymerization with organoaluminium alone. It can be seen that there is a good balance between impact resistance and impact resistance. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 プロピレン自身を液状媒体としてはじめに実
質的にプロピレンのみを重合し次いでプロピレ
ン/エチレンの反応比が80/20〜5/95重量比で
あるように共重合することによつてプロピレンの
ブロツク共重合体を製造する方法において、プロ
ピレン/エチレンの反応比が80/20〜5/95重量
比の共重合を有機マグネシウムの存在下に行うこ
とを特徴とするプロピレンのブロツク共重合体の
製造方法。
1 Propylene block copolymer is produced by first polymerizing substantially only propylene using propylene itself as a liquid medium, and then copolymerizing so that the reaction ratio of propylene/ethylene is 80/20 to 5/95 by weight. 1. A method for producing a propylene block copolymer, which comprises carrying out copolymerization at a propylene/ethylene reaction ratio of 80/20 to 5/95 by weight in the presence of organomagnesium.
JP27504085A 1985-12-09 1985-12-09 Production of propylene block copolymer Granted JPS62135509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27504085A JPS62135509A (en) 1985-12-09 1985-12-09 Production of propylene block copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27504085A JPS62135509A (en) 1985-12-09 1985-12-09 Production of propylene block copolymer

Publications (2)

Publication Number Publication Date
JPS62135509A JPS62135509A (en) 1987-06-18
JPH0580496B2 true JPH0580496B2 (en) 1993-11-09

Family

ID=17550023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27504085A Granted JPS62135509A (en) 1985-12-09 1985-12-09 Production of propylene block copolymer

Country Status (1)

Country Link
JP (1) JPS62135509A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132113A (en) * 1988-11-11 1990-05-21 Mitsubishi Petrochem Co Ltd Production of propylene block copolymer
JPH0790035A (en) * 1993-07-27 1995-04-04 Ube Ind Ltd Production of propylene block copolymer

Also Published As

Publication number Publication date
JPS62135509A (en) 1987-06-18

Similar Documents

Publication Publication Date Title
JPS5941651B2 (en) Method for producing polybutene-1
JP2516199B2 (en) Continuous propylene polymerization method
JPH0580496B2 (en)
JPH0725832B2 (en) Propylene polymerization method
JPH0680101B2 (en) Process for producing block copolymer of propylene
JPS6072903A (en) Polymerization of alpha-olefin
JPH0618839B2 (en) Process for producing block copolymer of propylene
JPH0725820B2 (en) Polymerization method of propylene
JPH0580495B2 (en)
JPH0762097B2 (en) Crystalline polypropylene resin composition and method for producing the same
JPH0222310A (en) Production of propylene copolymer
JP2713577B2 (en) Polypropylene resin composition
JPH0816140B2 (en) Process for producing block copolymer of propylene
JPH0772211B2 (en) Continuous propylene polymerization method
JPH0618841B2 (en) Process for producing block copolymer of propylene
JP2695227B2 (en) Propylene block copolymer, block copolymer composition and method for producing the same
JPS62141014A (en) Production of propylene block copolymer
JPS61207405A (en) Polymerization of ethylene
JP2710806B2 (en) Method for producing polyolefin resin composition
JPH0471924B2 (en)
JPH04175313A (en) Alpha-olefin polymerization catalyst
JP3169428B2 (en) Impact resistant polyethylene resin composition
JPH0774295B2 (en) Method for producing polypropylene resin composition
JPS61204204A (en) Method of polymerizing ethylene
JPS58117206A (en) Production of catalytic component for olefin polymerization