JPS6138927B2 - - Google Patents

Info

Publication number
JPS6138927B2
JPS6138927B2 JP56138367A JP13836781A JPS6138927B2 JP S6138927 B2 JPS6138927 B2 JP S6138927B2 JP 56138367 A JP56138367 A JP 56138367A JP 13836781 A JP13836781 A JP 13836781A JP S6138927 B2 JPS6138927 B2 JP S6138927B2
Authority
JP
Japan
Prior art keywords
propylene
weight
ethylene
intrinsic viscosity
copolymer portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56138367A
Other languages
Japanese (ja)
Other versions
JPS5840314A (en
Inventor
Tadashi Asanuma
Ichiro Fujikage
Shinryu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP13836781A priority Critical patent/JPS5840314A/en
Publication of JPS5840314A publication Critical patent/JPS5840314A/en
Publication of JPS6138927B2 publication Critical patent/JPS6138927B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、低温耐衝撃性、剛性の優れたプロピ
レンブロツク共重合体組成物に関する。詳しく
は、高いメルトフローインデツクスを有する共重
合体組成物であつて、かつ、優れた耐衝撃性、剛
性とさらには破断時の伸びが大きい特性を有する
プロピレンブロツク共重合体組成物に関する。 結晶性ポリプロピレンの低温で脆いという欠点
を解決する方法についてはすでに多くの検討がな
され、中でもプロピレンとオレフイン特にエチレ
ンと共重合する方法は工業的規模で実施されてお
り、すでに多くの製品が市場に供給されている。
特に、好ましいものとしてブロツク共重合による
方法が各種検討され、2段ブロツク共重合、3段
ブロツク共重合などが知られている(例えば、特
開昭44−20621号、特公昭47−26190号、特開昭49
−45308号、特開昭50−142652号、特開昭55−
8011号、特開昭55−16048号、特開昭56−53118号
など)。 一方、成形時のサイクルを短縮すること、ある
いは必要、エネルギーを低減することが要望され
ており、それに対しては流れ性を改良することが
行われているが、単にメルトフローインデツクス
を大きくしているために、すなわち重合体の分子
量を低くするだけであるために、耐衝撃性の低下
が大きく、実際の成形品を作つた場合に成形品の
耐衝撃性に大きな影響をもつとされる破断時のの
び(ASTMD638)が極めて小さくなる。したが
つて通常の耐衝撃性の試験法であるシヤルピー衝
撃強度(ASTMD256−56)やデユポン衝撃強度
(JISK6718)では良い結果であつても、破断時の
伸びが小さい場合には実際の成形品では耐衝撃性
が劣る結果となつている。従つて、比較的伸びの
大きい共重合体が望まれている。 本発明者らは、種々の検討を行つた結果、特定
の共重合体を特定割合で含有するプロピレンブロ
ツク共重合体組成物が上記の望ましい物性を保有
するものであることを見い出し、本発明を完成し
た。 本発明の目的は、比較的大きいメルトフローイ
ンデツクスを有し、しかも高い剛性及び耐衝撃性
を有し、さらに大きな破断時の伸びを有するプロ
ピレンブロツク共重合体組成物を提供することに
ある。 すなわち、本発明のプロピレンブロツク共重合
体は、 (A) 炭素原子数6〜20個の炭化水素で溶解分離し
たとき、(1)30℃で可溶であり、プロピレン20〜
60重量%とエチレン80〜40重量%とからなり、
135℃テトラリン溶液での極限粘度(以下、単
に極限粘度という。)ηAが2.0〜7.0である共
重合体部分A5〜15重量部、(2)30℃で不溶でか
つ110℃で可溶であり、プロピレン90〜70重量
%とエチレン10〜30重量%とからなり、極限粘
度ηBが0.4〜3.0である共重合体部分B5〜30重
量部、および、(3)30℃で不溶でかつ110℃でも
不溶であり、プロピレン100〜95重量%とエチ
レン0〜5重量%とからなり、極限粘度ηCが
0.4〜3.0である共重合体部分C60〜90重量部で
あり、かつ、 (B) ηAがηB及びηCより大であることを特徴
とする。 本発明の組成物をヘキサン、ヘプタン、デカン
等の炭素原子数6〜20個の炭化水素に完全に溶解
し、30℃まで降温したときに可溶な部分(共重合
体部分A)を分離し、さらに30℃で不溶な部分を
110℃の上記炭化水素で抽出される可溶な部分
(共重合体部分B)および30℃で不溶でかつ110℃
の上記炭化水素にも不溶な部分(共重合体部分
C)に分割したときにその特徴がよくわかり、各
共重合体部分の赤外吸収スペクトルにも、特徴が
ある。 すなわち、共重合体部分Cは997cm-1と974cm-1
における吸光度の比率が0.8〜0.995であり、立体
規則性に富む部分であり、共重合体部分Aはそれ
が0.3以下であり、極めて低い立体規則性である
部分である。また共重合体部分Bはそれが0.6〜
0.9であり、かなり立体規則性が高い部分であ
る。 本発明の組成物の共重合体部分Cは組成物に高
い剛性を与えるのに必要な部分であり、全組成物
100重量部に対して60〜90重量部であることが必
要であり、好ましくは70〜85重量部である。該部
分の極限粘度ηCは組成物の所望のメルトフロー
インデツクスの範囲に応じて変更することがで
き、0.4〜3.0、好ましくは0.6〜2.0である。該部
分の立体規則性は高い方が好ましく、赤外吸収ス
ペクトルにおける997cm-1と974cm-1の吸光度の比
率は上記したように0.8〜0.995である。 共重合体部分Aは、本発明の組成物の耐衝撃
性、特に低温に於ける、耐衝撃性を高く保つため
に必要な部分であり、エチレン含量が80〜40重量
%と比較的高い部分である。エチレン含量がこの
範囲外では耐衝撃性が悪くなる。従つて、この部
分は、好ましくは立体規側性が低く、極限粘度η
Aは高いことであり、上記赤外吸収スペクトルに
おける997cm-1と974cm-1での吸光度の比率は好ま
しくか0.3以下であり、極限粘度ηAは2.0〜7.0、
特に好ましくは3.0〜5.0である。 共重合体部分Bの存在は、本発明の組成物を公
知の組成物と大きく区別するものであり、プロピ
レンの含量は90〜70重量%、好ましくは85〜75重
量%、エチレンの含量は10〜30重量%、特に好ま
しくは15〜25重量%であり、赤外吸収スペクトル
における997cm-1と974cm-1での吸光度の比率は
0.6〜0.96と比較的立体規則性が高いことであ
る。また、この部分の極限粘度ηBは、0.5〜3.0
が好ましい。なお、エチレンの含量が上記範囲よ
り少い場合 には破断時の伸びが小さくなる。 共重合体部分Aの極限粘度ηAは他の部分の極
限粘度共重合体ηBおよびηCより大きいことが
耐衝撃性の上から望ましい。 共重合体成分AおよびBの全組成物100重量部
に対する割合はそれぞれ5〜15重量部および5〜
30重量部であり、好ましくは5〜15重量部および
10〜25重量部である。共重合体成分Bは共重合体
成分Aより多い方が高い破断時の伸びを得る点か
ら好ましい。 共重合体部分Cの割合が上記範囲より少ない場
合は、剛性が低下し、多い場合には耐衝撃性が低
下する。又、共重合体部分Aの割合が上記範囲よ
り少ない場合は耐衝撃性が低下し、多い場合には
剛性の低下が大きい。 本発明の組成物は、上記した各成分を別々に重
合したのちに機械的に混合することによつても得
ることができるが、好ましくは、同一重合系で重
合条件を変更する、いわゆるブロツク共重合型の
重合によつても得ることができ、後者の方法によ
るのが好ましい。 本発明の組成物の製造法としては、下記の(イ)触
媒、(ロ)重合法、(ハ)エチレン・プロピレンの共重合
法および(ニ)ポリマーの回収方法により特定された
ものが好ましい。 すなわち、(イ)無水の塩化マグネシウムとカルボ
ン酸エステル、エーテル、オルソカルボン酸エス
テル、アルコキシケイ素から選ばれた少くとも1
種の化合物と接触処理した後ハロゲン化チタン接
触処理することによつて得られる固体触媒成分と
有機アルミニウム化合物からなる触媒を用いて、
(ロ)プロピレン自身を溶媒とする塊状重合法で、(ハ)
プロピレン単独の重合あるいは少量のエチレンと
プロピレンの共重合を50〜80℃の温度で行い、次
いでエチレンとプロピレンの反応比が20/80〜
90/10重量比である条件で30〜60℃で重合を行つ
た後、(ニ)未反応のモノマーを蒸発除去するか、ろ
過、あるいはプロピレンを主成分とする媒体で向
流洗浄した後媒体と分離する方法である。 触媒は無水の塩化マグネシウムとカルボン酸エ
ステル、エーテル、オルソカルボン酸エステル、
アルコキシケイ素から選ばれた1種の化合物と接
触処理した後ハロゲン化チタンと接触処理するこ
とによつて得られる固体触媒成分と有機アルミニ
ウム化合物からなる。無水の塩化マグネシウムと
カルボン酸エステル、エーテル、オルソカルボン
酸エステル、アルコキシケイ素から選ばれた1種
の化合物と接触処理の際に他の化合物、例えば、
ハロゲン化炭化水素、芳香族炭化水素、アルコー
ル等の有機化合物、塩化アルミニウム、シリカゲ
ル、アルミナ等の無機化合物を同時に接触させる
ことも可能である。又、上記固体触媒成分と有機
アルミニウム化合物からなる触媒を用いて重合反
応を行う際に公知の立体規則性向上剤、例えば、
エステル、エーテル、オルソエステル、アミン化
合物、リン化合物等を同時に用いることがより好
ましい。 また、触媒活性を持続させるため、重合途中で
触媒成分、特に有機アルミニウム化合物を追加装
入することは好ましい。 さらに、重合槽内へ触媒成分を装入するに際
し、ヘキサン、ヘプタン、シクロヘキサン、トル
エン、キシレン等の不活性有機溶媒に分散させて
行なうのが好ましい。 重合終了後のポリマーの回収は未反応のモノマ
ーを蒸発除去して、あるいはろ過して、あるいは
プロピレンを主成分とする媒体で向流洗浄した後
媒体と分離することで達成される。この際、触媒
残渣を可溶化する化合物を添加することも可能で
ある。 上記の(イ)、(ロ)、(ハ)、(ニ)の4条件を満足する方

でエチレンとプロピレンの共重合を行うことによ
つて、破断時の伸びの大きい剛性と耐衝撃性の優
れた重合体組成物が得られる。 以下、実施例により本発明を説明する。 なお、実施例、比較例での物性は下記により測
定した。 (1) 極限粘度(η):135℃テトラリン溶液で測
定した。 (2) メルトフローインデツクス(MI):JIS
K7210に基づく。(230℃、荷重2.16Kg) (3) 曲げ剛性:ASTMD747(20℃) (4) デユポン衝撃強度:JISK6718に準ずる。(−
10℃、20℃) (5) シヤルピー衝撃強度:ASTMD256(−10
℃、20℃) (6) 破断時の伸び:ASTMD638 実施例 1〜5 (i)固体触媒の合成 内容積4の粉砕用ポツトを4個装着できる振
動ミルを用いて固体触媒を合成する。 各ポツトに窒素雰囲気下で無水の塩化マグネシ
ウム300g、オルソ酢酸エチル40ml、1,2―ジ
クロロエタン60mlおよび粉砕メデイアである直径
12mmの鋼球9Kgを入れ、振動ミルに装着して40時
間振動した。 上記方法によつて得た粉砕物3Kgを充分に乾燥
し、窒素雰囲気とした内容積50のオートクレー
ブに、四塩化チタン20と共に入れ、80℃で120
分間撹拌した。その後静置して上澄液を除去し
た。次いでオートクレーブ中にn―ヘプタン35
を加え、80℃で15分間撹拌したのち静置して上澄
液を除く洗浄を7回繰返した。 最後にn―ヘプタン20を入れ、撹拌して固体
触媒スラリーとしたのち、その一部をサンプリン
グし、固体触媒中のチタン分を分析したところ、
チタンは固体触媒中に1.62重量%含まれていた。 (ii)重合反応 ジヤケツト付の内容積100のオートクレーブ
を充分に乾燥し、窒素で置換し、さらにプロピレ
ンで置換したのち、その中のプロピレン25Kgを装
入した。 窒素で置換した内容積1のフラスコにn―ヘ
プタン500ml、ジエチルアルミニウムクロライド
4.8ml、p―トルイル酸メチル2.8mlおよび上記(i)
で得られた固体触媒1gを入れ、1分間撹拌し、
更にトリエチルアルミニウム1mlを加えたものを
上記100オートクレーブに圧入した。 次に、水素を所定量装入し、次いでジヤケツト
に温水を通じて内温を75℃に昇温して重合を開始
した。 内温を75℃に保つたまま、水素濃度が一定にな
るように水素を導入し、かつ、触媒活性を一定に
保つためにn―ヘプタン57mlにトリエチルアルミ
ニウム3mlを溶かした溶液を0.5ml/minで連続
的に圧入しながら、2時間重合した。なお、水素
濃度を表1の(1)欄に示す極限粘度を有する重合体
が得られる濃度に調整した。 次いでジヤケツトに冷水を通し内温を50℃まで
下げ、気相部をパージして水素濃度を下げながら
液状プロピレン5Kgを装入した。水素濃度が
0.5Vol%となつたところで、エチレンおよび水素
の装入を開始し、重合圧力29.6Kg/cm2ゲージでエ
チレンおよび水素の気相濃度がそれぞれ40.5Vol
%および0.5Vol%に保つて7.5分間重合した。 その後、さらにエチレンの装入量を増し、重合
圧力32.5Kg/cm2ゲージ、エチレンおよび水素の気
相濃度をそれぞれ48.5Vol%および0.4Vol%に保
つて2分間重合した。 重合終了後直ちにイソプロパノール50mlを圧入
して反応を停止した。その後静置して重合体パウ
ダーを沈澱させ、上澄のプロピレンおよびエチレ
ンを抜き出し、次いで25Kgのプロピレンを圧入
し、40℃で10分間撹拌した。静置して、上澄のプ
ロピレンを抜き出した後、残余のプロピレンをパ
ージしてブロツク共重合体組成物約12Kgを得た。 このパウダーを60℃、150mmHgで10時間減圧乾
燥し、公知の添加剤を加えて造粒した後、常法に
よりその物性を測定した。 また、造粒した上記ペレツト10gをn―デカン
300mlに溶解し、その後30℃に冷却して、可溶分
と不溶分に分離した。不溶分を110℃n―デカン
に分散し、110℃でろ別し、110℃のn―デカンへ
の可溶分と不溶分に分離した。可溶分からは、n
―デカンを減圧蒸留で除去し、又不溶分は60゜、
5mmHgで乾燥し、共重合体部分Cを得た。各部
分について極限粘度とエチレンとプロピレンの量
比を測定した。 結果を表1に示す。また、得られた共重合体組
成物のMIと破断時の伸びの関係を図面(実線)
に示す。 比較例 1〜5 丸紅ソルヴエー社製、三塩化チタン触媒
(TCY−24)10g、ジエチルアルミニウムクロラ
イド50mlを触媒として用い、内容積300のオー
トクレーブを用いて、100のn―ヘプタン中で
重合反応を行つた。 プロピレンおよび水素を装入しながら、重合圧
力5Kg/cm2ゲージ、重合温度70℃で2時間重合を
続けた。なお、この間の水素濃度を表1の(I)
欄に示す極限粘度を有する重合体が得られる濃度
に調整した。 次いで、内温を55℃に下げながら気相部をパー
ジし、気相部の水素濃度を1Vol%以下としたと
ころで水素、エチレン、プロピレンを装入し、気
相濃度各々2.5Vol%、32Vol%、65Vol%、また全
圧2Kg/cm2―ゲージとした。この条件下で重合反
応を30分間行い、更に、エチレンを一度に圧入し
てエチレン濃度を48Volとし、重合をこの条件下
で20分間行つた。 その後、50のメタノールを装入し、60℃で30
分間撹拌し、次いで水50を加え撹拌したのち水
層部を分離した。ヘプタン層をさらに水50で2
回洗浄した後ろ過乾燥した。その後は実施例1〜
5と同様に造粒した後、物性の測定及び各部分に
分離した。 結果を表1および図面(破線)に示す。
The present invention relates to a propylene block copolymer composition having excellent low-temperature impact resistance and rigidity. Specifically, the present invention relates to a propylene block copolymer composition having a high melt flow index, excellent impact resistance, rigidity, and high elongation at break. Many studies have already been carried out on ways to solve the drawback of crystalline polypropylene being brittle at low temperatures. Among them, the method of copolymerizing propylene with olefin, especially ethylene, has been carried out on an industrial scale, and many products are already on the market. Supplied.
In particular, various methods using block copolymerization have been studied as preferred methods, and two-stage block copolymerization, three-stage block copolymerization, etc. are known (for example, JP-A No. 44-20621, JP-B No. 47-26190, Unexamined Japanese Patent Publication 1973
-45308, JP-A-142652, JP-A-55-
8011, JP-A-55-16048, JP-A-56-53118, etc.). On the other hand, there is a desire to shorten the cycle during molding or to reduce the amount of energy required, and in response, attempts are being made to improve flowability, but it is simply a matter of increasing the melt flow index. In other words, because it only lowers the molecular weight of the polymer, the impact resistance is greatly reduced, and it is said to have a large impact on the impact resistance of the molded product when it is actually made. The elongation at break (ASTMD638) is extremely small. Therefore, even if good results are obtained using the standard impact resistance testing methods such as Shapey impact strength (ASTMD256-56) and Dupont impact strength (JISK6718), if the elongation at break is small, the actual molded product may This results in poor impact resistance. Therefore, a copolymer with relatively high elongation is desired. As a result of various studies, the present inventors have discovered that a propylene block copolymer composition containing a specific copolymer in a specific ratio possesses the above-mentioned desirable physical properties, and has developed the present invention. completed. An object of the present invention is to provide a propylene block copolymer composition that has a relatively high melt flow index, high stiffness and impact resistance, and high elongation at break. That is, when the propylene block copolymer of the present invention is dissolved and separated with (A) a hydrocarbon having 6 to 20 carbon atoms, (1) it is soluble at 30°C;
60% by weight and 80-40% by weight of ethylene,
5 to 15 parts by weight of a copolymer portion A having an intrinsic viscosity (hereinafter simply referred to as intrinsic viscosity) ηA in a tetralin solution at 135°C of 2.0 to 7.0, (2) insoluble at 30°C and soluble at 110°C; , 5 to 30 parts by weight of a copolymer part B consisting of 90 to 70% by weight of propylene and 10 to 30% by weight of ethylene and having an intrinsic viscosity ηB of 0.4 to 3.0, and (3) insoluble at 30°C and 110°C However, it is insoluble, consists of 100-95% by weight of propylene and 0-5% by weight of ethylene, and has an intrinsic viscosity ηC of
The copolymer portion C is 60 to 90 parts by weight, and (B) ηA is larger than ηB and ηC. The composition of the present invention is completely dissolved in a hydrocarbon having 6 to 20 carbon atoms such as hexane, heptane, decane, etc., and the soluble portion (copolymer portion A) is separated when the temperature is lowered to 30°C. , further remove the insoluble part at 30℃
A soluble part (copolymer part B) extracted with the above hydrocarbons at 110°C and a part insoluble at 30°C and 110°C
Its characteristics can be clearly seen when it is divided into the above-mentioned hydrocarbon-insoluble portion (copolymer portion C), and the infrared absorption spectrum of each copolymer portion also has characteristics. That is, copolymer portion C is 997 cm -1 and 974 cm -1
The ratio of absorbance in the copolymer portion A is 0.8 to 0.995, which is a region with high stereoregularity, and the copolymer portion A has an absorbance ratio of 0.3 or less, which is a region with extremely low stereoregularity. In addition, the copolymer part B is 0.6~
0.9, which is a region with considerably high stereoregularity. The copolymer portion C of the composition of the present invention is a necessary portion for imparting high rigidity to the composition, and is a necessary portion for imparting high rigidity to the composition.
It is necessary that the amount is 60 to 90 parts by weight, preferably 70 to 85 parts by weight per 100 parts by weight. The intrinsic viscosity ηC of the part can be varied depending on the desired melt flow index range of the composition, and is from 0.4 to 3.0, preferably from 0.6 to 2.0. The higher the stereoregularity of the portion, the better, and the ratio of absorbance at 997 cm -1 and 974 cm -1 in the infrared absorption spectrum is 0.8 to 0.995, as described above. Copolymer portion A is a portion necessary for maintaining high impact resistance of the composition of the present invention, particularly at low temperatures, and has a relatively high ethylene content of 80 to 40% by weight. It is. If the ethylene content is outside this range, impact resistance will deteriorate. Therefore, this part preferably has low stereogenicity and has a limiting viscosity η
A is high, and the ratio of absorbance at 997 cm -1 and 974 cm -1 in the above infrared absorption spectrum is preferably 0.3 or less, and the limiting viscosity ηA is 2.0 to 7.0.
Particularly preferably 3.0 to 5.0. The presence of the copolymer moiety B significantly distinguishes the compositions of the invention from known compositions, with a propylene content of 90-70% by weight, preferably 85-75% and an ethylene content of 10% by weight. ~30% by weight, particularly preferably 15-25% by weight, and the ratio of absorbance at 997 cm -1 and 974 cm -1 in the infrared absorption spectrum is
It has a relatively high stereoregularity of 0.6 to 0.96. In addition, the intrinsic viscosity ηB of this part is 0.5 to 3.0
is preferred. Note that if the ethylene content is less than the above range, the elongation at break will be small. From the viewpoint of impact resistance, it is desirable that the intrinsic viscosity ηA of the copolymer portion A be larger than the intrinsic viscosity copolymers ηB and ηC of the other portions. The proportions of copolymer components A and B based on 100 parts by weight of the total composition are 5 to 15 parts by weight and 5 to 15 parts by weight, respectively.
30 parts by weight, preferably 5 to 15 parts by weight, and
10 to 25 parts by weight. It is preferable that the amount of copolymer component B be larger than that of copolymer component A from the viewpoint of obtaining a higher elongation at break. If the proportion of the copolymer portion C is less than the above range, the rigidity will decrease, and if it is greater than the above range, the impact resistance will decrease. Furthermore, if the proportion of the copolymer portion A is less than the above range, the impact resistance will be reduced, and if it is greater than the above range, the rigidity will be significantly reduced. The composition of the present invention can also be obtained by separately polymerizing the above-mentioned components and then mechanically mixing them, but preferably by polymerizing the same polymerization system but changing the polymerization conditions, so-called block co-polymerization. It can also be obtained by polymerization type polymerization, and the latter method is preferred. Preferred methods for producing the composition of the present invention include those specified by the following (a) catalyst, (b) polymerization method, (c) ethylene-propylene copolymerization method, and (d) polymer recovery method. That is, (a) anhydrous magnesium chloride and at least one selected from carboxylic esters, ethers, orthocarboxylic esters, and alkoxy silicones;
Using a catalyst consisting of a solid catalyst component obtained by contact treatment with a seed compound and then contact treatment with titanium halide and an organoaluminum compound,
(b) A bulk polymerization method using propylene itself as a solvent; (c)
Polymerization of propylene alone or copolymerization of a small amount of ethylene and propylene is carried out at a temperature of 50 to 80°C, and then the reaction ratio of ethylene and propylene is 20/80 to
After polymerization is carried out at 30 to 60°C under conditions of a 90/10 weight ratio, (d) unreacted monomers are removed by evaporation, filtered, or countercurrently washed with a propylene-based medium. This is a method to separate the The catalyst is anhydrous magnesium chloride and carboxylic acid ester, ether, orthocarboxylic acid ester,
It consists of a solid catalyst component obtained by contact treatment with one type of compound selected from alkoxy silicon and then contact treatment with titanium halide, and an organoaluminum compound. During the contact treatment with anhydrous magnesium chloride and one type of compound selected from carboxylic esters, ethers, orthocarboxylic esters, and alkoxy silicones, other compounds such as,
It is also possible to simultaneously contact organic compounds such as halogenated hydrocarbons, aromatic hydrocarbons, and alcohols, and inorganic compounds such as aluminum chloride, silica gel, and alumina. In addition, when carrying out a polymerization reaction using a catalyst consisting of the above-mentioned solid catalyst component and an organoaluminum compound, known stereoregularity improvers, for example,
It is more preferable to use esters, ethers, orthoesters, amine compounds, phosphorus compounds, etc. at the same time. Further, in order to maintain the catalytic activity, it is preferable to additionally charge a catalyst component, particularly an organoaluminum compound, during the polymerization. Further, when charging the catalyst component into the polymerization tank, it is preferable to disperse it in an inert organic solvent such as hexane, heptane, cyclohexane, toluene, xylene, or the like. Recovery of the polymer after completion of the polymerization is achieved by removing unreacted monomers by evaporation, filtering, or countercurrent washing with a medium containing propylene as a main component, followed by separation from the medium. At this time, it is also possible to add a compound that solubilizes the catalyst residue. By copolymerizing ethylene and propylene using a method that satisfies the four conditions (a), (b), (c), and (d) above, it is possible to achieve rigidity with high elongation at break and impact resistance. An excellent polymer composition is obtained. The present invention will be explained below with reference to Examples. In addition, the physical properties in Examples and Comparative Examples were measured as follows. (1) Intrinsic viscosity (η): Measured in a tetralin solution at 135°C. (2) Melt flow index (MI): JIS
Based on K7210. (230℃, load 2.16Kg) (3) Bending rigidity: ASTMD747 (20℃) (4) Dupont impact strength: According to JISK6718. (−
(10℃, 20℃) (5) Shalpy impact strength: ASTMD256 (-10
℃, 20℃) (6) Elongation at break: ASTMD638 Examples 1 to 5 (i) Synthesis of solid catalyst A solid catalyst is synthesized using a vibration mill that can be equipped with four crushing pots each having an internal volume of 4. In each pot under a nitrogen atmosphere, add 300 g of anhydrous magnesium chloride, 40 ml of ethyl orthoacetate, 60 ml of 1,2-dichloroethane and a grinding medium with a diameter of
A 12 mm steel ball weighing 9 kg was placed in a vibration mill and vibrated for 40 hours. Thoroughly dry 3 kg of the pulverized material obtained by the above method, place it in an autoclave with an internal volume of 50 kg in a nitrogen atmosphere together with 20 kg of titanium tetrachloride, and heat it at 80°C for 120 min.
Stir for a minute. Thereafter, it was allowed to stand and the supernatant liquid was removed. Then in the autoclave n-heptane 35
was added, stirred at 80°C for 15 minutes, left to stand, and washed to remove the supernatant liquid, which was repeated 7 times. Finally, 20% of n-heptane was added and stirred to form a solid catalyst slurry. A portion of it was sampled and the titanium content in the solid catalyst was analyzed.
Titanium was contained in the solid catalyst at 1.62% by weight. (ii) Polymerization reaction A jacketed autoclave with an internal volume of 100 was thoroughly dried, purged with nitrogen, and then purged with propylene, and then 25 kg of propylene was charged therein. 500 ml of n-heptane and diethylaluminium chloride in a flask with an internal volume of 1 that was purged with nitrogen.
4.8ml, methyl p-toluate 2.8ml and the above (i)
Add 1 g of the solid catalyst obtained in , stir for 1 minute,
Furthermore, 1 ml of triethylaluminum was added and the mixture was press-fitted into the above 100 autoclave. Next, a predetermined amount of hydrogen was charged, and then hot water was passed through the jacket to raise the internal temperature to 75°C to start polymerization. While keeping the internal temperature at 75℃, hydrogen was introduced to keep the hydrogen concentration constant, and to keep the catalyst activity constant, a solution of 3 ml of triethylaluminum dissolved in 57 ml of n-heptane was added at 0.5 ml/min. Polymerization was carried out for 2 hours while continuously pressurizing. Note that the hydrogen concentration was adjusted to a concentration that would yield a polymer having the intrinsic viscosity shown in column (1) of Table 1. Next, cold water was passed through the jacket to lower the internal temperature to 50°C, and 5 kg of liquid propylene was charged while purging the gas phase and lowering the hydrogen concentration. hydrogen concentration
When the concentration reached 0.5Vol%, charging of ethylene and hydrogen was started, and the gas phase concentration of ethylene and hydrogen was 40.5Vol each at a polymerization pressure of 29.6Kg/ cm2 gauge.
% and 0.5Vol% and polymerized for 7.5 minutes. Thereafter, the amount of ethylene charged was further increased, and polymerization was carried out for 2 minutes while maintaining the polymerization pressure at 32.5 Kg/cm 2 gauge and the gas phase concentrations of ethylene and hydrogen at 48.5 Vol% and 0.4 Vol%, respectively. Immediately after the polymerization was completed, 50 ml of isopropanol was introduced under pressure to stop the reaction. Thereafter, the mixture was allowed to stand still to precipitate the polymer powder, and the supernatant propylene and ethylene were extracted. Next, 25 kg of propylene was introduced under pressure, and the mixture was stirred at 40°C for 10 minutes. After the mixture was allowed to stand still and the supernatant propylene was extracted, the remaining propylene was purged to obtain about 12 kg of a block copolymer composition. This powder was dried under reduced pressure at 60° C. and 150 mmHg for 10 hours, granulated with known additives, and its physical properties were measured by conventional methods. In addition, 10g of the above granulated pellets were added to n-decane.
The solution was dissolved in 300 ml and then cooled to 30°C to separate soluble and insoluble components. The insoluble matter was dispersed in n-decane at 110°C, filtered at 110°C, and separated into soluble and insoluble parts in n-decane at 110°C. From the soluble part, n
-Remove decane by vacuum distillation, and remove insoluble matter at 60°.
It was dried at 5 mmHg to obtain copolymer portion C. The intrinsic viscosity and the ratio of ethylene to propylene were measured for each part. The results are shown in Table 1. In addition, a drawing (solid line) shows the relationship between MI and elongation at break of the obtained copolymer composition.
Shown below. Comparative Examples 1 to 5 Using 10 g of titanium trichloride catalyst (TCY-24) manufactured by Marubeni Solve-A and 50 ml of diethylaluminium chloride as catalysts, a polymerization reaction was carried out in 100 ml of n-heptane using an autoclave with an internal volume of 300 ml. Ivy. Polymerization was continued for 2 hours at a polymerization pressure of 5 kg/cm 2 gauge and a polymerization temperature of 70° C. while charging propylene and hydrogen. The hydrogen concentration during this time is shown in (I) in Table 1.
The concentration was adjusted to obtain a polymer having the intrinsic viscosity shown in the column. Next, the gas phase was purged while lowering the internal temperature to 55°C, and when the hydrogen concentration in the gas phase was reduced to 1 Vol% or less, hydrogen, ethylene, and propylene were charged, and the gas phase concentrations were 2.5 Vol% and 32 Vol%, respectively. , 65Vol%, and a total pressure of 2Kg/cm 2 -gauge. The polymerization reaction was carried out under these conditions for 30 minutes, and then ethylene was injected at once to make the ethylene concentration 48 Vol, and the polymerization was carried out under these conditions for 20 minutes. Then charge 50 °C of methanol and 30 °C at 60 °C.
After stirring for a minute, 50% of water was added and stirred, and the aqueous layer was separated. Add 50% water to the heptane layer and add 2
After washing twice, it was over-dried. After that, Example 1~
After granulation in the same manner as in 5, the physical properties were measured and the particles were separated into each part. The results are shown in Table 1 and the drawing (dashed line).

【表】【table】

【表】 表1および図面にみられるように、従来のブロ
ツク共重合体では、MIが比較的小さい場合、例
えば10程度では、本発明のブロツク共重合体組成
物とほとんど変らない破断時の伸びを有している
が、MIが大きくなると大きく低下している。 ところが、本発明のブロツク共重合体組成物に
おいてはMIが大きくなつてもあまり破断時の伸
びが低下せず、実用物性が充分満足するものであ
る。
[Table] As seen in Table 1 and the drawings, when the MI of the conventional block copolymer is relatively small, for example around 10, the elongation at break is almost the same as that of the block copolymer composition of the present invention. However, it decreases significantly as MI increases. However, in the block copolymer composition of the present invention, even if the MI increases, the elongation at break does not decrease much, and the practical physical properties are sufficiently satisfied.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はプロピレンブロツク共重合体組成物の
MIと破断時の伸び(%)の関係を示す図であつ
て、縦軸は破断時の伸び(%)を、横軸はMIを
示す。また、図中実線は本発明の実施例によるも
の、破線は比較例によるものである。
The drawing shows the propylene block copolymer composition.
It is a diagram showing the relationship between MI and elongation at break (%), where the vertical axis shows elongation at break (%) and the horizontal axis shows MI. In addition, the solid lines in the figure are based on the example of the present invention, and the broken lines are based on the comparative example.

Claims (1)

【特許請求の範囲】 1 (A) 炭素原子数6〜20個の炭化水素で溶解分
離したとき、(1)30℃で可溶であり、プロピレン
20〜60重量%とエチレン80〜40重量%とからな
り、135℃テトラリン溶液での極限粘度(以
下、単に極限粘度という。)ηAが2.0〜7.0で
ある共重合体部分A5〜15重量部、(2)30℃で不
溶でかつ110℃で可溶であり、プロピレン90〜
70重量%とエチレン10〜30重量%とからなり、
極限粘度ηBが0.4〜3.0である共重合体部分B5
〜30重量部、および、(3)30℃で不溶でかつ110
℃でも不溶であり、プロピレン100〜95重量%
とエチレン0〜5重量%とからなり、極限粘度
ηCが0.4〜3.0である共重合体部分C60〜90重
量部であり、かつ、 (B) ηAがηB及びηCより大であることを特徴
とする伸びの大きなプロピレンブロツク共重合
体組成物。 2 共重合体部分Cの赤外吸収スペクトルに於け
る997cm-1と974cm-1に於ける吸光度の比率が0.8
〜0.955であり、共重合体部分Aのそれが0.3以下
であり、共重合体部分Bのそれが0.6〜0.96であ
る特許請求の範囲第1項記載のプロピレンブロツ
ク共重合体組成物。 3 プロピレンブロツク共重合体組成物が、無水
の塩化マグネシウムをカルボン酸エステル、エー
テル、オルソカルボン酸エステル、アルコキシケ
イ素から選ばれた少くとも1種の化合物と接触処
理した後ハロゲン化チタンと接触処理することに
よつて得られる固体触媒成分と有機アルミニウム
化合物とからなる触媒を用いるプロピレン自身を
溶媒とする塊状重合法で、プロピレン単独の重合
あるいは少量のエチレンとプロピレンの共重合を
50〜80℃の温度で行い、次いでエチレンとプロピ
レンの反応比が20/80〜90/10重量比である条件
で30〜60℃で重合を行つたのち、未反応のモノマ
ーを蒸発除去するか、ろ過あるいはプロピレンを
主成分とする媒体で向流洗浄した後媒体と分離す
ることによつて得られたものである特許請求の範
囲第1項記載のプロピレンブロツク共重合体組成
物。
[Claims] 1 (A) When dissolved and separated with a hydrocarbon having 6 to 20 carbon atoms, (1) it is soluble at 30°C, and propylene
5 to 15 parts by weight of a copolymer portion A consisting of 20 to 60% by weight and 80 to 40% by weight of ethylene, and having an intrinsic viscosity (hereinafter simply referred to as intrinsic viscosity) ηA of 2.0 to 7.0 in a tetralin solution at 135°C; (2) Insoluble at 30℃ and soluble at 110℃, propylene 90~
Consisting of 70% by weight and 10-30% by weight of ethylene,
Copolymer portion B5 having an intrinsic viscosity ηB of 0.4 to 3.0
~30 parts by weight, and (3) insoluble at 30°C and 110
Insoluble even at °C, propylene 100-95% by weight
and 0 to 5% by weight of ethylene, and 60 to 90 parts by weight of a copolymer portion C having an intrinsic viscosity ηC of 0.4 to 3.0, and (B) ηA is larger than ηB and ηC. A propylene block copolymer composition with high elongation. 2 The ratio of absorbance at 997 cm -1 and 974 cm -1 in the infrared absorption spectrum of copolymer portion C is 0.8
0.955, that of copolymer portion A is 0.3 or less, and that of copolymer portion B is 0.6 to 0.96. 3. The propylene block copolymer composition is prepared by contact-treating anhydrous magnesium chloride with at least one compound selected from carboxylic acid esters, ethers, orthocarboxylic acid esters, and alkoxy silicon, and then contact-treating with titanium halide. This is a bulk polymerization method using propylene itself as a solvent, using a catalyst consisting of a solid catalyst component and an organoaluminium compound, which can be obtained by polymerizing propylene alone or copolymerizing a small amount of ethylene and propylene.
Polymerization is carried out at a temperature of 50 to 80°C, then at 30 to 60°C under conditions where the reaction ratio of ethylene and propylene is 20/80 to 90/10 by weight, and unreacted monomers are removed by evaporation. 2. The propylene block copolymer composition according to claim 1, which is obtained by filtration or countercurrent washing with a medium containing propylene as a main component, followed by separation from the medium.
JP13836781A 1981-09-04 1981-09-04 Propylene block copolymer composition and its production Granted JPS5840314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13836781A JPS5840314A (en) 1981-09-04 1981-09-04 Propylene block copolymer composition and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13836781A JPS5840314A (en) 1981-09-04 1981-09-04 Propylene block copolymer composition and its production

Publications (2)

Publication Number Publication Date
JPS5840314A JPS5840314A (en) 1983-03-09
JPS6138927B2 true JPS6138927B2 (en) 1986-09-01

Family

ID=15220270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13836781A Granted JPS5840314A (en) 1981-09-04 1981-09-04 Propylene block copolymer composition and its production

Country Status (1)

Country Link
JP (1) JPS5840314A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07682B2 (en) * 1984-03-13 1995-01-11 三井東圧化学株式会社 Polypropylene block copolymer for injection molding
JP2007063349A (en) * 2005-08-30 2007-03-15 Sumitomo Chemical Co Ltd Propylene-ethylene block copolymer and its molded product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528094A (en) * 1975-07-09 1977-01-21 Mitsui Petrochem Ind Ltd Process for preparing propylene- ethylene block copolymers
JPS5325585A (en) * 1976-08-19 1978-03-09 Ciba Geigy Ag Production of 22cyclopropylaminoo 4*66diaminoosstriazines and harmful livings combating agent containing same as effective component
JPS5543152A (en) * 1978-09-22 1980-03-26 Chisso Corp Preparation of copolymer
JPS5620011A (en) * 1979-07-27 1981-02-25 El Paso Polyolefins Manufacture of ethyleneepropylene block copolymer
JPS5655416A (en) * 1979-10-13 1981-05-16 Sumitomo Chem Co Ltd Production of propylene/ethylene block copolymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528094A (en) * 1975-07-09 1977-01-21 Mitsui Petrochem Ind Ltd Process for preparing propylene- ethylene block copolymers
JPS5325585A (en) * 1976-08-19 1978-03-09 Ciba Geigy Ag Production of 22cyclopropylaminoo 4*66diaminoosstriazines and harmful livings combating agent containing same as effective component
JPS5543152A (en) * 1978-09-22 1980-03-26 Chisso Corp Preparation of copolymer
JPS5620011A (en) * 1979-07-27 1981-02-25 El Paso Polyolefins Manufacture of ethyleneepropylene block copolymer
JPS5655416A (en) * 1979-10-13 1981-05-16 Sumitomo Chem Co Ltd Production of propylene/ethylene block copolymer

Also Published As

Publication number Publication date
JPS5840314A (en) 1983-03-09

Similar Documents

Publication Publication Date Title
JPS6338363B2 (en)
JP2003513119A (en) Production of highly reactive polyisobutene
JPS6138927B2 (en)
JPS646211B2 (en)
JPH0336841B2 (en)
JPS6150087B2 (en)
JPH0432085B2 (en)
JPS6036203B2 (en) Method for producing propylene-ethylene block copolymer
JPS5941316A (en) Propylene-ethylene block copolymer and preparation thereof
JPH0674364B2 (en) Propylene block copolymer composition
JP2683363B2 (en) Propylene polymerization method
JPH0772211B2 (en) Continuous propylene polymerization method
JPH0680101B2 (en) Process for producing block copolymer of propylene
JPS5821921B2 (en) Polymerization method of α↓-olefins
JPH0354125B2 (en)
JPH0681773B2 (en) Method for producing block copolymer of propylene
JPS6336327B2 (en)
JPH0774295B2 (en) Method for producing polypropylene resin composition
JPH0312086B2 (en)
JPS595204B2 (en) Olefin polymerization catalyst
JPH0559926B2 (en)
JPH0681772B2 (en) Method for producing block copolymer of propylene
JPH0725958B2 (en) Method for producing polypropylene resin composition
JPS642126B2 (en)
JPS5840964B2 (en) Stereoregular polymerization method of α↓-olefins