JPH0548242B2 - - Google Patents

Info

Publication number
JPH0548242B2
JPH0548242B2 JP14678784A JP14678784A JPH0548242B2 JP H0548242 B2 JPH0548242 B2 JP H0548242B2 JP 14678784 A JP14678784 A JP 14678784A JP 14678784 A JP14678784 A JP 14678784A JP H0548242 B2 JPH0548242 B2 JP H0548242B2
Authority
JP
Japan
Prior art keywords
transition metal
titanium tetrachloride
metal catalyst
present
supported transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14678784A
Other languages
Japanese (ja)
Other versions
JPS6126603A (en
Inventor
Tadashi Asanuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP14678784A priority Critical patent/JPS6126603A/en
Publication of JPS6126603A publication Critical patent/JPS6126603A/en
Publication of JPH0548242B2 publication Critical patent/JPH0548242B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は担体付遷移金属触媒の製造法に関す
る。詳しくは、オレフイン重合用の担体付遷移金
属触媒の製造法に関する。 従来の技術 α−オレフインを重合するに際して、遷移金属
触媒として種々の担体、特にハロゲン化マグネシ
ウムに遷移金属を担持して得たいわゆる担体付遷
移金属触媒を用いることにより遷移金属当り高収
率でポリα−オレフインを得る方法が特公昭39−
12105号で提案されて以来、数多くの方法が提案
されており、担体付遷金属触媒当りの収率を向上
させるための数多くの方法が提案されている。 発明が解決しようとする問題点 担体付遷移金属触媒当りのポリα−オレフイン
の収率はかなり改善されているとは言え、重合反
応後に触媒残渣を除去しないと、特にフイルムグ
レード等の用途では問題がありさらに触媒活性を
向上させる必要がある。 問題点を解決するための手段 本発明者は上記問題を解決する方法について鋭
意検討した結果ハロゲン化マグネシウムを含有す
る担体と四塩化チタンを加熱触媒処理し次いで過
剰の四塩化チタンを飽和アルコールを2〜15重量
ppm含有する不活性炭化水素化合物で洗浄するこ
とにより担体付遷移金属触媒の性能を大幅に向上
できることを見い出し本発明を完成した。 即ち本発明はハロゲン化マグネシウムを含有す
る担体と四塩化チタンを加熱触媒処理し次いで過
剰の四塩化チタンを飽和アルコールを2〜15重量
ppm含有する不活性炭化水素化合物で洗浄するこ
とを特徴とするα−オレフイン重合用の担体付遷
移金属触媒の製造方法に関する。 本発明においてハロゲン化マグネシウムを含有
する担体としては種々の方法で得ることが可能で
あり、単に微粒子状とハロゲン化マグネシウム
(例えば粉砕或は適当な溶剤で溶解した後沈澱さ
せ微粒子とする方法で作られる)、或は、含酸素
有機化合物と共粉砕したもの、或は、ハロゲン化
マグネシウムと錯体を形成し得る化合物で微子状
としたハロゲン化マグネシウムで処理したもので
あつても良いし又場合によつては、ハロゲン化マ
グネシウム以外の担体例えばシリカ、アルミナ酸
化マグネシウム、水酸化マグネシウム、アルコキ
シマグネシウムを併用したものであつてもよい。
ハロゲン化マグネシウムとしては塩化マグネシウ
ムが好ましい。本発明において重要なのは上記担
体にチタンを担持するに際し四塩化チタンと担体
を加熱接触処理することにある。この際四塩化チ
タンはヘキサン、ヘプタン、トルエン、キシレン
などの炭化水素化合物で希釈して用いても良い。
加熱接触は四塩化チタン中に上記担体を分散させ
好ましくは撹拌しながら40〜135℃に加熱するこ
とで行なわれ、接触時間は通常5〜300分程度行
えば良くさらに長時間接触処理する必要はない。 本発明においては上記加熱接触処理に次いで過
剰の四塩化チタンの大部分は好ましくはろ過、デ
カンテーシヨン、或は蒸発除去することにより除
去され次いで飽和アルコールを2〜15重量ppm含
有する不活性炭化水素化合物で洗浄することによ
つて担体付遷移金属触媒が製造される。ここで飽
和アルコールとしてはメタノール、エタノール、
プロパノール、ブタノールが好ましく用いられ、
又不活性炭化水素化合物としてはヘキサン、ヘプ
タン、オクタン、ベンゼン、トルエン、キシレ
ン、エチルベンゼン及びそれらの混合物が好まし
く用いられる。本発明において、洗浄は担体に担
持されたチタンの1/10〜1/1000の量のチタンしか
遊離していない程度にまで洗浄される。1/10以上
では活性が不良となり又1/1000未満の量では遊離
とチタン量としても触媒性能を格別向上させるこ
とがないからである。洗浄は通常10〜50℃で行え
ば良く格別低温又は高温で行う必要はない。 本発明の方法で得られた担体付遷移金属触媒は
有機アルミニウム必要に応じ立体規則性向上剤と
組み合せてプロピレン、ブテン−1、ヘキセン−
1などのα−オレフイン及びエチレンとの共重合
用の触媒として、室温〜150℃の温度で常圧〜50
Kg/cm2−ゲージの圧力で液状媒体の存在下或は不
存在下でα−オレフインを重合することができ
る。 作 用 洗浄を制御された量の飽和アルコールを存在さ
せた不活性炭化水素で行うことにより何らかの理
由で触媒が活性化されるため、優れた性能を有す
る、担体付遷移金属触媒が得られるものと推定さ
れる。 実施例 以下に実施例を挙げ本発明をさらに説明する。 実施例及び比較例 (A‐1) 担体の製造 直径12mmの鋼球80個入つた内容積900mlの粉砕
用ポツト2個装備した振動ミルを用意する。この
ポツト中に窒素雰囲気下で1つ当り塩化マグネシ
ウム30g、オルソ酢酸エチル3ml、1,2−ジク
ロロエタン6mlを加え40時間粉砕した。 (A‐2) 上記粉砕機を用い塩化マグネシウム30g、フタ
ル酸ジイソブチル3ml、1、2−ジクロロエタン
6mlを加え40時間粉砕した。 (B) 担持 表に示すように(A−1)(A−2)で得た
共粉砕物各10gを50mlの四塩化チタンと80℃で
2時間加熱接触処理し次いで表に示すように、
飽和アルコールを含有する不活性炭化水素を用
いて1回100mlで7回洗浄した。 (C) 充分に乾燥し窒素で置換した内容積5のオ
ートクレーブを準備する、(B)で得られた担体付
遷移金属触媒30mg、トルイル酸メチル0.06ml、
ジエチルアルミニウムクロライド0.128ml、ト
リエチルアルミニウム0.08ml、を希釈用n−ヘ
プタン50mlを混合して上記オートクレーブに装
入し、プロピレン1.5Kg、水素1.5Nを加え75
℃で2時間重合した後末反応のプロピレンをパ
ージル得られたパウダーを60℃、20mmHgで6
時間乾燥し秤量し、次いで沸騰n−ヘプタンで
6時間ソツクスレ−抽出器を用い抽出し沸騰n
−ヘプタン抽出残率(以後と略記
抽出後パウダー重量/抽出前パウダー重量×100(%)
として算出)、 及び135℃テトラリン溶液で測定した極限粘度
数、かさ比重を測定した結果は表に示す。 発明の効果 実施例にも示すように本発明の方法を実施する
ことによつてα−オレフイン重合用の担体付遷移
金属触媒の性能を大幅に向上させることが可能と
なり工業的に極めて価値がある。 【表】
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a supported transition metal catalyst. Specifically, the present invention relates to a method for producing a supported transition metal catalyst for olefin polymerization. BACKGROUND ART When polymerizing α-olefin, polymers can be produced in high yield per transition metal by using a so-called supported transition metal catalyst obtained by supporting a transition metal on various carriers, especially magnesium halide, as a transition metal catalyst. A method for obtaining α-olefin was published in 1977.
Since it was proposed in No. 12105, many methods have been proposed, and many methods have been proposed to improve the yield per supported transition metal catalyst. Problems to be Solved by the Invention Although the yield of polyα-olefin per supported transition metal catalyst has been considerably improved, if the catalyst residue is not removed after the polymerization reaction, problems arise especially in applications such as film grades. Therefore, it is necessary to further improve the catalytic activity. Means for Solving the Problems As a result of intensive studies on methods for solving the above-mentioned problems, the inventor of the present invention conducted a heating catalytic treatment of a carrier containing magnesium halide and titanium tetrachloride, and then removed excess titanium tetrachloride with saturated alcohol. ~15 weight
We have discovered that the performance of supported transition metal catalysts can be significantly improved by washing them with an inert hydrocarbon compound containing ppm, and have completed the present invention. That is, in the present invention, a carrier containing magnesium halide and titanium tetrachloride are heated and catalyzed, and then the excess titanium tetrachloride is mixed with 2 to 15 weights of saturated alcohol.
The present invention relates to a method for producing a supported transition metal catalyst for α-olefin polymerization, which comprises washing with an inert hydrocarbon compound containing ppm. In the present invention, the carrier containing magnesium halide can be obtained by various methods, and magnesium halide (eg, pulverized or dissolved in an appropriate solvent and then precipitated to form fine particles) can be obtained by various methods. ), or co-pulverized with an oxygen-containing organic compound, or treated with finely divided magnesium halide using a compound capable of forming a complex with magnesium halide. Depending on the case, a carrier other than magnesium halide, such as silica, alumina magnesium oxide, magnesium hydroxide, or alkoxymagnesium, may be used in combination.
As the magnesium halide, magnesium chloride is preferred. What is important in the present invention is to subject titanium tetrachloride and the carrier to a heat contact treatment when supporting titanium on the carrier. At this time, titanium tetrachloride may be diluted with a hydrocarbon compound such as hexane, heptane, toluene, or xylene.
The heating contact is carried out by dispersing the above-mentioned carrier in titanium tetrachloride and heating it to 40 to 135°C, preferably while stirring, and the contact time is usually about 5 to 300 minutes, and there is no need for a longer contact treatment. do not have. In the present invention, following the heating contact treatment, most of the excess titanium tetrachloride is preferably removed by filtration, decantation, or evaporation, followed by inert carbonization containing 2 to 15 ppm by weight of saturated alcohol. A supported transition metal catalyst is produced by washing with a hydrogen compound. Here, the saturated alcohols include methanol, ethanol,
Propanol and butanol are preferably used,
As the inert hydrocarbon compound, hexane, heptane, octane, benzene, toluene, xylene, ethylbenzene and mixtures thereof are preferably used. In the present invention, cleaning is performed to the extent that only 1/10 to 1/1000 of the titanium supported on the carrier is liberated. This is because if the amount is 1/10 or more, the activity will be poor, and if the amount is less than 1/1000, the catalytic performance will not be particularly improved even in the amount of free titanium. Washing can usually be carried out at a temperature of 10 to 50°C and does not need to be carried out at particularly low or high temperatures. The supported transition metal catalyst obtained by the method of the present invention is prepared using organic aluminum, propylene, butene-1, hexene-1, etc. in combination with a stereoregularity improver if necessary.
As a catalyst for copolymerization with α-olefin and ethylene such as
α-olefins can be polymerized in the presence or absence of a liquid medium at pressures of Kg/cm 2 -gauge. Effect: By washing with an inert hydrocarbon in the presence of a controlled amount of saturated alcohol, the catalyst is activated for some reason, resulting in a supported transition metal catalyst with excellent performance. Presumed. Examples The present invention will be further explained with reference to Examples below. Examples and Comparative Examples (A-1) Production of carrier A vibratory mill equipped with two grinding pots each having an internal volume of 900 ml each containing 80 steel balls with a diameter of 12 mm is prepared. Each pot was charged with 30 g of magnesium chloride, 3 ml of ethyl orthoacetate, and 6 ml of 1,2-dichloroethane under a nitrogen atmosphere and ground for 40 hours. (A-2) Using the above-mentioned pulverizer, 30 g of magnesium chloride, 3 ml of diisobutyl phthalate, and 6 ml of 1,2-dichloroethane were added and pulverized for 40 hours. (B) Support As shown in the table, 10 g each of the co-pulverized products obtained in (A-1) and (A-2) were heated and contacted with 50 ml of titanium tetrachloride at 80°C for 2 hours, and then, as shown in the table,
Washed 7 times with 100 ml each using an inert hydrocarbon containing saturated alcohol. (C) Prepare an autoclave with an internal volume of 5 that has been thoroughly dried and purged with nitrogen, containing 30 mg of the supported transition metal catalyst obtained in (B), 0.06 ml of methyl toluate,
Mix 0.128 ml of diethyl aluminum chloride, 0.08 ml of triethyl aluminum, and 50 ml of n-heptane for dilution, charge the mixture into the above autoclave, add 1.5 kg of propylene, and 1.5 N of hydrogen.
After polymerizing for 2 hours at ℃, the resulting powder was purified with propylene at 60℃ and 20mmHg for 6 hours.
Dry for an hour, weigh, then extract using a Soxhlet extractor with boiling n-heptane for 6 hours, and boil n-heptane for 6 hours.
- Heptane extraction residual rate (hereinafter abbreviated as powder weight after extraction / powder weight before extraction x 100 (%)
The results of measurements of the intrinsic viscosity and bulk specific gravity measured using a tetralin solution at 135°C are shown in the table. Effects of the Invention As shown in the Examples, by carrying out the method of the present invention, it is possible to significantly improve the performance of supported transition metal catalysts for α-olefin polymerization, which is extremely valuable industrially. . 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の理解を助けるためのフロー
図である。
FIG. 1 is a flow diagram to aid understanding of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ハロゲン化マグネシウムを含有する担体と四
塩化チタンを加熱接触処理し次いで過剰の四塩化
チタンを飽和アルコールを2〜15重量ppm含有す
る不活性炭化水素化合物で洗浄することを特徴と
するα−オレフイン重合用の担体付遷移金属触媒
の製造方法。
1. An α-olefin characterized in that a carrier containing magnesium halide and titanium tetrachloride are heated and contacted, and then excess titanium tetrachloride is washed with an inert hydrocarbon compound containing 2 to 15 ppm by weight of saturated alcohol. A method for producing a supported transition metal catalyst for polymerization.
JP14678784A 1984-07-17 1984-07-17 Preparation of transition metal catalyst with carrier Granted JPS6126603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14678784A JPS6126603A (en) 1984-07-17 1984-07-17 Preparation of transition metal catalyst with carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14678784A JPS6126603A (en) 1984-07-17 1984-07-17 Preparation of transition metal catalyst with carrier

Publications (2)

Publication Number Publication Date
JPS6126603A JPS6126603A (en) 1986-02-05
JPH0548242B2 true JPH0548242B2 (en) 1993-07-21

Family

ID=15415527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14678784A Granted JPS6126603A (en) 1984-07-17 1984-07-17 Preparation of transition metal catalyst with carrier

Country Status (1)

Country Link
JP (1) JPS6126603A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7337828B2 (en) * 2018-09-27 2023-09-04 東邦チタニウム株式会社 Method for producing solid catalyst component for olefin polymerization, solid catalyst for olefin polymerization, and method for producing olefin polymer

Also Published As

Publication number Publication date
JPS6126603A (en) 1986-02-05

Similar Documents

Publication Publication Date Title
JP2514015B2 (en) Solid catalyst component for olefin polymerization
JPS6338363B2 (en)
JPH05194640A (en) Catalyst for polymerization of olefin
JPH0548242B2 (en)
JPH0350765B2 (en)
JPH0725820B2 (en) Polymerization method of propylene
JPH02255808A (en) Polymerization of alpha-olefin
JPS5821921B2 (en) Polymerization method of α↓-olefins
JPS6215562B2 (en)
JP2710796B2 (en) Method for producing polyolefin resin composition
JPS61231006A (en) Production of olefin polymer
JPH0311284B2 (en)
JPS6042243B2 (en) Polymerization method of α-olefins
JPH0543723B2 (en)
JPH0423641B2 (en)
JPH0533242B2 (en)
JPH0745544B2 (en) Olefin Polymerization Method
JPS63132906A (en) Polymerization of olefin
JPH0425284B2 (en)
JPH0348211B2 (en)
JPH0725805B2 (en) Delivery method of solid transition metal catalyst for olefin polymerization
JPS5840964B2 (en) Stereoregular polymerization method of α↓-olefins
JPS6338364B2 (en)
JPH0456844B2 (en)
JPH0725824B2 (en) Method for producing catalyst component for olefin polymerization