JPH0312086B2 - - Google Patents

Info

Publication number
JPH0312086B2
JPH0312086B2 JP56035198A JP3519881A JPH0312086B2 JP H0312086 B2 JPH0312086 B2 JP H0312086B2 JP 56035198 A JP56035198 A JP 56035198A JP 3519881 A JP3519881 A JP 3519881A JP H0312086 B2 JPH0312086 B2 JP H0312086B2
Authority
JP
Japan
Prior art keywords
propylene
polymerization
ethylene
stage
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56035198A
Other languages
Japanese (ja)
Other versions
JPS57149309A (en
Inventor
Tadashi Asanuma
Shinryu Uchikawa
Tetsunosuke Shiomura
Ichiro Fujikage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP3519881A priority Critical patent/JPS57149309A/en
Publication of JPS57149309A publication Critical patent/JPS57149309A/en
Publication of JPH0312086B2 publication Critical patent/JPH0312086B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、䜎枩衝撃性、剛性、透明性に優れた
プロピレン−゚チレン共重合䜓を高収率で䞎える
方法に関する。詳しくは、特定の觊媒ず特定の重
合法を組み合せるこずによる、優れた物性を有す
るプロピレン−゚チレン共重合䜓の改良補造法に
関する。 食品容噚甚ブロヌグレヌド又はシヌトグレヌド
に適した䜎枩衝撃性、剛性、透明性に優れたプロ
ピレン−゚チレン共重合䜓を補造する方法に関し
おは、すでに倚くの方法が提案されおおり、䟋え
ば特公昭43−11230、特公昭44−4992に開瀺され
た方法がある。 前者は第段におけるプロピレン単独重合重
合率20〜90重量の埌プロピレン゚チレン混合
物により共重合を行うこずを特城ずする方法であ
るが、䜎枩衝撃性、透明性が䞍充分である。これ
に察しお特開昭53−35788で提案された方法によ
れば第段目でプロピレンを党重合量の〜20重
量の範囲で重合させ、぀づく第段階においお
゚チレン含有率〜20重量のプロピレン−゚チ
レン混合物によ぀お共重合を行うこずによ぀お䜎
枩衝撃性、剛性、透明性等の諞物性のバランスの
優れたプロピレン−゚チレン共重合䜓を補品収率
良く埗られる。 䞀方、近来の觊媒の改良により、特にハロゲン
化マグネシりムを䞻䜓ずする担䜓にハロゲン化チ
タンを担持したものでは、チタン圓りの取れ高は
非垞に高く、又立䜓芏則性も非垞に高いものが埗
られ぀぀ある。これらの高掻性で高立䜓芏則性の
觊媒を甚い、䞊蚘重合方法を適甚すれば、觊媒残
査の陀去ずかアタクチツクポリプロピレンの陀去
を必芁ずせずに極めお効率的に物性バランスの優
れたプロピレン−゚チレン共重合䜓が埗られるず
掚定される。しかしながら、䞊蚘担䜓に担持した
高掻性の觊媒を単に適甚しただけでは、倚くの問
題があり、䞭でも、プロピレン単独の重合を65℃
未満で行うず掻性が䜎いばかりではなく、立䜓芏
則性も䜎いため埗られる共重合䜓の剛性が倧きく
䜎䞋する。したが぀お、觊媒残査及びアタクチツ
クポリプロピレンを陀去する工皋が必芁ずなり、
高掻性の觊媒を適甚するメリツトがほずんど埗ら
れず、むしろ、プロピレンの䜿甚量に察する補品
の取れ高が倧きく䜎䞋し、党䜓ずしおはむしろ䞍
利ずなる。 本発明者らは皮々の怜蚎を行぀た結果、驚くべ
きこずに、(a)ゞハロゲン化マグネシりムず電子䟛
䞎性化合物ず四ハロゲン化チタンを含む遷移金属
觊媒成分ず(b)AlRoX3-o匏䞭は炭玠数〜12の
炭化氎玠残基、はハロゲン原子、≊≊を
瀺すず(c)゚ステル、゚ヌテル、オル゜゚ステ
ル、アルコキシケむ玠、アミン、アミド、リン酞
゚ステルから遞ばれた少なくずも皮の有機化合
物ずからなる觊媒系を甚いお65℃以䞊の枩床で重
合を行うず、非垞に高掻性で、高立䜓芏則性のポ
リプロピレンを䞎えるこずを芋い出し、さらに
は、65℃以䞊の比范的高枩での重合を、プロピレ
ン自身を溶媒ずする塊状重合法で行えばかさ比重
も䜎䞋せず、良奜なパりダヌ性状のプロピレン−
゚チレン共重合䜓が埗られるこずを芋い出し本発
明を完成した。 本発明の目的は、䜎枩衝撃性、剛性、透明性等
の諞物性バランスの優れたプロピレン−゚チレン
共重合性を觊媒圓り極めお高収率でか぀埗られる
ポリマヌの物性に悪圱響を䞎え、又、それ自身に
はほずんど䟡倀のない䜎分子量、䜎結晶性重合䜓
を実質的に副性するこずなく䞎える方法を提䟛す
るこずにある。 本発明の第の芁玠である高掻性で高立䜓芏則
性觊媒は、(a)ゞハロゲン化マグネシりムず電子䟛
䞎性化合物ず四ハロゲン化チタンを含む遷移金属
觊媒成分ず(b)AlRoX3-o匏䞭は炭玠数〜12の
炭化氎玠残基、はハロゲン原子、≊≊を
瀺すず(c)゚ステル、゚ヌテル、オル゜゚ステ
ル、アルコキシケむ玠、アミン、アミド、リン酞
゚ステルから遞ばれた少なくずも皮の有機化合
物ずからなる觊媒であり、(a)ゞハロゲン化マグネ
シりムず電子䟛䞎性化合物ず四ハロゲン化チタン
を含む遷移金属觊媒成分は皮々の方法で埗られる
が、䟋えば本発明者の䞀郚がすでに特開昭54−
103494、特開昭54−116079、特開昭55−102606等
で提案しおいるような觊媒を甚いるこずができ
る。具䜓的には無氎の塩化マグネシりムず皮々の
有機化合物、䟋えば゚ステル、オル゜゚ステル、
アルコキシケむ玠、ハロゲン化炭化氎玠、芳銙族
炭化氎玠、゚ヌテル、アルコヌル等ず共粉砕した
ものをハロゲン化チタンで熱凊理するこずによ
぀お固䜓觊媒を埗る方法、或は䞍掻性溶媒に可溶
な有機マグネシりム化合物を皮々のハロゲン化剀
ず反応させるこずにより䞍掻性溶媒に䞍溶な
Mg、Clを含有する固䜓担䜓を合成し、さらに電
子䟛子性化合物、ハロゲン化チタンで凊理する方
法などが䟋ずしお挙げられる。(b)有機アルミニ
りム化合物ずしおは䞀般匏AlRmX3−匏䞭
は炭玠数〜12の炭化氎玠残基、はハロゲン
原子、か぀≊≊で衚わされる有機アルミ
ニりム化合物が奜たしく甚いられる。(c)成分ずし
お甚いられる有機化合物ずしおは、゚ステル、゚
ヌテル、オル゜゚ステル、アルコキシケむ玠、ア
ミン、アミド、リン酞゚ステル等が甚いられ、よ
り具䜓的には安息銙酞゚チル、トルむル酞メチ
ル、オル゜安息銙酞メチル、テトラ゚トキシシラ
ン、プニルトリ゚トキシシラン、ゞブチル゚ヌ
テル、トリ゚チルアミン、ゞ゚チルアニリン、リ
ン酞トリ゚チル等が奜たしく甚いられる。本発明
の方法で甚いる觊媒を構成する䞊蚘䞉成分の䜿甚
割合は固䜓觊媒圓りの取れ高が4000䞀固䜓
觊媒以䞊で、か぀高立䜓芏則性のポリマヌを䞎え
る条件䞋で任意に倉曎可胜であり、適圓な範囲は
甚いる化合物で異るが䞀般には、(a)固䜓觊媒䞭の
Ti1モルに察しお、(b)有機アルミニりムは〜
500モル、(c)成分ずしお甚いられる有機化合物は
〜250モルで甚いるのが奜たしい。 本発明の第の芁玠は重合を段階に分け、第
段階に斌お䞊蚘觊媒系を甚いお65℃以䞊の枩床
でプロピレンを党重合量の〜20重量に盞圓す
る範囲で重合させ第段階においおぱチレン
プロピレンの反応比が99〜2080重量の範
囲の重合を党重合量の80〜95重量の範囲で、第
段階及び第段階の重合をプロピレン自身を溶
媒ずする塊状重合法で行うこずにある。 第段階の重合を65℃〜85℃の枩床、奜たしく
は65℃〜80℃で䞊蚘觊媒系で重合するこずにより
プロピレンの高結晶性ホモポリマヌを重合させる
こずによ぀お、第段階でのプロピレン−゚チレ
ン共重合時のスラリヌの性状が良奜に保たれ、ポ
リプロピレンに固有な優れた性質である高い剛
性、硬床、軟化点等の䜎䞋を最少限に保぀こずが
できる。第段階の重合を塊状重合法で行うこず
により、䞊蚘觊媒を高掻性で高立䜓芏則性のポリ
マヌを䞎える条件䞋、即ち65゜〜85℃の比范的高
枩䞋で重合を行぀おも、かさ比重の䜎䞋がほずん
どなく、特に65゜〜80℃の条件䞋では、実質的に
た぀たくかさ比重の䜎䞋は芋られない。これに察
しお、比范的高沞点の炭化氎玠化合物を媒䜓ずし
お甚いる溶媒法では、65℃以䞊の枩床では、かさ
比重の䜎䞋が芋られ、特に70℃以䞊では倧きく䜎
䞋する。 第段階の重合を65℃未満の枩床で行うず、立
䜓芏則性の䜎䞋が倧きく、共重合反応を行぀た時
のスラリヌの性状が倧幅に悪化し、そのたたでは
ポリプロピレンに固有な優れた性質である高い剛
性、硬床、軟化点等の䜎䞋が倧きくなり、又、向
流掗浄等によ぀お副生するアタクチツクポリプロ
ピレンを陀去するず、それ自身にはほずんど商品
䟡倀のないアタクチツクポリプロピレンを倚量に
副生し奜たしくない。䞀方、第段階の重合を85
℃以䞊の条件䞋で行うず、かさ比重の䜎䞋が倧き
く、共重合䜓の生産性が䜎䞋するず同時に、觊媒
の倱掻の速床が速くなり結果ずしお觊媒圓りのポ
リマヌの取れ高が小さくなるずいう䞍利もある。 第段階でのプロピレンのホモポリマヌは党重
合量の〜20重量生成させる必芁があり、この
郚分が重量以䞋の堎合には、第段階での共
重合時のスラリヌの性状が䞍良で、工業生産䞊充
分に耐えるものではなく、剛性も充分ずは蚀えな
い。又、この郚分が20重量以䞊の堎合は比范的
剛性は良奜であるが、透明性、耐衝撃性が䞍良ず
なり、本発明の目的に適したものずはいえない。 本発明においお、第段階でのプロピレン−゚
チレン共重合郚における重合枩床は、50゜〜85℃
で行えば良いが、奜たしくは第段階の重合枩床
ず同じか或は〜15℃皋床䜎い枩床で行うのが奜
たしい。 第段階でのプロピレン−゚チレン共重合郚に
おける゚チレンプロピレンの反応比は99〜
2080重量比、奜たしくは98〜1585重量比
であり、99重量比以䞋では透明性及び衝撃匷
床の改善効果が少く、2080重量比以䞊では衝撃
匷床は向䞊するが剛性䜎䞋が著しく、さらには重
合時のスラリヌの性状が著しく悪化する。 䞊蚘重合時の圧力は、所定の枩床で、プロピレ
ンを液状で存圚させか぀、第段階では所望の゚
チレンプロピレンの反応比ずなる条件に定めれ
ば自動的に定たる。 本発明の重合及び共重合は、氎玠存圚䞋に行な
い、分子量の調節を行うず共に透明性に悪圱響を
䞎え、フむシナアむの原因ずもなる高分子量重合
䜓の生成を防止するこずができる。 本発明の方法により埗られるプロピレン−゚チ
レン共重合䜓は透明性が良奜で剛性が比范的高
く、耐衝撃性も倧きいので食品包装甚ブロヌグレ
ヌド、シヌトグレヌドのみならずフむルム、射出
成圢品にも適し、産業䞊非垞に有甚であるず共
に、重合時のスラリヌ性状が良奜であり、觊媒圓
りの共重合䜓の取れ高が高いため、実質的に觊媒
残査、及び副生するアタクチツクポリプロピレン
を陀去するこずなく、プロピレン−゚チレン共重
合䜓をえるこずができ、工業生産䞊非垞に有利な
方法である。 以䞋に実斜䟋を挙げ本発明をさらに詳しく説明
する。なお実斜䟋及び比范䟋においお 曲げ剛性床 ASTM D747−63 シダルピヌノツチ付き衝撃匷床
ASTM D256−56 デナポン衝撃匷床 JIS K6718 に基づいおMIは230℃、荷重2.16Kg、曲げ剛性床
は20℃、シダルピヌ、デナポンは℃でそれぞれ
枬定した。極限粘床数以䞋ηず略蚘は135℃
テトラリン溶液で枬定した。 アむ゜タチツクむンデツクス以䞋IIず略蚘
は沞隰−ヘプタン抜出残党ポリマヌずしお算出
した。 実斜䟋  (i) 固䜓觊媒成分の調補 盎埄12mmの鋌球Kgの入぀た内容積の粉
砕甚ポツトを個装備した振動ミルを甚意す
る。各ポツトに窒玠雰囲気䞭で塩化マグネシり
ム300、テトラ゚トキシシラン60ml、αα
α−トリクロロトル゚ン45mlを加え40時間粉砕
した。内容積50のオヌトクレヌブに䞊蚘粉砕
物Kg、四塩化チタン20を加えお80℃で時
間撹拌した埌デカンテヌシペンによ぀お䞊柄液
を陀き、次に−ヘプタン35を加え80℃で15
分間撹拌の埌デカンテヌシペンで䞊柄液を陀く
掗浄操䜜を回繰り返した埌、さらに−ヘプ
タン20を远加しお固䜓觊媒スラリヌずした。
固䜓觊媒スラリヌの郚をサンプリングし−
ヘプタンを蒞発させ分析したずころ固䜓觊媒䞭
に1.4重量のTiを含有しおいた。 (ii) プロピレン−゚チレン共重合䜓の補造 充分に也燥し窒玠で眮換し、さらにプロピレ
ンで眮換したゞダケツト付きの100のオヌト
クレヌブにプロピレンを25Kg装入する。䞀方
のフラスコに−ヘプタン500ml、ゞ゚チル
アルミニりムクロラむド4.8ml、−トルむル
酞メチル2.8ml、䞊蚘固䜓觊媒を入れ、宀
枩で分間撹拌した埌トリ゚チルアルミニりム
ml加えたものを䞊蚘100のオヌトクレヌブ
に圧入した。次に氎玠を15N圧入した。ゞダ
ケツトに枩氎を通じお内枩を75℃に昇枩し、75
℃に保ちながら、氎玠濃床を4.0volになるよ
うに氎玠を装入し、䞀方57mlの−ヘプタンに
mlのトリ゚チルアルミニりムを溶解したもの
を0.5mlminで䞊蚘オヌトクレヌブぞ装入し
ながらプロピレンのホモ重合を12分続けた。そ
の埌曎に゚チレンを150装入しさらに゚チレ
ンを5.6minで装入しながら゚チレンずプ
ロピレンの共重合を108分間行぀た埌、む゜プ
ロパノヌル50mlを圧入しお重合を停止し、未反
応の゚チレン、プロピレンをパヌゞした。この
埌プロピレン−゚チレン共重合䜓を取り出し60
℃で150mmHgで10時間也燥し秀量したずころ
12.6Kgであ぀た。このパりダヌの極限粘床は、
2.21dlでありかさ比重は0.40ml、IIは
82.5であり、又赀倖吞収スペクトル法により
枬定した゚チレン単䜍含有率は5.0であ぀た。
このパりダヌ状重合䜓に公知の添加剀を加えお
造粒した埌射出成圢機により成圢したmmシヌ
トを甚いお℃におけるシダルピヌ衝撃匷床、
デナポン衝撃匷床を枬定したずころ、それぞれ
3.9Kg・cmcm2、8.5Kg・cm1/2″φであ぀た。
䞀方ペレツトより成圢したmmプレスシヌトの
光透過率、曲げ剛性床20℃はそれぞれ
87.0、6700Kgcm2であ぀た。 実斜䟋  プロピレン単独で重合する時間を22分間、衚に
瀺す゚チレンの装入量での共重合を70℃で110分
間行぀た他は実斜䟋ず同様に重合反応を行぀
た。結果は衚に瀺す。 実斜䟋  プロピレン単独で重合する時間を12分間、゚チ
レンプロピレンの共重合を衚に瀺す装入条件で
100分間行぀た他は実斜䟋ず同様に重合反応を
行぀た。結果は衚に瀺す。 比范䟋  重合枩床を第段階を50℃に倉曎し、トリ゚チ
ルアルミニりムの装入量を0.2mlminに倉曎し、
党重合時間を時間プロピレン単独での重合を
24分、共重合を216分に延長し、その他の条件
は衚に瀺すように行぀た。IIが倧きく䜎䞋したた
め曲げ剛性が倧きく䜎䞋しおいる䞊に、パりダヌ
の也燥の際に団塊化し、ほぐすのが非垞に困難で
あ぀た。 比范䟋  第段目の重合時間を分、第段目の重合時
間を118分ずした他は実斜䟋ず同様に重合した
結果は衚に瀺す。かさ比重及び曲げ剛性の䜎䞋が
倧きい。 比范䟋  第段目の重合時間を40分、第段目の重合時
間を80分ずした他は実斜䟋ず同様に重合した結
果は衚に瀺す。透明性が非垞に悪化しおいる。 比范䟋  掻性化チタン觊媒特開昭53−35788明现曞䞭
実斜䟋で甚いたものず同様の觊媒TiCl3組成
物ずゞ゚チルアルミニりムクロラむド20mlを
甚いお、トリ゚チルアルミニりムの远加装入を行
わずに衚に瀺す条件で重合を行぀た埌実斜䟋
ず同様の操䜜を行぀た。也燥の際に団塊化した
䞊、かさ比重が非垞に悪く又パりダヌは黄色に着
色しおいた。
The present invention relates to a method for producing a propylene-ethylene copolymer with excellent low-temperature impact resistance, rigidity, and transparency in high yield. Specifically, the present invention relates to an improved method for producing a propylene-ethylene copolymer having excellent physical properties by combining a specific catalyst and a specific polymerization method. Many methods have already been proposed for producing propylene-ethylene copolymers with excellent low-temperature impact resistance, rigidity, and transparency suitable for blow grade or sheet grade for food containers. 11230, and a method disclosed in Japanese Patent Publication No. 44-4992. The former method is characterized by carrying out copolymerization with a propylene-ethylene mixture after propylene homopolymerization (polymerization rate of 20 to 90% by weight) in the first stage, but low-temperature impact resistance and transparency are insufficient. On the other hand, according to the method proposed in JP-A-53-35788, propylene is polymerized in the range of 5 to 20% by weight of the total polymerization amount in the first stage, and then in the second stage, the ethylene content is 1 to 20% by weight. By carrying out copolymerization with a 20% by weight propylene-ethylene mixture, a propylene-ethylene copolymer with an excellent balance of various physical properties such as low-temperature impact resistance, rigidity, and transparency can be obtained with a good product yield. On the other hand, with recent improvements in catalysts, especially those in which titanium halide is supported on a support mainly composed of magnesium halide, it has become possible to obtain products with extremely high yields per titanium and extremely high stereoregularity. It's coming. If these highly active and highly stereoregular catalysts are used and the above polymerization method is applied, propylene-ethylene with an excellent balance of physical properties can be produced extremely efficiently without the need to remove catalyst residue or atactic polypropylene. It is assumed that a copolymer is obtained. However, simply applying a highly active catalyst supported on the above-mentioned carrier has many problems. Among them, polymerization of propylene alone at 65°C
If the amount is less than that, not only the activity will be low, but also the stereoregularity will be low, resulting in a large decrease in the rigidity of the resulting copolymer. Therefore, a step is required to remove catalyst residue and atactic polypropylene,
There is almost no advantage of applying a highly active catalyst, and on the contrary, the yield of the product relative to the amount of propylene used is greatly reduced, which is rather disadvantageous as a whole. As a result of various studies, the present inventors surprisingly found that (a) a transition metal catalyst component containing magnesium dihalide, an electron donating compound, and titanium tetrahalide, and (b) AlR o X 3-o (In the formula, R is a hydrocarbon residue having 1 to 12 carbon atoms, X is a halogen atom, and 1≩n≩3) and (c) ester, ether, orthoester, alkoxy silicon, amine, amide, phosphoric acid ester It has been discovered that when polymerization is carried out at a temperature of 65°C or higher using a catalyst system consisting of at least one organic compound selected from If polymerization is carried out at a relatively high temperature of 65°C or higher using a bulk polymerization method using propylene itself as a solvent, the bulk specific gravity will not decrease and propylene with good powder properties will be produced.
The present invention was completed by discovering that an ethylene copolymer can be obtained. The purpose of the present invention is to achieve propylene-ethylene copolymerizability with an excellent balance of various physical properties such as low-temperature impact resistance, stiffness, and transparency in an extremely high yield per catalyst and which has no adverse effect on the physical properties of the resulting polymer. The object of the present invention is to provide a method for producing a low molecular weight, low crystalline polymer which has little value on its own without substantially producing side effects. The highly active and highly stereoregular catalyst, which is the first element of the present invention, comprises (a) a transition metal catalyst component containing magnesium dihalide, an electron-donating compound, and titanium tetrahalide; and (b) AlR o X 3- o (in the formula, R is a hydrocarbon residue having 1 to 12 carbon atoms, X is a halogen atom, and 1≩n≩3) and (c) ester, ether, orthoester, alkoxy silicon, amine, amide, phosphoric acid A catalyst consisting of at least one organic compound selected from esters, and (a) a transition metal catalyst component containing magnesium dihalide, an electron donating compound, and titanium tetrahalide, which can be obtained by various methods, such as Some of the inventors of the present invention have already
Catalysts such as those proposed in JP-A-103494, JP-A-54-116079, JP-A-55-102606, etc. can be used. Specifically, anhydrous magnesium chloride and various organic compounds such as esters, orthoesters,
A method of obtaining a solid catalyst by co-pulverizing alkoxy silicon, halogenated hydrocarbon, aromatic hydrocarbon, ether, alcohol, etc. with titanium tetrahalide, or a method of obtaining a solid catalyst by co-pulverizing with alkoxy silicon, halogenated hydrocarbon, aromatic hydrocarbon, ether, alcohol, etc. By reacting magnesium compounds with various halogenating agents, it is possible to create compounds that are insoluble in inert solvents.
One example is a method in which a solid support containing Mg and Cl is synthesized and further treated with an electronic compound or titanium halide. (b) The organoaluminum compound has the general formula AlRmX3-m (in the formula:
R is a hydrocarbon residue having 1 to 12 carbon atoms, X is a halogen atom, and an organic aluminum compound represented by 1≩m≩3 is preferably used. Examples of organic compounds used as component (c) include esters, ethers, orthoesters, alkoxy silicones, amines, amides, phosphate esters, and more specifically ethyl benzoate, methyl toluate, orthobenzoic acid. Methyl, tetraethoxysilane, phenyltriethoxysilane, dibutyl ether, triethylamine, diethylaniline, triethyl phosphate and the like are preferably used. The ratio of the three components mentioned above constituting the catalyst used in the method of the present invention can be changed arbitrarily under the conditions that the yield per solid catalyst is 4000 g/g or more and a highly stereoregular polymer is obtained. Although the appropriate range differs depending on the compound used, in general, (a)
For 1 mole of Ti, (b) organic aluminum is 1 to 1 mole
The organic compound used as component (c) is preferably used in an amount of 1 to 250 mol. The second element of the present invention is to divide the polymerization into two stages, and in the first stage, propylene is polymerized using the above catalyst system at a temperature of 65°C or higher in an amount corresponding to 5 to 20% by weight of the total polymerization amount. In the second stage, ethylene/
Polymerization with a reaction ratio of propylene in the range of 1/99 to 20/80% by weight is carried out in the range of 80 to 95% by weight of the total polymerization amount, and the first and second stage polymerization is carried out in bulk polymerization using propylene itself as a solvent. It's about doing what's legal. The first stage polymerization is carried out in the second stage by polymerizing a highly crystalline homopolymer of propylene by polymerizing with the above catalyst system at a temperature of 65°C to 85°C, preferably 65°C to 80°C. The properties of the slurry during propylene-ethylene copolymerization are maintained well, and reductions in high rigidity, hardness, softening point, etc., which are excellent properties unique to polypropylene, can be kept to a minimum. By carrying out the first stage polymerization using a bulk polymerization method, even if the above catalyst is polymerized under conditions that give a highly active and highly stereoregular polymer, that is, at a relatively high temperature of 65° to 85°C, bulk polymerization is possible. There is almost no decrease in specific gravity, especially under conditions of 65° to 80°C, and virtually no decrease in bulk specific gravity is observed. On the other hand, in the solvent method using a relatively high-boiling hydrocarbon compound as a medium, the bulk specific gravity decreases at temperatures of 65°C or higher, and particularly decreases significantly at 70°C or higher. If the first stage polymerization is carried out at a temperature lower than 65°C, the stereoregularity will be greatly reduced, and the properties of the slurry during the copolymerization reaction will be significantly deteriorated, and the excellent properties unique to polypropylene will be lost if it is carried out as it is. The reduction in certain high rigidity, hardness, softening point, etc. becomes large, and when the by-produced atactic polypropylene is removed by counter-current cleaning etc., a large amount of by-product atactic polypropylene which has almost no commercial value by itself is generated. raw and undesirable. On the other hand, the first stage polymerization was carried out at 85
If carried out at temperatures above ℃, there is a disadvantage that the bulk specific gravity decreases significantly and the productivity of the copolymer decreases, while at the same time the rate of catalyst deactivation increases and as a result, the yield of polymer per catalyst decreases. There is also. The propylene homopolymer in the first stage must be produced in an amount of 5 to 20% by weight of the total polymerization amount, and if this proportion is less than 5% by weight, the properties of the slurry during copolymerization in the second stage will change. It is defective, cannot withstand industrial production sufficiently, and cannot be said to have sufficient rigidity. Further, when this portion is 20% by weight or more, the rigidity is relatively good, but the transparency and impact resistance are poor, and it cannot be said to be suitable for the purpose of the present invention. In the present invention, the polymerization temperature in the propylene-ethylene copolymerization part in the second stage is 50° to 85°C.
However, it is preferable to carry out the polymerization at a temperature that is the same as the first stage polymerization temperature or about 5 to 15°C lower. The reaction ratio of ethylene/propylene in the propylene-ethylene copolymerization part in the second stage is 1/99 ~
The weight ratio is 20/80, preferably 2/98 to 15/85. If the weight ratio is less than 1/99, the effect of improving transparency and impact strength will be small, and if the weight ratio is more than 20/80, the impact strength will be improved. However, the rigidity is significantly reduced, and furthermore, the properties of the slurry during polymerization are significantly deteriorated. The pressure during the polymerization is automatically determined by setting conditions such that propylene is present in liquid form at a predetermined temperature and a desired ethylene/propylene reaction ratio is achieved in the second stage. The polymerization and copolymerization of the present invention are carried out in the presence of hydrogen to control the molecular weight and to prevent the formation of high molecular weight polymers that adversely affect transparency and cause blemishes. The propylene-ethylene copolymer obtained by the method of the present invention has good transparency, relatively high rigidity, and high impact resistance, so it is suitable not only for blow grades and sheet grades for food packaging, but also for films and injection molded products. It is very useful industrially, has good slurry properties during polymerization, and has a high yield of copolymer per catalyst, so it substantially removes catalyst residue and by-product atactic polypropylene. It is possible to obtain propylene-ethylene copolymer without any oxidation, making it a very advantageous method for industrial production. The present invention will be explained in more detail with reference to Examples below. In the Examples and Comparative Examples, bending rigidity ASTM D747-63 Shape (notched) impact strength
ASTM D256-56 Dupont impact strength Based on JIS K6718, MI was measured at 230°C, load was 2.16Kg, bending rigidity was measured at 20°C, and Shalpy and Dupont were measured at 0°C. Intrinsic viscosity number (hereinafter abbreviated as η) is 135℃
Measured using tetralin solution. Isometric index (hereinafter abbreviated as II)
was calculated as (boiling n-heptane extraction residue/total polymer). Example 1 (i) Preparation of solid catalyst component A vibratory mill equipped with four grinding pots each having an internal volume of 4 and containing 9 kg of steel balls each having a diameter of 12 mm was prepared. Add 300 g of magnesium chloride, 60 ml of tetraethoxysilane, α, α,
45 ml of α-trichlorotoluene was added and pulverized for 40 hours. Add 3 kg of the above pulverized material and 20 titanium tetrachloride to an autoclave with an internal volume of 50 °C, stir at 80 °C for 2 hours, remove the supernatant liquid by decantation, then add 35 kg of n-heptane and stir at 80 °C for 15 °C.
After stirring for a minute, the washing operation of removing the supernatant liquid by decantation was repeated seven times, and then 20 ml of n-heptane was added to form a solid catalyst slurry.
A portion of the solid catalyst slurry was sampled and n-
When the heptane was evaporated and analyzed, the solid catalyst contained 1.4% by weight of Ti. (ii) Production of propylene-ethylene copolymer 25 kg of propylene is charged into a jacketed 100 autoclave which has been thoroughly dried, purged with nitrogen, and further purged with propylene. On the other hand 1
500 ml of n-heptane, 4.8 ml of diethylaluminum chloride, 2.8 ml of p-methyl toluate, and 1 g of the above solid catalyst were placed in a flask, and after stirring at room temperature for 2 minutes, 1 ml of triethyl aluminum was added and the mixture was pressurized into the autoclave No. 100. . Next, 15N of hydrogen was injected under pressure. Pour hot water into the jacket to raise the internal temperature to 75℃.
While keeping the temperature at °C, hydrogen was charged so that the hydrogen concentration was 4.0 vol%, while a solution of 3 ml of triethylaluminum in 57 ml of n-heptane was charged into the autoclave at a rate of 0.5 ml/min while propylene was added to the autoclave. The homopolymerization of was continued for 12 minutes. After that, 150g of ethylene was charged, and ethylene and propylene were copolymerized for 108 minutes while charging ethylene at a rate of 5.6g/min. After that, 50ml of isopropanol was pressurized to stop the polymerization, and unreacted ethylene and propylene were copolymerized. was purged. After this, take out the propylene-ethylene copolymer 60
After drying at 150mmHg for 10 hours at °C and weighing.
It weighed 12.6Kg. The intrinsic viscosity of this powder is
2.21dl/g, bulk specific gravity is 0.40g/ml, II is
The ethylene unit content was 82.5%, and the ethylene unit content measured by infrared absorption spectroscopy was 5.0%.
This powder-like polymer was granulated with known additives, and then molded using an injection molding machine to form a 2 mm sheet.
When the Dupont impact strength was measured, each
It was 3.9Kg・cm/cm 2 and 8.5Kg・cm/1/2″φ.
On the other hand, the light transmittance and bending rigidity (20℃) of a 1 mm press sheet formed from pellets are
It was 87.0, 6700Kg/ cm2 . Example 2 A polymerization reaction was carried out in the same manner as in Example 1, except that propylene alone was polymerized for 22 minutes, and ethylene was copolymerized at 70° C. for 110 minutes at the amount shown in the table. The results are shown in the table. Example 3 Polymerization time of propylene alone was 12 minutes, and copolymerization of ethylene/propylene was carried out under the charging conditions shown in the table.
The polymerization reaction was carried out in the same manner as in Example 1, except that the polymerization reaction was carried out for 100 minutes. The results are shown in the table. Comparative Example 1 The polymerization temperature was changed to 50°C in the first stage, the amount of triethylaluminum charged was changed to 0.2ml/min,
Total polymerization time was 4 hours (polymerization using propylene alone)
(24 minutes, copolymerization for 216 minutes), and other conditions were as shown in the table. The bending rigidity was greatly reduced due to a large decrease in II, and the powder formed into lumps during drying, making it extremely difficult to loosen them. Comparative Example 2 Polymerization was carried out in the same manner as in Example 1 except that the first stage polymerization time was 2 minutes and the second stage polymerization time was 118 minutes. The results are shown in the table. Significant decrease in bulk specific gravity and bending rigidity. Comparative Example 3 Polymerization was carried out in the same manner as in Example 1 except that the first stage polymerization time was 40 minutes and the second stage polymerization time was 80 minutes. The results are shown in the table. Transparency has deteriorated significantly. Comparative Example 4 Activated titanium catalyst (same catalyst as used in Example 6 in JP-A-53-35788) Using 5 g of TiCl 3 composition and 20 ml of diethyl aluminum chloride, an additional charge of triethyl aluminum was added. Example 1 after polymerization was carried out under the conditions shown in Table 1 without
I performed the same operation. In addition to forming lumps during drying, the bulk density was very poor and the powder was colored yellow.

【衚】【table】

【衚】
着色しおいる。
【table】
*Colored.

Claims (1)

【特蚱請求の範囲】  立䜓芏則性觊媒を甚いおプロピレン−゚チレ
ン共重合䜓をプロピレン自身を溶媒ずする塊状重
合で補造する方法に斌いお、 (ã‚€) 立䜓芏則性觊媒が(a)ゞハロゲン化マグネシり
ムず電子䟛䞎性化合物ず四ハロゲン化チタンを
含む遷移金属觊媒成分ず(b)AlRoX3-o匏䞭は
炭玠数〜12の炭化氎玠残基、はハロゲン原
子、≊≊を瀺すず(c)゚ステル、゚ヌテ
ル、オル゜゚ステル、アルコキシケむ玠、アミ
ン、アミド、リン酞゚ステルから遞ばれた少な
くずも皮の化合物ずからなる觊媒であり該遷
移金属觊媒成分圓たりのポリマヌの取れ高が
4000遷移金属觊媒成分以䞊であり、 (ロ) 第段階においおは65℃〜85℃の枩床でプロ
ピレンのみを党重合量の〜20重量の範囲で
重合させ、 (ハ) ぀づく第段階においお゚チレンプロピレ
ンの反応比が99〜2080重量比の範囲での
重合を党重合量の80〜95の範囲で重合する、 こずを特城ずするプロピレン−゚チレン共重合䜓
の補造方法。
[Claims] 1. In a method for producing a propylene-ethylene copolymer by bulk polymerization using propylene itself as a solvent using a stereoregular catalyst, (a) the stereoregular catalyst undergoes (a) dihalogenation. A transition metal catalyst component containing magnesium, an electron-donating compound, and titanium tetrahalide, and (b) AlR o X 3-o (wherein R is a hydrocarbon residue having 1 to 12 carbon atoms, n≩3) and (c) at least one compound selected from esters, ethers, orthoesters, alkoxy silicones, amines, amides, and phosphoric acid esters, and a polymer per transition metal catalyst component. The profit margin
4000g/g transition metal catalyst component or more, (b) In the first stage, only propylene is polymerized in the range of 5 to 20% by weight of the total polymerization amount at a temperature of 65°C to 85°C, and (c) In the subsequent step A propylene-ethylene copolymer characterized in that in two steps, polymerization is carried out at an ethylene/propylene reaction ratio in the range of 1/99 to 20/80 weight ratio in the range of 80 to 95% of the total polymerization amount. manufacturing method.
JP3519881A 1981-03-13 1981-03-13 Production of propylene/ethylene copolymer Granted JPS57149309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3519881A JPS57149309A (en) 1981-03-13 1981-03-13 Production of propylene/ethylene copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3519881A JPS57149309A (en) 1981-03-13 1981-03-13 Production of propylene/ethylene copolymer

Publications (2)

Publication Number Publication Date
JPS57149309A JPS57149309A (en) 1982-09-14
JPH0312086B2 true JPH0312086B2 (en) 1991-02-19

Family

ID=12435162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3519881A Granted JPS57149309A (en) 1981-03-13 1981-03-13 Production of propylene/ethylene copolymer

Country Status (1)

Country Link
JP (1) JPS57149309A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2558529B2 (en) * 1989-08-28 1996-11-27 䞉掋化成工業株匏䌚瀟 Low molecular weight propylene polymer additive
WO2006018813A1 (en) * 2004-08-18 2006-02-23 Basell Poliolefine Italia S.R.L. Stretch blow-molded containers from ziegler natta propylene polymer compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335788A (en) * 1976-09-16 1978-04-03 Mitsui Toatsu Chem Inc Preparation of propylene-ethylene copolymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335788A (en) * 1976-09-16 1978-04-03 Mitsui Toatsu Chem Inc Preparation of propylene-ethylene copolymer

Also Published As

Publication number Publication date
JPS57149309A (en) 1982-09-14

Similar Documents

Publication Publication Date Title
JPS5847402B2 (en) Polymer composition for molding and its manufacturing method
KR0179039B1 (en) Highly crystalline polypropylene for forming film
JPH0639553B2 (en) Propylene polymer composition
JPH01126355A (en) Propylene polymer composition
JPS6150084B2 (en)
JPS6044507A (en) Catalytic components and catalyst thereof for olefin polymerization
JPH0312086B2 (en)
JPS6150087B2 (en)
JPS6036203B2 (en) Method for producing propylene-ethylene block copolymer
JPS61126109A (en) Catalyst component and catalyst for polymerization of olefin
JPS6034566B2 (en) Method for producing propylene copolymer
JPS60139706A (en) Olefin polymerization catalyst component
JPS6336326B2 (en)
JPH01108202A (en) Manufacture of polyalkenyl ether
JPH0692455B2 (en) Olefin polymerization catalyst
CN101255217A (en) Production method of olefin copolymerization catalyst and production method of olefin copolymer
JP2617901B2 (en) Method for producing solid catalyst component for olefin polymerization
JPS6336327B2 (en)
JPS62508A (en) Catalyst component for polymerization of olefin
JPS6018504A (en) Preparation of catalyst component for polymerization of olefin
JPS6225110A (en) Catalyst component for polymerizing olefin and catalyst
JPS6150086B2 (en)
JPS61106609A (en) Catalyst component for olefin polymerization
JPS61235407A (en) Catalyst and catalyst component for polymerization of olefin
JPS61291602A (en) Catalytic component for olefin polymerization and catalyst