JPH0158202B2 - - Google Patents

Info

Publication number
JPH0158202B2
JPH0158202B2 JP5864579A JP5864579A JPH0158202B2 JP H0158202 B2 JPH0158202 B2 JP H0158202B2 JP 5864579 A JP5864579 A JP 5864579A JP 5864579 A JP5864579 A JP 5864579A JP H0158202 B2 JPH0158202 B2 JP H0158202B2
Authority
JP
Japan
Prior art keywords
polymerization
solvent
zeolite
hexane
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5864579A
Other languages
Japanese (ja)
Other versions
JPS55151003A (en
Inventor
Yozo Yamamoto
Hidekuni Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP5864579A priority Critical patent/JPS55151003A/en
Publication of JPS55151003A publication Critical patent/JPS55151003A/en
Publication of JPH0158202B2 publication Critical patent/JPH0158202B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、オレフイン重合溶媒の精製方法に関
する。さらに詳しくは、オレフイン重合に悪影響
を及ぼす不純物を重合溶媒から除去するに好適な
方法に関する。 触媒および溶媒の存在下にオレフイン重合する
方法は数多く知られている。重合液からオレフイ
ン重合体を分離し、あるいは触媒を分解して回収
される溶媒は、再び重合に使用されることが多
い。ところがこのような一度重合に使用した溶媒
を用いてオレフイン重合を行つても、期待通りの
重合活性が得られないことがある。これは重合時
における副生成物、触媒分解生成物、触媒分解に
使用される試剤、例えばアルコール、カルボン
酸、キレート化合物など、あるいは重合時や後処
理時における溶媒の酸化や熱劣化などによる生成
物など種々の不純物が含まれてくるためと想定さ
れる。このような不純物は、水洗、蒸留、脱水な
ど種々の精製手段を組み合わせることによりある
程度除去が可能であり、したがつて精製の程度に
応じ、溶媒の再使用を行つても重合活性の著しい
低下は防止できる。しかしその程度は充分ではな
く、繰り返し使用するにしたがつて、ついには重
合活性が満足し得ない水準にまで低下してくる。 近年重合触媒の高活性化技術の進歩が著しい
が、このような高活性触媒は非常に少量の使用で
すむという大きな特長を有している反面、少量使
用ということに関連してとりわけ溶媒中の不純物
の影響が大きくでやすく、前記した溶媒再使用に
おける不利益を被り易い。不純物の影響による重
合活性の低下は、高活性触媒の利点を損ない、触
媒消費量の増大を招くのみならず、重合体の組成
や分子量等の変動をも惹き起こし、ひいては製品
の品質管理を困難にするのである。したがつて従
来のような精製方法で完全に除去することができ
なかつた微量の重合阻害不純物を、より一層除去
することが望まれた。そこで本発明者等は、この
ような課題を解決すべく鋭意検討を行つた結果、
オレフイン重合溶媒の精製に非常に有効な方法を
見い出すに至つた。すなわち本発明によれば、炭
化水素からなるオレフイン重合溶媒を、遷移金属
イオンでイオン交換したゼオライトで処理するこ
とを特徴とする溶媒の精製方法が提供される。 溶媒中の脱水を目的として、あるいは溶媒中の
アルキルハライドを除去する目的でゼオライトを
使用することはすでに知られている(例えば特開
昭51−20791号など)。しかしながらこのような通
常のゼオライト処理による精製方法によつても、
オレフイン重合の活性低下防止効果は充分でない
のに対し、ゼオライトの金属イオンを遷移金属イ
オンで置換することによつて精製効果に顕著な改
善が認められる。 本発明においては、遷移金属イオンでイオン交
換したゼオライトが溶媒処理剤として用いられ
る。イオン交換に供せられるゼオライトとして
は、例えば、モレキユラーシーブ3A,4A,5
A,10X,13Xなどの商品名で知られるゼオ
ライト、Y型ゼオライトなどの合成ゼオライト、
ホウフツ石、シヤバサイト、モルデナイト等の天
然ゼオライトなどを例示することができる。これ
らゼオライトに対してイオン交換すべき遷移金属
イオンとしては、チタン、バナジウム、クロム、
マンガン、鉄、コバルト、ニツケル、銅、亜鉛、
イツトリウム、ジルコニウム、ニオブ、モリブデ
ン、ルテニウム、ロジウム、パラジウム、銀、カ
ドミウム、ランタン、セリウム、ネオジウム、プ
ロメチウム、サマリウム、コーロピウム、タンタ
ル、タングステン、レニウム、オスミウム、イリ
ジウム、白金、金、水銀、アクチニウム、トリウ
ム、ウラニウムなどの各イオンを例示することが
できる。これらの中では、とくに周期表の第4周
期又は第8族に属する元素又は希土類元素のイオ
ンとりわけ周期表第4周期の元素又は希土類元素
のイオンが好ましい。 ゼオライトの金属イオン、主としてアルカリ金
属イオンをこれら遷移金属イオンで置換する方法
はすでに知られており、従来教示の方法によつて
行うことができる。例えば、水洗や焼成などの前
処理を施したゼオライト又は前処理を施さないゼ
オライトを、遷移金属イオンを有する化合物の水
溶液に浸漬して加熱する。該水溶液を取り替えて
何回か同様の操作を繰り返した後、蒸留水で洗浄
し、乾燥、焼成すればよい。遷移金属イオンによ
る交換率は任意であるが、通常10ないし100%、
とくに20ないし100%程度が好ましい。 遷移金属イオンでイオン交換されたゼオライト
で精製される溶媒は、炭化水素からなるオレフイ
ン重合溶媒である。このようなオレフイン重合溶
媒としては、例えばブタン、ペンタン、ヘキサ
ン、ヘブタン、オクタン、デカン、ドデカン、灯
油のような脂肪族炭化水素、シクロペタン、メチ
ルシクロペタン、シクロヘキサン、メチルシクロ
ヘキサンなどの脂肪族炭化水素、ベンゼン、トル
エン、キシレンのような芳香族炭化水素などを使
用することができる。またオレフイン重合に一度
又は繰り返し使用されたものを、オレフイン重合
に再使用する場合に処理するととくに効果的であ
る。オレフイン重合は例えばチーグラー型触媒、
フイリツプス型触媒などを用いて行われたもので
ある。より具体的にはチタン化合物、例えば三塩
化チタン、四塩化チタン、マグネシウム化合物に
担持されたチタン化合物など;バナジウム化合
物、例えば四塩化バナジウム、オキシシ塩化バナ
ジウム、バナジウムアルコキシハライドなど;の
ような遷移金属化合物と有機アルミニウム化合
物、例えばトリアルキルアルミニウム、アルキル
アルミニウハライドなどを用いてオレフインの重
合に用いる溶媒、あるいは該触媒を用いてオレフ
インの重合に用いた溶媒に適用することができ
る。重合に使用した溶媒に適用する場合、重合液
にアルコール等の触媒分解剤を加えたり、また水
蒸気蒸留、水洗、アルカリ洗浄、脱水、蒸留など
の任意の操作を施して回収される溶媒に適用する
ことができる。このようなオレフイン重合の例と
してはエチレン、プロピレン、1―ブテン、1―
ペンテン、1―ヘキセン、1―オクテン、1―デ
セン、4―メチル―1―ペンテンなどの重合又は
共重合、これらオレフインとポリエン、例えばブ
タジエン、イソプレン、ピペリレン、1,4―ヘ
キサジエン、5―エチリデン―2―ノルボネン、
5―ビニル―2―ノルボルネン、ジシクロペンタ
ジエンなどとの共重合などを例示することができ
る。 本発明においては前述したような重合溶媒か
ら、オレフイン重合に悪影響を及ぼす不純物を除
去する為に利用できるばかりでなく、前述したよ
うな炭化水素、その他の炭化水素油中に含まれる
―SO3H、―COOH、―OH、―NH2、―SH、―
CHO、―C=O、―COOR、―S―、―O―、
ハロゲン、不飽和結合等の官能基を有する特定の
化合物を除去する目的にも利用することができ
る。 遷移金属イオンでイオン交換したゼオライトで
溶媒を処理するには、単に両者を接触させればよ
い。該ゼオライトは粉末状、フレーク状、粒状な
ど種々の形態で使用することができる。例えば回
分式により溶媒中に該ゼオライトを懸濁させ接触
させる方法、該ゼオライトを充填した充填層に溶
媒を連続的に通過させる連続処理法などを採用す
ることができる。溶媒と該ゼオライトとの接触温
度は任意であるが、通常は−50ないし150℃程度
であることが好ましい。また接触時間は担持した
金属の種類、量、ゼオライトの収用量、溶媒中の
不純物の種類、量などによつても異なるが、例え
ばゼオライト100gを用いて溶媒1を処理する
場合、一般には0.1秒ないし5時間程度の接触時
間で充分である。 繰り返し使用して該ゼオライトの性能が低下し
て来たときは、窒素ガス等の不活性ガス雰囲気下
あるいは空気中で200ないし600℃程度の温度で加
熱焼成することにより容易に再生することができ
るので再使用可能である。 次に実施例により説明する。 実施例 1 1 重合及び後処理 撹拌翼を備えた15のステンレス製重合器を
用いて連続的にEPDMの重合反応を行つた。
すなわち重合器上部から重合溶媒としてヘキサ
ンを毎時5の速度で連続的に供給する。一方
重合器下部から重合器中の重合液が常に5に
なるように連続的に重合液を抜き出す。触媒と
してバナジウムオキシトリクロリドを重合器中
の濃度が0.3mmol/となるようにエチルアル
ミニウムセスキクロリドを重合器中の濃度が
2.4mmol/となるようにそれぞれ重合器上部
から重合器中に連続的に供給した。又重合器上
部からエチレン、プロピレン、水素の混合ガス
(エチレン34モル%、プロピレン56モル%、水
素10モル%)を毎時500Nの速度で、ジシク
ロペンタジエンを重合器中の濃度が4.3g/
となるように供給する。共重合反応は重合器外
部にとりつけられたジヤケツトに温水を循環さ
せることにより35℃で行つた。抜き出した重合
液は後処理系に送り連続的に処理しEPDMを
得た。すなわち脱モノマー塔で重合液中の未反
応のモノマーガスを除去した後重合液1に対
しメタノールを加え触媒を失活させた。次にこ
の重合液をスチームストリツピング処理し重合
液1当り52gの割合でEPDMを得た。すな
わちバナジウム触媒1ミリモル当りの重合体収
量は173gであつた。又、重合体の物性はエチ
レン含量70.2モル%、沃素価8.6、ムーニー粘
度(ML1+4 100℃)46であつた。 2 溶媒の回収 スチームストリツピングで重合体と分離され
た溶媒は連続的に溶媒回収工程に送り回収し
た。すなわち静置ドラムで水層と油層に分離し
油層部を連続的に抜き出し、蒸留塔で低沸点成
分と高沸点成分を除去しヘキサン留分を得た。 3 回収ヘキサンでの重合 前記の操作により回収したヘキサンをモノキ
ユーシーブ4Aで脱水した後再使用すると重合
活性が低下した。すなわち循環使用開始時と同
一の重合条件における重合収量はバナジウム1
ミリモル当り83gであり、エチレン含量79.1モ
ル%、沃素価17.1、ムーニー粘度103であつた。 4 溶媒精製用ゼオライトの合成 ユニオンカーバイド社製Y型ゼオライト
(SK―40)のナトリウムイオンを第1鉄イオン
で交換し溶媒精製用ゼオライトを合成した。す
なわち窒素置換した蒸留水に塩化第1鉄を溶解
させ20%の塩化第1鉄水溶液を調製した。 窒素雰囲気下、SK―40100gに塩化第1鉄水
溶液1の割で加え60℃で3時間反応を行つ
た。 塩化第1鉄水溶液を新しいものに変え同様の
操作を更に2回くり返した。 最後に窒素置換した蒸留水でゼオライトを洗
浄し窒素雰囲気下500℃で3時間焼成した。 鉄の交換率はナトリウム基準で70.0%であつ
た。 5 溶媒の精製 回収したヘキサン50に対し上記の溶媒精製
用ゼオライトを100gの割合で加え窒素雰囲気
下1日浸漬した。 6 精製ヘキサンでの重合 上記の精製ヘキサンを溶媒として用い前記条
件でEPDMの重合を行つた。 重合体収量はバナジウム1ミリモル当り177
g又重合体の物性はエチレン含量70.5モル%、
沃素価8.5、ムーニー粘度44であり重合活性及
び重合体の物性とも循環使用前のヘキサンと同
等であつた。 これはヘキサンが完全に精製されたことを示
している。 実施例 2〜4 実施例1においてY型ゼオライトを用いる代り
に5A、10X、13X型ゼオライトを用いる以外は同
様の操作をくり返した。 結果を表1に示す。
The present invention relates to a method for purifying an olefin polymerization solvent. More specifically, the present invention relates to a method suitable for removing impurities that adversely affect olefin polymerization from a polymerization solvent. Many methods are known for polymerizing olefins in the presence of catalysts and solvents. The solvent recovered by separating the olefin polymer from the polymerization solution or decomposing the catalyst is often used again in the polymerization. However, even when olefin polymerization is performed using such a solvent that has been used once for polymerization, the expected polymerization activity may not be obtained. These include by-products during polymerization, catalyst decomposition products, reagents used for catalyst decomposition, such as alcohols, carboxylic acids, chelate compounds, etc., and products resulting from oxidation and thermal deterioration of solvents during polymerization and post-treatment. This is assumed to be due to the inclusion of various impurities. These impurities can be removed to some extent by combining various purification methods such as washing with water, distillation, and dehydration. Therefore, depending on the degree of purification, even if the solvent is reused, there will be no significant decrease in polymerization activity. It can be prevented. However, this level is not sufficient, and with repeated use, the polymerization activity eventually decreases to an unsatisfactory level. In recent years, there has been remarkable progress in high activation technology for polymerization catalysts, but while these highly active catalysts have the great advantage of being able to be used in very small quantities, they are particularly susceptible to The influence of impurities is likely to be large, and the above-mentioned disadvantages in solvent reuse are likely to occur. A decrease in polymerization activity due to the influence of impurities not only impairs the advantages of highly active catalysts and increases catalyst consumption, but also causes changes in the composition and molecular weight of the polymer, making it difficult to control product quality. It is to make it. Therefore, it has been desired to further remove trace amounts of polymerization-inhibiting impurities that could not be completely removed by conventional purification methods. Therefore, the inventors of the present invention conducted intensive studies to solve such problems, and found that
We have discovered a very effective method for purifying olefin polymerization solvents. That is, according to the present invention, there is provided a method for purifying a solvent, which comprises treating an olefin polymerization solvent consisting of a hydrocarbon with a zeolite ion-exchanged with transition metal ions. It is already known to use zeolites for the purpose of dehydration in solvents or for the purpose of removing alkyl halides in solvents (for example, JP-A-51-20791). However, even with this conventional purification method using zeolite treatment,
Although the effect of preventing a decrease in the activity of olefin polymerization is not sufficient, a significant improvement in the purification effect is observed by replacing the metal ions of zeolite with transition metal ions. In the present invention, zeolite ion-exchanged with transition metal ions is used as a solvent treatment agent. Zeolites used for ion exchange include, for example, molecular sieves 3A, 4A, and 5.
Zeolite known by trade names such as A, 10X, 13X, etc., synthetic zeolite such as Y-type zeolite,
Examples include natural zeolites such as borosite, siabasite, and mordenite. The transition metal ions to be ion-exchanged with these zeolites include titanium, vanadium, chromium,
Manganese, iron, cobalt, nickel, copper, zinc,
Yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, cadmium, lanthanum, cerium, neodymium, promethium, samarium, coropium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, actinium, thorium, Examples include ions such as uranium. Among these, ions of elements or rare earth elements belonging to the fourth period or group 8 of the periodic table are particularly preferred, particularly ions of elements of the fourth period of the periodic table or rare earth elements. Methods for replacing metal ions, mainly alkali metal ions, in zeolites with these transition metal ions are already known and can be carried out by conventionally taught methods. For example, zeolite that has been pretreated such as washing with water or calcined, or zeolite that has not been pretreated is immersed in an aqueous solution of a compound containing transition metal ions and heated. After replacing the aqueous solution and repeating the same operation several times, the product may be washed with distilled water, dried, and fired. The exchange rate with transition metal ions is arbitrary, but usually 10 to 100%,
In particular, about 20 to 100% is preferable. The solvent purified with zeolite ion-exchanged with transition metal ions is an olefin polymerization solvent consisting of hydrocarbons. Such olefin polymerization solvents include, for example, aliphatic hydrocarbons such as butane, pentane, hexane, hebutane, octane, decane, dodecane, and kerosene; aliphatic hydrocarbons such as cyclopetane, methylcyclopetane, cyclohexane, and methylcyclohexane; Aromatic hydrocarbons such as benzene, toluene, xylene, etc. can be used. Furthermore, it is particularly effective to treat materials that have been used once or repeatedly in olefin polymerization when they are to be reused in olefin polymerization. Olefin polymerization is carried out using, for example, Ziegler-type catalysts.
This was done using a Phillips-type catalyst. More specifically, transition metal compounds such as titanium compounds, such as titanium trichloride, titanium tetrachloride, titanium compounds supported on magnesium compounds, etc.; vanadium compounds, such as vanadium tetrachloride, vanadium oxychloride, vanadium alkoxyhalides, etc. It can be applied to a solvent used in the polymerization of an olefin using an organic aluminum compound such as a trialkylaluminium, an alkylaluminium halide, etc., or a solvent used in the polymerization of an olefin using the catalyst. When applied to the solvent used in polymerization, it is applied to the solvent recovered by adding a catalytic decomposition agent such as alcohol to the polymerization solution, or by performing arbitrary operations such as steam distillation, water washing, alkaline washing, dehydration, distillation, etc. be able to. Examples of such olefin polymerization include ethylene, propylene, 1-butene, 1-
Polymerization or copolymerization of pentene, 1-hexene, 1-octene, 1-decene, 4-methyl-1-pentene, etc., and polyenes with these olefins, such as butadiene, isoprene, piperylene, 1,4-hexadiene, 5-ethylidene. 2-Norbonene,
Examples include copolymerization with 5-vinyl-2-norbornene, dicyclopentadiene, and the like. In the present invention, it can be used not only to remove impurities that adversely affect olefin polymerization from the above-mentioned polymerization solvent, but also to remove -SO 3 H contained in the above-mentioned hydrocarbons and other hydrocarbon oils. , ―COOH, ―OH, ―NH 2 , ―SH, ―
CHO, -C=O, -COOR, -S-, -O-,
It can also be used for the purpose of removing specific compounds having functional groups such as halogens and unsaturated bonds. To treat a solvent with a zeolite ion-exchanged with transition metal ions, it is sufficient to simply bring the two into contact. The zeolite can be used in various forms such as powder, flakes, and granules. For example, a method of suspending and contacting the zeolite in a solvent in a batch manner, a continuous treatment method of continuously passing a solvent through a packed bed filled with the zeolite, etc. can be employed. The contact temperature between the solvent and the zeolite is arbitrary, but it is usually preferably about -50 to 150°C. The contact time also varies depending on the type and amount of supported metal, the yield of zeolite, the type and amount of impurities in the solvent, etc., but for example, when treating solvent 1 with 100 g of zeolite, it is generally 0.1 seconds. A contact time of about 5 to 5 hours is sufficient. If the performance of the zeolite deteriorates after repeated use, it can be easily regenerated by heating and firing it at a temperature of about 200 to 600°C in an atmosphere of an inert gas such as nitrogen gas or in the air. So it is reusable. Next, an example will be explained. Example 1 1 Polymerization and Post-Treatment EPDM polymerization reaction was carried out continuously using 15 stainless steel polymerization vessels equipped with stirring blades.
That is, hexane is continuously supplied as a polymerization solvent from the top of the polymerization vessel at a rate of 5 per hour. On the other hand, the polymerization liquid is continuously drawn out from the lower part of the polymerization vessel so that the polymerization liquid in the polymerization vessel is always 5%. The concentration of vanadium oxytrichloride as a catalyst in the polymerization vessel was 0.3 mmol/, and the concentration of ethylaluminum sesquichloride in the polymerization vessel was 0.3 mmol/.
Each was continuously fed into the polymerization vessel from the top of the vessel at a concentration of 2.4 mmol/each. In addition, a mixed gas of ethylene, propylene, and hydrogen (34 mol% ethylene, 56 mol% propylene, 10 mol% hydrogen) was supplied from the top of the polymerization vessel at a rate of 500 N/hour, and dicyclopentadiene was added to the polymerization vessel at a concentration of 4.3 g/hour.
Supply so that The copolymerization reaction was carried out at 35°C by circulating hot water through a jacket attached to the outside of the polymerization vessel. The extracted polymerization liquid was sent to a post-treatment system and continuously treated to obtain EPDM. That is, after removing unreacted monomer gas from the polymerization solution in a demonomer tower, methanol was added to the polymerization solution 1 to deactivate the catalyst. Next, this polymerization solution was subjected to a steam stripping treatment to obtain EPDM at a rate of 52 g per polymerization solution. That is, the polymer yield per 1 mmol of vanadium catalyst was 173 g. The physical properties of the polymer were as follows: ethylene content: 70.2 mol%, iodine number: 8.6, Mooney viscosity (ML1+4, 100°C): 46. 2 Recovery of Solvent The solvent separated from the polymer by steam stripping was continuously sent to a solvent recovery step and recovered. That is, the mixture was separated into an aqueous layer and an oil layer in a stationary drum, the oil layer was continuously extracted, and a hexane fraction was obtained by removing low-boiling components and high-boiling components in a distillation column. 3 Polymerization using recovered hexane When the hexane recovered by the above operation was dehydrated with Monocube Sieve 4A and then reused, the polymerization activity decreased. In other words, the polymerization yield under the same polymerization conditions as at the start of recycled use is 1 vanadium.
The amount was 83 g per mmol, the ethylene content was 79.1 mol%, the iodine number was 17.1, and the Mooney viscosity was 103. 4 Synthesis of zeolite for solvent purification A zeolite for solvent purification was synthesized by exchanging the sodium ions of Union Carbide Y-type zeolite (SK-40) with ferrous ions. That is, ferrous chloride was dissolved in nitrogen-substituted distilled water to prepare a 20% ferrous chloride aqueous solution. Under a nitrogen atmosphere, 1 part ferrous chloride aqueous solution was added to 100 g of SK-40, and the reaction was carried out at 60°C for 3 hours. The ferrous chloride aqueous solution was replaced with a new one and the same operation was repeated two more times. Finally, the zeolite was washed with nitrogen-substituted distilled water and calcined at 500°C for 3 hours in a nitrogen atmosphere. The exchange rate of iron was 70.0% on a sodium basis. 5 Purification of Solvent 100 g of the above zeolite for solvent purification was added to 50 g of recovered hexane and immersed in a nitrogen atmosphere for one day. 6 Polymerization with Purified Hexane EPDM was polymerized under the conditions described above using the purified hexane described above as a solvent. Polymer yield is 177/mmol vanadium
The physical properties of the g-polymer are as follows: ethylene content: 70.5 mol%;
The iodine value was 8.5 and the Mooney viscosity was 44, and both the polymerization activity and the physical properties of the polymer were equivalent to those of hexane before recycling. This indicates that the hexane was completely purified. Examples 2 to 4 The same operations as in Example 1 were repeated except that 5A, 10X, and 13X type zeolites were used instead of Y type zeolite. The results are shown in Table 1.

【表】 比較例 1〜4 ここでは本発明と比較する為鉄イオンで交換す
る前のゼオライトは溶媒精製に有効でないことを
示す。 実施例1において鉄イオンで交換したゼオライ
トを用いる代りに鉄イオン交換する前のゼオライ
ト(SK―40、5A、10X、13X)を用いる以外は
同様の操作を行つた。 結果を表2に示す。
[Table] Comparative Examples 1 to 4 Here, for comparison with the present invention, it is shown that zeolite before exchange with iron ions is not effective for solvent purification. The same operation as in Example 1 was performed except that instead of using zeolite exchanged with iron ions, zeolites (SK-40, 5A, 10X, 13X) before iron ion exchange were used. The results are shown in Table 2.

【表】 実施例 5〜9 実施例1においてFeCl2を用いる代りに各種の
還移金属化合物を用いる以外は同様の操作をくり
返した。 結果を表3に示す。
[Table] Examples 5 to 9 The same operations as in Example 1 were repeated except that various reduction metal compounds were used instead of FeCl 2 . The results are shown in Table 3.

【表】【table】

【表】 実施例 19 実施例1において溶媒精製用ゼオライトとして
鉄を担持したY型ゼオライトを用いる代りにセシ
ウムとランタンを担持したユニオンカーバイド社
製Y型ゼオライト(SK―500)を用いる以外は同
様の操作をくり返した。 重合体収量は159g/mmolV、重合体のエチレ
ン含量73.9モル%、沃素価9.5、ムーニー粘度54
であつた。 実施例 20 ここではポリプロピレンの重合溶媒の精製の例
について示す。 1 触媒調製 20gの無水塩化マグネシウム、4.6mlの安息
香酸エチル及び3.0mlのメチルポリシロキサン
(粘度20c.s.(25℃)を窒素雰囲気下、直径15mm
のステンレス(SUS―32)製ボール2.8Kgを収
容した内容積800ml、内直径100mmのステンレス
(SUS―32)製ボールミル円筒に装入し衝撃の
加速度7.8Gで100時間接触させる。得られた固
体処理物10gを四塩化チタン100ml中に懸濁さ
せ、80℃で2時間撹拌下に接触後、固体成分を
過により採取し、洗液中に遊離の四塩化チタ
ンが検出されなくなるまでヘキサンで洗浄後、
乾燥し、チタン含有固体成分(a)を得た。 2 重合及び後処理 撹拌翼を備えた15のステンレス製重合器を
用いて連続的にポリプロピレンのスラリー重合
を行つた。 すなわち重合器上部から重合溶媒としてヘキ
サンを毎時5の速度で連続的に重合液が常に
5になるように連続的に重合液を抜き出す。
触媒として前記複合体(a)を重合器中のチタン濃
度が1.0mmol/となるように又触媒第3成分
としてP―トルイル酸メチルを重合器中の濃度
が0.33mmol/となるようにそれぞれ重合器
中部から重合器中に連続的に供給した。 又、重合器上部からプロピレンを毎時3.1Kg、
水素を毎時8.3Nの速度で供給した。 反応は重合器外部にとり付けられたジヤケツ
トに温水を循環させることにより70℃で行つ
た。抜き出した重合液は後処理系に送り連続的
に以下の処理を行い重合体を採取した。 すなわち重合液中のモノマー塔で除去した後
デカンターによりスラリーと溶媒とに分離し
た。 ヘキサン1当り310gの割合で重合体を得
た。すなわちチタン触媒1ミリモル当りの重合
体収量は15500gであつた。又JISK―6760に準
じて230℃で測定したメルトインデツクス(MI
230℃ )は10.2であつた。 3 溶媒の回収 スラリーと分離した母液を蒸留塔に供給し低
沸点成分と高沸点成分を除去しヘキサン留分を
回収した。 4 回収ヘキサンでの重合 前記の操作により回収したヘキサンをモレキ
ユラーシーブ4Aで脱水し再使用すると重合活
性が低下した。 すなわち使用開始時と同一の重合条件では重
合体収量は5000g/ミリモルチタンであつた。 5 溶媒の精製 実施例1と同様にして溶媒精製用ゼオライト
を用いてヘキサンを精製した。 6 精製ヘキサンでの重合 上記の精製ヘキサンを溶媒として前記の条件
でポリプロピレンの重合を行つた。 重合体収量は15300g/ミリモルチタンであ
つた。又、MI230℃ は10.5であり、重合活性及
びメルトインデツクスとも循環使用前のヘキサ
ンと同等であつた。 これはヘキサンが完全に精製されたことを示
している。 実施例 21 ここではチーグラー系触媒を用いたポリエチレ
ンの重合溶媒の精製の例について示す。 1 触媒の調製 窒素雰囲気下で市販の無水塩化マグネシウム
2モルを脱水精製したヘキサン4に懸濁させ
撹拌しながらエタノール12モルを2時間かけて
滴下後70℃で1時間反応を行つた。 これに5.85モルのジエチルアルミニウムクロ
リドを室温で滴下し2時間撹拌した。 続いて四塩化チタン3モルを滴下し2時間室
温で反応を行つた。 反応終了後生成した固体部をくり返しヘキサ
ンで洗浄しチタン含有固体成分(b)を得た。 2 重合及び後処理 実施例20において触媒として複合体(a)、トリ
エチルアルミニウム、P―トルイル酸メチルを
モノマーとしてプロピレンを用いる代りに触媒
として上記複合体(b)を重合器中のチタン濃度が
0.02ミリモル/となるようにトリエチルアル
ミニウムを重合器中の濃度が1.0ミリモル/
となるように又モノマーとしてエチレンを毎時
1.5Kg水素を毎時18Nの速度で供給する以外
は同様の操作を行つた。 結果を表4に示す。
[Table] Example 19 Same procedure as in Example 1 except that instead of using iron-supported Y-type zeolite as the zeolite for solvent purification, Union Carbide's Y-type zeolite (SK-500) supporting cesium and lanthanum was used. The operation was repeated. The polymer yield was 159 g/mmolV, the ethylene content of the polymer was 73.9 mol%, the iodine number was 9.5, and the Mooney viscosity was 54.
It was hot. Example 20 Here, an example of purification of a polypropylene polymerization solvent will be shown. 1 Catalyst preparation 20 g of anhydrous magnesium chloride, 4.6 ml of ethyl benzoate and 3.0 ml of methylpolysiloxane (viscosity 20 c.s. (25°C) were mixed in a nitrogen atmosphere with a diameter of 15 mm.
The balls were placed in a stainless steel (SUS-32) ball mill cylinder with an internal volume of 800 ml and an inner diameter of 100 mm containing 2.8 kg of stainless steel (SUS-32) balls and left in contact for 100 hours at an impact acceleration of 7.8 G. 10 g of the obtained solid treated product was suspended in 100 ml of titanium tetrachloride, and after contact at 80°C for 2 hours with stirring, the solid component was collected by filtration, and free titanium tetrachloride was no longer detected in the washing liquid. After washing with hexane until
It was dried to obtain a titanium-containing solid component (a). 2 Polymerization and Post-Treatment Slurry polymerization of polypropylene was carried out continuously using 15 stainless steel polymerization vessels equipped with stirring blades. That is, hexane as a polymerization solvent is continuously drawn out from the top of the polymerization vessel at a rate of 5 ml/hour so that the polymerization liquid is always 5 ml/hour.
The composite (a) as a catalyst was polymerized so that the concentration of titanium in the polymerization vessel was 1.0 mmol/, and the third component of the catalyst was methyl P-toluate so that the concentration in the polymerization vessel was 0.33 mmol/. It was continuously fed into the polymerization vessel from the middle of the vessel. In addition, 3.1 kg of propylene is supplied per hour from the top of the polymerization vessel.
Hydrogen was supplied at a rate of 8.3N per hour. The reaction was carried out at 70°C by circulating hot water through a jacket attached to the outside of the polymerization vessel. The extracted polymer solution was sent to a post-treatment system and continuously subjected to the following treatment to collect a polymer. That is, the monomer in the polymerization solution was removed in a tower and then separated into a slurry and a solvent in a decanter. A polymer was obtained at a ratio of 310 g per hexane. That is, the polymer yield per 1 mmol of titanium catalyst was 15,500 g. In addition, the melt index (MI
230℃) was 10.2. 3 Recovery of solvent The mother liquor separated from the slurry was supplied to a distillation column, low boiling point components and high boiling point components were removed, and a hexane fraction was recovered. 4 Polymerization using recovered hexane When the hexane recovered by the above operation was dehydrated with Molecular Sieve 4A and reused, the polymerization activity decreased. That is, under the same polymerization conditions as at the beginning of use, the polymer yield was 5000 g/mmol titanium. 5 Purification of Solvent Hexane was purified in the same manner as in Example 1 using zeolite for solvent purification. 6 Polymerization with Purified Hexane Polypropylene was polymerized under the conditions described above using the purified hexane described above as a solvent. Polymer yield was 15,300 g/mmol titanium. Moreover, MI230°C was 10.5, and both the polymerization activity and melt index were equivalent to that of hexane before recycling. This indicates that the hexane was completely purified. Example 21 Here, an example of purification of a polyethylene polymerization solvent using a Ziegler catalyst will be described. 1 Preparation of Catalyst 2 moles of commercially available anhydrous magnesium chloride were suspended in dehydrated and purified hexane 4 under a nitrogen atmosphere, and 12 moles of ethanol was added dropwise over 2 hours with stirring, followed by reaction at 70°C for 1 hour. To this was added dropwise 5.85 mol of diethylaluminum chloride at room temperature, and the mixture was stirred for 2 hours. Subsequently, 3 mol of titanium tetrachloride was added dropwise, and the reaction was carried out at room temperature for 2 hours. After the reaction was completed, the solid portion produced was washed repeatedly with hexane to obtain a titanium-containing solid component (b). 2 Polymerization and post-treatment In Example 20, instead of using the composite (a), triethylaluminum, and methyl P-toluate as the catalyst and propylene as the monomer, the above composite (b) was used as the catalyst, and the titanium concentration in the polymerization vessel was increased.
The concentration of triethylaluminum in the polymerization vessel was 1.0 mmol/0.02 mmol/
Also, ethylene as a monomer is added per hour so that
A similar operation was performed except that 1.5Kg hydrogen was supplied at a rate of 18N/hour. The results are shown in Table 4.

【表】【table】

Claims (1)

【特許請求の範囲】 1 炭素水素からなるオレフイン重合溶媒を、遷
移金属イオンでイオン交換したゼオライト下で処
理することを特徴とする溶媒の精製方法。 2 オレフイン重合溶媒が、遷移金属化合物触媒
を用いるオレフイン重合に使用した重合溶媒であ
る特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. A method for purifying a solvent, which comprises treating an olefin polymerization solvent consisting of carbon and hydrogen under zeolite ion-exchanged with transition metal ions. 2. The method according to claim 1, wherein the olefin polymerization solvent is a polymerization solvent used in olefin polymerization using a transition metal compound catalyst.
JP5864579A 1979-05-15 1979-05-15 Purification of solvent Granted JPS55151003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5864579A JPS55151003A (en) 1979-05-15 1979-05-15 Purification of solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5864579A JPS55151003A (en) 1979-05-15 1979-05-15 Purification of solvent

Publications (2)

Publication Number Publication Date
JPS55151003A JPS55151003A (en) 1980-11-25
JPH0158202B2 true JPH0158202B2 (en) 1989-12-11

Family

ID=13090313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5864579A Granted JPS55151003A (en) 1979-05-15 1979-05-15 Purification of solvent

Country Status (1)

Country Link
JP (1) JPS55151003A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3671253B2 (en) * 1995-07-03 2005-07-13 昭和電工株式会社 Method for producing polyolefin

Also Published As

Publication number Publication date
JPS55151003A (en) 1980-11-25

Similar Documents

Publication Publication Date Title
EP1070694B1 (en) Process for the alkylation of isoparaffins with olefins
US4277313A (en) Recovery of 1,3-butadiene
GB2144146A (en) Process for the recovery of butene-1
US6271428B1 (en) Process for the purification of a diolefin hydrocarbon stream
KR100643513B1 (en) Solvent hydrogenation and reuse method in polyolefin polymerization
KR20170095231A (en) Process for the preparation of cis-2,2,4,4-tetramethylcyclobutane-1,3-diol
EP1778399B1 (en) Improved cocatalyst for the production of linear alpha-olefins
JPH0323566B2 (en)
JPH0158202B2 (en)
JP2613648B2 (en) Method for Isomerizing Butene-1 to Butene-2 in Isobutylene
JP2002256007A (en) METHOD FOR PRODUCING alpha-OLEFIN OLIGOMER
JPS6126561B2 (en)
JPH0456012B2 (en)
US2717888A (en) Nickel oxide and alkali hydride catalyst for ethylene polymerization
JPS639496B2 (en)
CN106046255B (en) The production system and method for coumarone indene resin
KR101478398B1 (en) Catalyst for selective hydrogenation of acetylene compounds in 1,3-butadiene, method for producing the same and method of using the same
SU446127A3 (en) A method of processing asphalt-containing hydrocarbon raw materials
US3173904A (en) Preparation of solid olefin polymers
US3111547A (en) Manufacture of isoprene
SU943245A1 (en) Process for producing polyethylene
JPS63314209A (en) Method for purification of solvent for use in polymerization of olefin
US2880200A (en) Catalytic process
US3383378A (en) Polymerization of ethylene
SU979312A1 (en) Process for producing vinyl acetate