JPH0423641B2 - - Google Patents

Info

Publication number
JPH0423641B2
JPH0423641B2 JP58176275A JP17627583A JPH0423641B2 JP H0423641 B2 JPH0423641 B2 JP H0423641B2 JP 58176275 A JP58176275 A JP 58176275A JP 17627583 A JP17627583 A JP 17627583A JP H0423641 B2 JPH0423641 B2 JP H0423641B2
Authority
JP
Japan
Prior art keywords
halide
olefin
transition metal
polymerizing
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58176275A
Other languages
Japanese (ja)
Other versions
JPS6067511A (en
Inventor
Tadashi Asanuma
Shinryu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP17627583A priority Critical patent/JPS6067511A/en
Publication of JPS6067511A publication Critical patent/JPS6067511A/en
Publication of JPH0423641B2 publication Critical patent/JPH0423641B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 本発明は、オレフインの重合方法に関する。更
に詳しくは、特定の担持遷移金属触媒を用いたオ
レフインの重合方法に関する。 遷移金属触媒単位量当りのポリオレフインの収
率を高める方法については多くの改良法が提案さ
れており、なかでも特公昭39−12105号に提案さ
れているハロゲン化金属にハロゲン化チタンを担
持して得た触媒、いわゆる担持遷移金属触媒と有
機アルミニウム化合物からなる触媒を用いるオレ
フインの重合方法が有効であり、この方法の改良
についての提案も数多くなされている。 しかしながら上記重合方法は遷移金属単位量当
りのポリオレフインの収率は向上するが、遷移金
属触媒単位量当りの収率が不充分であり担体とし
て用いたハロゲン化金属がポリマー中に残存する
という問題があり、さらに遷移金属触媒当りの活
性を向上する必要がある。 本発明者らは上記問題を解決する方法について
種々の検討を行つた結果、遷移金属触媒の担持に
特定の物質を用いることで遷移金属触媒単位量当
りの活性が大幅に向上することを見出し、本発明
を完成した。 本発明の目的は遷移金属触媒単位量当り高収率
でポリオレフインを重合し得る方法を提供するこ
とにある。本発明の別の目的は触媒当り高収率
で、しかも高度に立体規則性が付与されたポリ−
α−オレフインを得ることのできるオレフインの
重合方法を提供することにある。即ち、本発明の
オレフイン重合方法は、ハロゲン化マグネシウム
に担持して得た遷移金属触媒と有機アルミニウム
化合物とからなる触媒を用いてオレフインを重合
する方法において、該遷移金属触媒が無水ハロゲ
ン化マグネシウムと、一般式MXo・mH2O(式
中、Mはマグネシウム原子又はアルミニウム原子
であり、Xはハロゲン原子であり、nは1〜3の
整数であり、mは1〜6の整数である)で表され
るハロゲン化金属水和物と、含酸素化合物、芳香
族化合物及びハロゲン化炭化水素からなる群から
選ばれた液状化合物とを共粉砕して得た担体にハ
ロゲン化チタンを担持して得たものであることを
特徴とする。 本発明で使用する無水ハロゲン化マグネシウム
としては無水の塩化マグネシウムが好ましく用い
られる。通常市場で入手可能なものとしては、チ
タン、ジルコニウムの製造の際に副生する無水塩
化マグネシウムがそのまま格別精製することなく
用いられる。 本発明で使用する一般式MXo・mH2Oで表さ
れるハロゲン化金属水和物におけるXの具体例は
F、Cl、Br及びIであり、またこのハロゲン化
金属水和物の好ましい例はMgCl2・2H2O、
MgCl2・6H2O及びAlCl3・6H2Oである。これら
のハロゲン化金属水和物は単独で用いても、2種
以上を併用してもよい。 本発明においてハロゲン化チタンを担持するた
めの担体の製造は、上記ハロゲン化金属水和物を
用いる以外は公知の方法が採用できる。即ち、カ
ルボン酸エステル、オルトカルボン酸エステル、
エーテル、アセタールなどの含酸素化合物、ベン
ゼン、トルエン、キシレン、クメンなどの芳香族
化合物、メチレンクロライド、ジクロロエタン、
トリクロロエタン、クロロプロパン、トリクロロ
トルエンなどのハロゲン化炭化水素などの液状の
化合物と無水ハロゲン化マグネシウム及びハロゲ
ン化金属水和物を、共粉砕する方法である。共粉
砕の際上記三者は、例えば無水ハロゲン化マグネ
シウムとハロゲン化金属水和物とを共粉砕し次い
で液状の化合物と共粉砕する方法ないし三者を同
時に粉砕する方法などが可能である。共粉砕は比
較的強い力で行う振動ミルを用いるのが一般的で
あり、共粉砕の時間は装置、共粉砕量などによつ
て適当な時間を定めるべきであるが通常数時間乃
至100時間程度である。生成した共粉砕物中にお
ける水和物と無水ハロゲン化マグネシウムとの量
比は、ハロゲン化マグネシウム1モルに対して水
和水0.01〜0.5モル程度であることが好ましい。
0.01モル以下では殆ど効果がなく、0.5モルを超
えると逆に触媒活性が低下して好ましくない。 こうして得られた担体にハロゲン化チタンを担
持して遷移金属触媒が製造されるが、好ましい担
持方法は液状のハロゲン化チタンと接触、処理す
ることである。接触処理は担体に四塩化チタンな
どの液状のハロゲン化チタンと加熱接触処理する
方法或は、不活性炭化水素水にハロゲン化チタン
を希釈して触媒を行う方法、又は、上記操作を繰
り返し行う方法などが採用できる。又三塩化チタ
ンをエーテルなどで錯化させ、炭化水素化合物に
可溶化させた液状のハロゲン化チタンを用いるこ
とも可能である。 本発明の方法は、エチレンの重合あるいはエチ
レンと少量のα−オレフインとの共重合にも適用
できるが特にα−オレフインであるプロピレン、
ブテン−1、ヘキセン−1などの単独重合又はα
−オレフイン相互の共重合あるいはこれらとエチ
レンとの共重合、ブロツク共重合に適用した場
合、得られるポリマーの立体規則性を同時に高め
ることが可能となり効果的である。重合反応は、
不活性炭化水素媒体中であるいはモノマー自身を
媒体とする塊状重合法、或は液状の媒体が実質的
に存在しない気相重合法で通常常圧〜50Kg/m2
ージの圧力で、常温から100℃までの範囲で行う
のが一般的である。以下に実施例を挙げ本発明を
さらに具体的に説明する。 実施例 1 (イ) 遷移金属触媒の製造 直径12mmのステンレス製ボール80個入つた内
容積600ml、の粉砕用ポツト中に窒素雰囲気中
で塩化マグネシウム19g及び塩化マグネシウム
6水塩2gを入れ2時間粉砕し次いでオルト酢
酸エチル3ml、1,2−ジクロロエタン2mlを
上記と同様に窒素気流下で装入し30℃で40時間
粉砕した。次いで共粉砕物10gを窒素気流下で
200mlの丸底フラスコに入れ四塩化チタン50ml
加え80℃で2時間撹拌下に接触処理し次いで静
置分離により四塩化チタンを除去し、さらに1
回100mlのn−ヘプタンで固体部分を洗浄する
操作を7回繰り返し固体触媒スラリーを得た。
固体触媒の1部をサンプリングし分析したとこ
ろTiを2.1wt%含有していた。 (ロ) 重合反応 十分に乾燥し窒素置換した内容積5のオー
トクレーブを準備する。十分に乾燥し窒素置換
した200mlのフラスコに乾燥し窒素で置換した
n−ヘプタン50mlを入れジエチルアルミニウム
クロライド0.24mlトルイル酸メチル0.14ml、ト
リエチルアルミニウム0.20ml、さらに(イ)で得た
固体触媒30mgを加え、混合した触媒スラリーを
上記オートクレーブに装入し、次いでプロピレ
ン1.5Kg、水素0.6Nを装入し、オートクレー
ブを加熱することにより内温75℃で2時間重合
した。重合反応の後未反応のプロピレンを排出
し次いでポリプロピレンパウダーを取り出し60
℃で10時間乾燥した後秤量し、又135℃テトラ
リン溶液で極限粘度数(以下「η」と略記)及
びかさ比重を求め、さらにソツクスレー抽出器
を用いて沸騰n−ヘプタン抽出残率
(抽出残ポリマー重量/抽出前ポリマー重量×100(%
)として算出。 以下と略記)を求めた。結果は表に示す。 実施例2〜5 比較例1〜3 表に示す原料、条件で共粉砕した他の実施例1
と同様の実験を行つた。結果は表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for polymerizing olefins. More specifically, the present invention relates to a method for polymerizing olefins using a specific supported transition metal catalyst. Many improved methods have been proposed for increasing the yield of polyolefin per unit amount of transition metal catalyst, and among them, a method of supporting titanium halide on a metal halide proposed in Japanese Patent Publication No. 39-12105 is proposed. An olefin polymerization method using the obtained catalyst, a so-called supported transition metal catalyst and an organoaluminum compound, is effective, and many proposals have been made for improving this method. However, although the above polymerization method improves the yield of polyolefin per unit amount of transition metal catalyst, the yield per unit amount of transition metal catalyst is insufficient and there are problems in that the metal halide used as a carrier remains in the polymer. There is a need to further improve the activity per transition metal catalyst. The present inventors conducted various studies on methods to solve the above problems, and as a result, they discovered that the activity per unit amount of transition metal catalyst can be greatly improved by using a specific substance to support the transition metal catalyst. The invention has been completed. An object of the present invention is to provide a method capable of polymerizing polyolefins at a high yield per unit amount of transition metal catalyst. Another object of the present invention is to produce highly stereoregular polystyrene with high yield per catalyst.
An object of the present invention is to provide a method for polymerizing olefins by which α-olefins can be obtained. That is, the olefin polymerization method of the present invention is a method for polymerizing olefin using a catalyst consisting of a transition metal catalyst supported on magnesium halide and an organoaluminum compound, in which the transition metal catalyst is anhydrous magnesium halide. , general formula MX o mH 2 O (wherein M is a magnesium atom or an aluminum atom, X is a halogen atom, n is an integer of 1 to 3, and m is an integer of 1 to 6) Titanium halide is supported on a carrier obtained by co-pulverizing a metal halide hydrate represented by and a liquid compound selected from the group consisting of oxygen-containing compounds, aromatic compounds, and halogenated hydrocarbons. It is characterized by being obtained. As the anhydrous magnesium halide used in the present invention, anhydrous magnesium chloride is preferably used. Generally available on the market, anhydrous magnesium chloride, which is a by-product during the production of titanium and zirconium, is used as it is without any particular purification. Specific examples of X in the metal halide hydrate represented by the general formula MX o ·mH 2 O used in the present invention are F, Cl, Br, and I, and preferred examples of this metal halide hydrate is MgCl 2 2H 2 O,
They are MgCl 2 .6H 2 O and AlCl 3 .6H 2 O. These metal halide hydrates may be used alone or in combination of two or more. In the present invention, the carrier for supporting titanium halide can be produced by any known method except for using the metal halide hydrate described above. That is, carboxylic acid esters, orthocarboxylic acid esters,
Oxygenated compounds such as ether and acetal, aromatic compounds such as benzene, toluene, xylene, and cumene, methylene chloride, dichloroethane,
This is a method in which a liquid compound such as a halogenated hydrocarbon such as trichloroethane, chloropropane, or trichlorotoluene is co-pulverized with anhydrous magnesium halide and a metal halide hydrate. When co-pulverizing the above-mentioned three, for example, anhydrous magnesium halide and metal halide hydrate can be co-pulverized and then co-pulverized with a liquid compound, or the three can be crushed simultaneously. Co-pulverization is generally performed using a vibrating mill that uses relatively strong force, and the time for co-pulverization should be determined appropriately depending on the equipment, amount of co-pulverization, etc., but it is usually about several hours to 100 hours. It is. The quantitative ratio of the hydrate to the anhydrous magnesium halide in the produced co-pulverized product is preferably about 0.01 to 0.5 mole of water of hydration per mole of magnesium halide.
If it is less than 0.01 mol, there is almost no effect, and if it exceeds 0.5 mol, the catalytic activity decreases, which is not preferable. A transition metal catalyst is produced by supporting titanium halide on the carrier obtained in this way, and a preferred method of supporting is to contact and treat with liquid titanium halide. The contact treatment is performed by heating the carrier with a liquid titanium halide such as titanium tetrachloride, by diluting the titanium halide in inert hydrocarbon water and catalyzing it, or by repeating the above operations. etc. can be adopted. It is also possible to use liquid titanium halide obtained by complexing titanium trichloride with ether or the like and solubilizing it in a hydrocarbon compound. The method of the present invention can also be applied to the polymerization of ethylene or the copolymerization of ethylene and a small amount of α-olefin, but in particular propylene, which is an α-olefin,
Homopolymerization or α of butene-1, hexene-1, etc.
- When applied to copolymerization of olefins with each other, copolymerization of these with ethylene, or block copolymerization, it is possible to simultaneously enhance the stereoregularity of the resulting polymer, which is effective. The polymerization reaction is
A bulk polymerization method using an inert hydrocarbon medium or the monomer itself as a medium, or a gas phase polymerization method in which there is substantially no liquid medium, usually at a pressure of normal pressure to 50 Kg/ m2 gauge, and from room temperature to 100 Kg/m2 gauge. It is common to carry out in the range up to ℃. EXAMPLES The present invention will be explained in more detail with reference to Examples below. Example 1 (a) Production of transition metal catalyst In a nitrogen atmosphere, 19 g of magnesium chloride and 2 g of magnesium chloride hexahydrate were placed in a grinding pot with an internal volume of 600 ml containing 80 stainless steel balls with a diameter of 12 mm, and ground for 2 hours. Then, 3 ml of ethyl orthoacetate and 2 ml of 1,2-dichloroethane were charged under a nitrogen stream in the same manner as above, and the mixture was pulverized at 30°C for 40 hours. Next, 10g of the co-pulverized material was crushed under a nitrogen stream.
50ml titanium tetrachloride in a 200ml round bottom flask
The titanium tetrachloride was removed by contact treatment at 80°C for 2 hours with stirring, followed by static separation.
The operation of washing the solid portion with 100 ml of n-heptane was repeated seven times to obtain a solid catalyst slurry.
A sample of a portion of the solid catalyst was analyzed and found to contain 2.1 wt% Ti. (b) Polymerization reaction Prepare an autoclave with an internal volume of 5 that has been thoroughly dried and purged with nitrogen. Into a 200 ml flask that has been thoroughly dried and purged with nitrogen, put 50 ml of dried n-heptane, which has been purged with nitrogen, and add 0.24 ml of diethylaluminum chloride, 0.14 ml of methyl toluate, 0.20 ml of triethyl aluminum, and 30 mg of the solid catalyst obtained in (a). In addition, the mixed catalyst slurry was charged into the autoclave, and then 1.5 kg of propylene and 0.6 N of hydrogen were charged, and polymerization was carried out at an internal temperature of 75° C. for 2 hours by heating the autoclave. After the polymerization reaction, unreacted propylene is discharged and then the polypropylene powder is taken out 60
After drying at ℃ for 10 hours, it was weighed, and the intrinsic viscosity (hereinafter abbreviated as "η") and bulk specific gravity were determined with a tetralin solution at 135℃. Polymer weight/polymer weight before extraction x 100 (%
) Calculated as (abbreviated below) was calculated. The results are shown in the table. Examples 2 to 5 Comparative Examples 1 to 3 Other Example 1 co-pulverized under the raw materials and conditions shown in the table
conducted a similar experiment. The results are shown in the table. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の理解を助けるためのフローチ
ヤート図である。
FIG. 1 is a flowchart to aid understanding of the present invention.

Claims (1)

【特許請求の範囲】 1 ハロゲン化マグネシウムに担持して得た遷移
金属触媒と有機アルミニウム化合物とからなる触
媒を用いてオレフインを重合する方法において、
該遷移金属触媒が無水ハロゲン化マグネシウム
と、一般式MXo・mH2O(式中、Mはマグネシウ
ム原子又はアルミニウム原子であり、Xはハロゲ
ン原子であり、nは1〜3の整数であり、mは1
〜6の整数である)で表されるハロゲン化金属水
和物と、含酸素化合物、芳香族化合物及びハロゲ
ン化炭化水素からなる群から選ばれた液状化合物
とを共粉砕して得た担体にハロゲン化チタンを担
持して得たものであることを特徴とするオレフイ
ンの重合方法。 2 前記ハロゲン化金属水和物がMgCl2・2H2O、
MgCl2・6H2O及びAlCl3・6H2Oからなる群から
選ばれたものである特許請求の範囲第1項記載の
オレフインの重合方法。
[Claims] 1. A method for polymerizing olefin using a catalyst comprising a transition metal catalyst supported on magnesium halide and an organoaluminum compound,
The transition metal catalyst is anhydrous magnesium halide and has the general formula MX o mH 2 O (wherein M is a magnesium atom or an aluminum atom, X is a halogen atom, and n is an integer of 1 to 3, m is 1
A carrier obtained by co-pulverizing a metal halide hydrate represented by (an integer of ~6) and a liquid compound selected from the group consisting of oxygen-containing compounds, aromatic compounds, and halogenated hydrocarbons. A method for polymerizing an olefin, characterized in that the olefin is obtained by supporting titanium halide. 2 The metal halide hydrate is MgCl 2 2H 2 O,
The method for polymerizing an olefin according to claim 1, wherein the olefin is selected from the group consisting of MgCl 2 .6H 2 O and AlCl 3 .6H 2 O.
JP17627583A 1983-09-26 1983-09-26 Polymerization of olefin Granted JPS6067511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17627583A JPS6067511A (en) 1983-09-26 1983-09-26 Polymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17627583A JPS6067511A (en) 1983-09-26 1983-09-26 Polymerization of olefin

Publications (2)

Publication Number Publication Date
JPS6067511A JPS6067511A (en) 1985-04-17
JPH0423641B2 true JPH0423641B2 (en) 1992-04-22

Family

ID=16010724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17627583A Granted JPS6067511A (en) 1983-09-26 1983-09-26 Polymerization of olefin

Country Status (1)

Country Link
JP (1) JPS6067511A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340632A (en) * 1976-09-27 1978-04-13 Nippon Steel Corp Method of measuring thickness of solidified shell of continuously cast piece
JPS5748565A (en) * 1980-07-12 1982-03-19 Haaksbergen T T Bv Method and device for partically arranging spiral coil under stacking and juxtaposing condition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340632A (en) * 1976-09-27 1978-04-13 Nippon Steel Corp Method of measuring thickness of solidified shell of continuously cast piece
JPS5748565A (en) * 1980-07-12 1982-03-19 Haaksbergen T T Bv Method and device for partically arranging spiral coil under stacking and juxtaposing condition

Also Published As

Publication number Publication date
JPS6067511A (en) 1985-04-17

Similar Documents

Publication Publication Date Title
JPS6338363B2 (en)
JPH0153884B2 (en)
JPS6031504A (en) Production of polyolefin
JPH0423641B2 (en)
JPH0128049B2 (en)
JPH0311284B2 (en)
JPH0350765B2 (en)
JPS6042243B2 (en) Polymerization method of α-olefins
JPS6363561B2 (en)
JPS5812886B2 (en) polyolefin innoseizohouhou
JPH0532404B2 (en)
JPS6247442B2 (en)
JPH0532407B2 (en)
JPH0745546B2 (en) Olefin Polymerization Method
JPS6338364B2 (en)
JPS6338365B2 (en)
JPS5815486B2 (en) Polyolefin Inno Seizouhouhou
JPS643204B2 (en)
JPS612706A (en) Polymerization of propylene
JPS63132906A (en) Polymerization of olefin
JPH0745548B2 (en) Olefin Polymerization Method
JPH0548242B2 (en)
JPS60149606A (en) Polymerization of alpha-olefin
JPS5996107A (en) Production of olefin polymer
JPH0437086B2 (en)