JPH0350765B2 - - Google Patents

Info

Publication number
JPH0350765B2
JPH0350765B2 JP22991182A JP22991182A JPH0350765B2 JP H0350765 B2 JPH0350765 B2 JP H0350765B2 JP 22991182 A JP22991182 A JP 22991182A JP 22991182 A JP22991182 A JP 22991182A JP H0350765 B2 JPH0350765 B2 JP H0350765B2
Authority
JP
Japan
Prior art keywords
halide
catalyst
present
bond
magnesium halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22991182A
Other languages
Japanese (ja)
Other versions
JPS59124909A (en
Inventor
Tadashi Asanuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP22991182A priority Critical patent/JPS59124909A/en
Publication of JPS59124909A publication Critical patent/JPS59124909A/en
Publication of JPH0350765B2 publication Critical patent/JPH0350765B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 本発明はハロゲン化マグネシウムにハロゲン化
チタンを担持させた触媒の改良された製造方法に
関する。 従来エチレン、プロピレンなどのオレフインを
工業的に重合してポリオレフインを製造するに際
して、チーグラー・ナツタ触媒のチタン成分を担
体に担持して触媒活性を向上させる方法が開発さ
れ、エチレンの重合触媒として一般的に使用され
ている。 しかしながらプロピレン、ブテンなどのα−オ
レフインの場合には有用な結晶性ポリマーを得る
ためにはメチル基、エチル基などのアルキル基を
立体的に制御してアイソタクチツク構造にする必
要があり、エチレンの重合の場合と比較して活性
向上に加えて生成ポリマーの立体規則性の制御が
重要である。 立体規則性の制御についてはハロゲン化マグネ
シウムにチタン化合物を担持した触媒と有機アル
ミニウム及び第3成分として特定の電子供与性化
合物を添加して生成するポリマーの立体規則性を
向上することが提案されている(特公昭39−
12105特公昭52−39431及び特公昭52−36153な
ど)。しかしながら第3成分を添加する方法では
限界があり担持触媒自身を改良する必要があつ
た。 本発明者らは種々の検討を行つた結果特定の方
法を行うことによつて触媒の性能をさらに向上さ
せることが可能であることを見い出し本発明を完
成した。 本発明の目的は、担体触媒当りのポリオレフイ
ンの取得量及び得られたポリオレフインの立体規
則性の高い、担体触媒を与える方法を提供するこ
とにある。 本発明は少なくともC−O又はC−N結合を含
有する有機化合物を含有するハロゲン化マグネシ
ウムを液状のハロゲン化チタンで接触処理し次い
で芳香族炭化水素化合物で洗浄することを特徴と
するオレフイン重合用固体触媒成分の製造方法に
関する。 即ち本発明は、液状のハロゲン化チタンで接触
処理してハロゲン化チタンを担持した後芳香族炭
化水素化合物で洗浄することでより優れた担体触
媒を製造することを特徴とするものである。 本発明に於いて少なくともC−O又はC−N結
合をが含有する有機化合物を含有するハロゲン化
マグネシウムとしては、種々の方法で作ることは
可能であり公知のハロゲン化マグネシウムとC−
O又はC−N結合を含有する有機化合物を共粉砕
する方法、ハロゲン化マグネシウムを適当な有機
化合物例えばアルコール、エーテルで炭化水素化
合物に可溶化し次いでハロゲン化ケイ素、ハロゲ
ン化チタン、アルキルアルミニウムなどでハロゲ
ン化マグネシウムを沈澱させて得たもの或は可溶
化の際に他のC−O又はC−N結合を含有する化
合物を共存させて行う方法、あるいは沈澱させて
得たハロゲン化マグネシウムムをさらにC−O又
はC−N結合を含有する化合物で接触処理するこ
とによつても得られる。好ましくは、共粉砕であ
る。C−O又はC−N結合を含有する化合物とし
ては、少なくともその使用する前に於て、エーテ
ル、エステル、オルソエステル、オルソケイ酸エ
ステル、アミン、アミド、リン酸エステル、アル
コキシケイ素化合物などの化合物が用いられる。 本発明に於て、上記操作に次いで上記組成物
は、液状のハロゲン化チタンで処理される。液状
のハロゲン化チタンとしては好ましくは、四塩化
チタンであり、又エーテルなどで液状とした三塩
化チタンも使用可能である。接触処理温度として
は、常温〜150℃、好ましくは50〜100℃で行わ
れ、好ましくは、良好な撹拌下で行われる。 本発明に於ては、次いで過剰のハロゲン化チタ
ンをろ過又はデカンテーシヨンによつて除去し、
得られた固体成分は、芳香族炭化水素で洗浄され
る。用いられる芳香族炭化水素としては、ベンゼ
ン、トルエン、キシレン、エチルベンゼン、クメ
ン、クロロベンゼン、O−ジクロロベンゼンなど
が挙げられ、又、洗浄温度は、常温付近で行われ
ば良く、格別、高温又は低温で行う必要はない。
洗浄は、ハロゲン化マグネシウムに担持されてい
ないハロゲン化チタンが、担持されたハロゲン化
チタンの1/100程度以下になるまで行えば良く、
回数は方法によつて異なる。 本発明の方法を行うことによつて、担体触媒当
りのポリオレフインの取得量及び得られたポリオ
レフインの立体規則性の高い担体触媒を製造する
ことができ、工業的に意義がある。 本発明の方法によつて得られる担体触媒は、
又、有機アルミニウム化合物立体規則性向上剤と
組み合わせることによつてプロピレン、ブテン−
1、へキセン−1などのα−オレフイン単独又は
相互の共重合体又はエチレンとの共重合体を製造
する目的に用いることが可能である。 以下に実施例を挙げ本発明をさらに具体的に説
明する。 実施例 1 (A) 振動ミルに準備された直径12mmの鋼球80個の
入つた内容積600mlの粉砕用ポツト中に窒素雰
囲気下で塩化マグネシウム20g、オルソ酢酸エ
チル1ml、1,2−ジクロロエタン4mlを加え
40時間粉砕した。200ml丸底フラスコに上記粉
砕処理物10g、四塩化チタン50mlを加え80℃で
2時間撹拌した後、デカンテーシヨンによつて
上澄液を除去した。 次にトルエン100mlを加えて室温で15分間撹
拌した後デカンテーシヨンによつて上澄液を除
去する洗浄操作を7回組り返し次いでさらにト
ルエン100mlを追加して活性化チタン成分スラ
リーを得た。このスラリーの一部をサンプリン
グしてトルエンを蒸発させ分析したところ担体
触媒中のTi分は1.68%であつた。 (B) 充分に乾燥し窒素で置換した内容積5の
SUS−32製オートクレーブ中にトルエン50ml、
上記担体触媒成分30mg、トルエチルアルミニウ
ム0.20ml、p−トルイル酸エチル0.14ml、ジエ
チルアルミニウムクロライド0.24mlを溶解分散
させた触媒混合物を装入し次いで液状プロピレ
ン1.5Kgを装入した。さらに水素1.6Nl装入し温
水でオートクレーブを加熱することによつて内
温を75℃まで昇温し75℃で3時間重合した。重
合終了後未反応のプロピレンを排出し白色のポ
リペロピレン得た。60℃で減圧乾燥した後秤量
し触媒当りの取れ高及び活性を算出しさらに
135℃テトラリン溶液の極限粘度及び沸騰n−
ヘプタンで10時間抽出した時の抽出前重量に対
する抽出残分の割合を求めた。結果は表に示
す。 実施例2〜4、比較例1、2 洗浄時、触媒分散時の溶媒を表にそれぞれ示し
た化合物をトルエンにかえて用いた他は実施例1
と同様に実験を行なつた。その結果も表に示し
た。 実施例5、比較例3 実施例1における1,2−ジクロロエタン4ml
のうち1mlをテトラエトキシシラン1mlに代えて
用いた他は、実施例1と全く同様にした場合が実
施例5であり、更にこの他に実施例1における洗
浄溶媒とトルエンをn−ヘプタンに代えた場合が
比較例3である。それらの結果も表に示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing a catalyst in which titanium halide is supported on magnesium halide. Conventionally, when producing polyolefins by industrially polymerizing olefins such as ethylene and propylene, a method was developed to improve the catalytic activity by supporting the titanium component of the Ziegler-Natsuta catalyst on a carrier, and this method has become popular as an ethylene polymerization catalyst. used in However, in the case of α-olefins such as propylene and butene, it is necessary to sterically control alkyl groups such as methyl groups and ethyl groups to form an isotactic structure in order to obtain useful crystalline polymers. In addition to improving the activity compared to the case of , it is important to control the stereoregularity of the resulting polymer. Regarding the control of stereoregularity, it has been proposed to improve the stereoregularity of the polymer produced by adding a catalyst consisting of a titanium compound supported on magnesium halide, organoaluminium, and a specific electron-donating compound as a third component. There is (Tokuko Showa 39-
12105 Special Publication No. 52-39431 and Special Publication No. 52-36153, etc.). However, the method of adding a third component has limitations, and it is necessary to improve the supported catalyst itself. As a result of various studies, the present inventors discovered that it is possible to further improve the performance of the catalyst by carrying out a specific method, and completed the present invention. An object of the present invention is to provide a method for providing a supported catalyst in which the amount of polyolefin obtained per supported catalyst is high and the stereoregularity of the obtained polyolefin is high. The present invention is for use in olefin polymerization, characterized in that magnesium halide containing an organic compound containing at least a C-O or C-N bond is contacted with liquid titanium halide, and then washed with an aromatic hydrocarbon compound. The present invention relates to a method for producing a solid catalyst component. That is, the present invention is characterized in that a more excellent supported catalyst is produced by supporting titanium halide through contact treatment with liquid titanium halide and then washing with an aromatic hydrocarbon compound. In the present invention, the magnesium halide containing an organic compound containing at least a C-O or C-N bond can be produced by various methods, and known magnesium halides and C-
A method of co-pulverizing organic compounds containing O or C-N bonds, in which magnesium halide is solubilized in a hydrocarbon compound with a suitable organic compound such as alcohol or ether, and then with silicon halide, titanium halide, alkyl aluminum, etc. Magnesium halide obtained by precipitation or a method in which other C-O or C-N bond-containing compounds are co-present during solubilization, or magnesium halide obtained by precipitation is further processed. It can also be obtained by contact treatment with a compound containing a C-O or C-N bond. Co-pulverization is preferred. Compounds containing C-O or C-N bonds include ethers, esters, orthoesters, orthosilicate esters, amines, amides, phosphate esters, alkoxy silicon compounds, etc. at least before use. used. In the present invention, following the above operation, the composition is treated with liquid titanium halide. The liquid titanium halide is preferably titanium tetrachloride, and titanium trichloride liquefied with ether or the like can also be used. The contact treatment temperature is from room temperature to 150°C, preferably from 50 to 100°C, and preferably under good stirring. In the present invention, excess titanium halide is then removed by filtration or decantation,
The solid components obtained are washed with aromatic hydrocarbons. Examples of aromatic hydrocarbons that can be used include benzene, toluene, xylene, ethylbenzene, cumene, chlorobenzene, O-dichlorobenzene, etc. The cleaning temperature may be around room temperature, and it may not be particularly hot or cold. There is no need to do so.
Washing may be carried out until the amount of titanium halide not supported on magnesium halide is approximately 1/100 or less of the amount of titanium halide supported.
The number of times varies depending on the method. By carrying out the method of the present invention, it is possible to produce a supported catalyst with a high amount of polyolefin obtained per supported catalyst and a high stereoregularity of the obtained polyolefin, which is industrially significant. The supported catalyst obtained by the method of the present invention is
In addition, by combining with organoaluminum compound stereoregularity improver, propylene, butene-
It can be used for the purpose of producing α-olefins such as 1 and hexene-1 alone or copolymers with each other or copolymers with ethylene. EXAMPLES The present invention will be explained in more detail below with reference to Examples. Example 1 (A) 20 g of magnesium chloride, 1 ml of ethyl orthoacetate, and 4 ml of 1,2-dichloroethane were placed in a 600 ml grinding pot containing 80 steel balls with a diameter of 12 mm prepared in a vibration mill under a nitrogen atmosphere. add
Grind for 40 hours. 10 g of the above pulverized product and 50 ml of titanium tetrachloride were added to a 200 ml round bottom flask and stirred at 80° C. for 2 hours, and then the supernatant liquid was removed by decantation. Next, 100 ml of toluene was added, the mixture was stirred at room temperature for 15 minutes, and the supernatant liquid was removed by decantation. The washing operation was repeated 7 times, and then another 100 ml of toluene was added to obtain an activated titanium component slurry. . When a portion of this slurry was sampled, toluene was evaporated, and analyzed, the Ti content in the supported catalyst was 1.68%. (B) Internal volume 5 which has been thoroughly dried and replaced with nitrogen.
50ml of toluene in a SUS-32 autoclave.
A catalyst mixture in which 30 mg of the above carrier catalyst component, 0.20 ml of toluethylaluminum, 0.14 ml of p-ethyl toluate, and 0.24 ml of diethylaluminum chloride were dissolved and dispersed was charged, and then 1.5 kg of liquid propylene was charged. Further, 1.6Nl of hydrogen was charged and the autoclave was heated with hot water to raise the internal temperature to 75°C, and polymerization was carried out at 75°C for 3 hours. After the polymerization was completed, unreacted propylene was discharged to obtain white polyperopylene. After drying under reduced pressure at 60℃, weigh it and calculate the yield and activity per catalyst.
Intrinsic viscosity and boiling n- of tetralin solution at 135℃
The ratio of the extracted residue to the weight before extraction when extracted with heptane for 10 hours was determined. The results are shown in the table. Examples 2 to 4, Comparative Examples 1 and 2 Example 1 except that the solvents shown in the table for washing and catalyst dispersion were replaced with toluene.
The experiment was carried out in the same manner. The results are also shown in the table. Example 5, Comparative Example 3 4 ml of 1,2-dichloroethane in Example 1
Example 5 was the same as Example 1, except that 1 ml of tetraethoxysilane was used instead of 1 ml of tetraethoxysilane, and in addition, the cleaning solvent and toluene in Example 1 were replaced with n-heptane. Comparative Example 3 is the case where The results are also shown in the table. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の理解を助けるためのフロー
チヤート図である。
FIG. 1 is a flowchart to aid in understanding the present invention.

Claims (1)

【特許請求の範囲】 1 少なくともC−O又はC−N結合を含有する
有機化合物を含有するハロゲン化マグネシウムを
液状のハロゲン化チタンで接触処理し次いで芳香
族炭化水素化合物で洗浄することを特徴とするオ
レフイン重合用固体触媒成分の製造方法。 2 少なくともC−O又はC−N結合を含有する
有機化合物を含有するハロゲン化マグネシウムが
ハロゲン化マグネシウムと少なくともC−O又は
C−N結合を含有する有機化合物とを共粉砕して
得たものである特許請求の範囲第1項記載の方
法。
[Claims] 1. A magnesium halide containing an organic compound containing at least a C-O or C-N bond is contacted with liquid titanium halide, and then washed with an aromatic hydrocarbon compound. A method for producing a solid catalyst component for olefin polymerization. 2 Magnesium halide containing an organic compound containing at least a C-O or C-N bond is obtained by co-pulverizing magnesium halide and an organic compound containing at least a C-O or C-N bond. A method according to claim 1.
JP22991182A 1982-12-29 1982-12-29 Production of olefin polymerization catalyst Granted JPS59124909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22991182A JPS59124909A (en) 1982-12-29 1982-12-29 Production of olefin polymerization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22991182A JPS59124909A (en) 1982-12-29 1982-12-29 Production of olefin polymerization catalyst

Publications (2)

Publication Number Publication Date
JPS59124909A JPS59124909A (en) 1984-07-19
JPH0350765B2 true JPH0350765B2 (en) 1991-08-02

Family

ID=16899664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22991182A Granted JPS59124909A (en) 1982-12-29 1982-12-29 Production of olefin polymerization catalyst

Country Status (1)

Country Link
JP (1) JPS59124909A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2280043C2 (en) 2001-05-29 2006-07-20 Юнион Карбайд Кемикалз Энд Пластикс Текнолоджи Корпорейшн Catalytic compositions for polymerization of the olefins and the method of production of the catalytic compositions
KR100604962B1 (en) * 2004-02-27 2006-07-26 삼성토탈 주식회사 Method for the preparation of a solid titanium catalyst for olefin polymerization
CN110662773B (en) 2017-06-30 2022-08-19 三井化学株式会社 Propylene polymer, method for producing same, propylene resin composition, and molded article

Also Published As

Publication number Publication date
JPS59124909A (en) 1984-07-19

Similar Documents

Publication Publication Date Title
JP2514015B2 (en) Solid catalyst component for olefin polymerization
JPH05194640A (en) Catalyst for polymerization of olefin
JPS6338363B2 (en)
JPH0350765B2 (en)
JPS59131604A (en) Polymerization of alpha-olefin
JPS623163B2 (en)
JPS61275303A (en) Polymerization of ethylene or alpha-olefin
JPH0548242B2 (en)
JPH02255808A (en) Polymerization of alpha-olefin
JPS59126405A (en) Polymerization of olefin
JPS60152511A (en) Polymerization of alpha-olefin
JP2553042B2 (en) Olefin Polymerization Method
JP3065107B2 (en) α-Olefin polymerization method
JPS5883007A (en) Polymerization of alpha-olefin
KR840000917B1 (en) Method for polymerization of -olefin
JPH0423641B2 (en)
JPS63132906A (en) Polymerization of olefin
JPH0780979B2 (en) Method for producing modified polyolefin
JPS5856362B2 (en) Production method of titanium trichloride catalyst
JPH01242605A (en) Catalyst composition for olefin polymerization
JPH0311284B2 (en)
JPH0471924B2 (en)
JPH0253810A (en) Production of olefin copolymer
JPH0745546B2 (en) Olefin Polymerization Method
JPS63108006A (en) Polymerization of olefin