JPH0533100A - Production of alloy series sintered body - Google Patents

Production of alloy series sintered body

Info

Publication number
JPH0533100A
JPH0533100A JP18666991A JP18666991A JPH0533100A JP H0533100 A JPH0533100 A JP H0533100A JP 18666991 A JP18666991 A JP 18666991A JP 18666991 A JP18666991 A JP 18666991A JP H0533100 A JPH0533100 A JP H0533100A
Authority
JP
Japan
Prior art keywords
alloy
sintered body
alloy powder
powder
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18666991A
Other languages
Japanese (ja)
Other versions
JPH0826430B2 (en
Inventor
Shuji Yamada
修司 山田
Tadashi Hamada
糾 濱田
Junji Imai
順二 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP18666991A priority Critical patent/JPH0826430B2/en
Publication of JPH0533100A publication Critical patent/JPH0533100A/en
Publication of JPH0826430B2 publication Critical patent/JPH0826430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily obtain an alloy series sintered body, e.g. as mechanism parts sufficiently coated with an alumina layer having good adhesion in spite of the shape of the parts and excellent in mechanical properties such as toughness and hardness with good dimensional accuracy. CONSTITUTION:A green compact obtd. by compacting mixed powder of, by weight, 70 to 90% Fe-Cr-Ni-Al alloy powder and the balance Fe-Cr-Al alloy powder into a prescribed shape is sintered in a nonoxidizing atmosphere and is thereafter subjected to heat treatment in an oxidizing atmosphere to precipitate alumina components on the surface, by which the alloy sintered body is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、合金系焼結体の製造
方法に関し、具体的には、高硬度・高強度で靱性のある
母材で出来ており、表面が緻密でかつ密着性に優れた均
一な酸化アルミニウム(以下、適宜「アルミナ」と言
う)で覆われた高強度・高耐磨耗性の機構部品(例え
ば、電動工具のチャック、回転軸、ギヤ、カムなど)等
としての合金系焼結体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alloy-based sintered body, and specifically, it is made of a base material having high hardness, high strength and toughness, and has a dense surface and excellent adhesion. As a high-strength, high-wear-resistant mechanical part (for example, chuck of electric tools, rotary shaft, gear, cam, etc.) covered with excellent uniform aluminum oxide (hereinafter referred to as "alumina" as appropriate) The present invention relates to a method for manufacturing an alloy-based sintered body.

【0002】[0002]

【従来の技術】電動工具のチャック、回転軸、ギヤ、カ
ム等のような機構部品やバリカンの刃などの場合、表面
に酸化物や窒化物、炭化物などの高硬度材をコーティン
グすることにより、耐磨耗性、耐食性を向上させること
が知られている。コーティングは、溶射法、スパッタリ
ング法などの方法でなされる。
In the case of mechanical parts such as chucks of electric tools, rotary shafts, gears, cams, and blades of hair clippers, by coating the surface with a high hardness material such as oxide, nitride, or carbide, It is known to improve wear resistance and corrosion resistance. The coating is performed by a method such as a thermal spraying method or a sputtering method.

【0003】しかしながら、溶射法によるコーティング
の場合には、コーティング層厚みの細かい制御が難し
く、しかも、密着性が十分ではなく、さらに、母材に高
熱がかかるなど小さな部品への適用は困難であるという
欠点がある。また、スパッタリングによるコーティング
の場合には、必要な被覆厚みを確保することが難しい。
それに、複雑な形状の場合には全体に均一にコーティン
グを施すことが難しいし、一方、平面性の強い形状の場
合には膜の密着性が良くないという問題もある。密着性
を改善しようとすれば、表面粗化、アンダーコート層形
成等の面倒な処理をしなければならない。
However, in the case of coating by the thermal spraying method, it is difficult to finely control the thickness of the coating layer, the adhesion is not sufficient, and it is difficult to apply it to small parts such as high heat applied to the base material. There is a drawback that. Further, in the case of coating by sputtering, it is difficult to secure the required coating thickness.
In addition, in the case of a complicated shape, it is difficult to apply the coating uniformly on the whole, and on the other hand, in the case of a shape having a strong flatness, the adhesion of the film is not good. In order to improve the adhesion, it is necessary to perform troublesome processing such as surface roughening and formation of an undercoat layer.

【0004】また、機構部品全体をセラミック焼結体で
形成することもなされている。しかし、バルクのセラミ
ック焼結体を使った機構部品の場合、寸法精度が低い、
靱性が十分でなく割れ易いといった問題がある。
Further, it is also possible to form the entire mechanical component with a ceramic sintered body. However, in the case of mechanical parts using bulk ceramic sintered bodies, the dimensional accuracy is low,
There is a problem that it does not have sufficient toughness and cracks easily.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上記事情
に鑑み、部品形状の如何にかかわらず密着性が良好なア
ルミナ層で十分に覆われ、しかも、靱性、硬度等の機械
的性質に優れた例えば機構部品としての合金系焼結体を
寸法精度良く容易に得ることのできる有用な方法を提供
することを課題とする。
In view of the above circumstances, the present invention is sufficiently covered with an alumina layer having good adhesion regardless of the shape of parts, and is excellent in mechanical properties such as toughness and hardness. Another object of the present invention is to provide a useful method capable of easily obtaining an alloy-based sintered body as a mechanical component with high dimensional accuracy.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するた
め、この発明にかかる合金系焼結体の製造方法では、F
e−Cr−Ni−Al系合金粉末が70〜90wt%、残
りがFe−Cr−Al系合金粉末の混合粉末を所定の形
状に成形した成形体を、非酸化性雰囲気で焼結させた
後、酸化性雰囲気で熱処理することにより表面にアルミ
ナ成分を析出させるようにしている。
In order to solve the above-mentioned problems, in the method for manufacturing an alloy-based sintered body according to the present invention, F
After sintering a mixed powder of e-Cr-Ni-Al alloy powder of 70 to 90 wt% and the balance of Fe-Cr-Al alloy powder into a predetermined shape, after sintering in a non-oxidizing atmosphere The alumina component is deposited on the surface by heat treatment in an oxidizing atmosphere.

【0007】以下、この発明を具体的に説明する。ま
ず、Fe−Cr−Ni−Al系合金粉末およびFe−C
r−Al系合金粉末をそれぞれ作製する。Fe−Cr−
Ni−Al系合金粉末は、請求項2のように、Cr:2
5〜40wt%、Ni:15〜25wt%、Al:4〜8wt
%、Zr,Hf,Ce,La,Nd,Gdのうちいずれ
か1種又は2種以上:0.05〜1.0wt%、Y:0〜
0.2wt%(好ましくは0.1wt%以下)、Fe:残部
からなる組成のものが適切である。Fe−Cr−Al系
合金粉末も、請求項2のように、Cr:15〜20wt
%、Al:2〜4wt%、Zr,Hf,Ce,La,N
d,Gdのうちいずれか1種又は2種以上:0.05〜
1.0wt%、Y:0〜0.2wt%(好ましくは0.1wt
%以下)、Fe:残部からなる組成のものが適切であ
る。
The present invention will be described in detail below. First, Fe-Cr-Ni-Al alloy powder and Fe-C
r-Al alloy powders are prepared. Fe-Cr-
The Ni-Al-based alloy powder has a Cr: 2 content as defined in claim 2.
5-40 wt%, Ni: 15-25 wt%, Al: 4-8 wt%
%, Any one or more of Zr, Hf, Ce, La, Nd, and Gd: 0.05 to 1.0 wt%, Y: 0
A composition of 0.2 wt% (preferably 0.1 wt% or less) and Fe: balance is suitable. The Fe-Cr-Al-based alloy powder also has a Cr content of 15 to 20 wt.
%, Al: 2 to 4 wt%, Zr, Hf, Ce, La, N
Any one or more of d and Gd: 0.05 to
1.0 wt%, Y: 0 to 0.2 wt% (preferably 0.1 wt%
% Or less), and Fe: the composition of the balance is suitable.

【0008】例えば、原料金属を上記組成となる割合で
高周波炉で溶解しアトマイズ法により粉末化しそれぞれ
の合金粉末を作製する。このようにして得た2種類の合
金粉末を混合機で混合し、さらにバインダー(例えば、
PVA)を添加混合して、例えば、加圧成形により成形
する。バインダーは2種類の合金粉末を混合する際に添
加するようにしてもよい。Fe−Cr−Ni−Al系合
金粉末とFe−Cr−Al系合金粉末の混合割合は、前
者70〜90wt%で後者30〜10wt%、さらには、前
者70〜80wt%で後者30〜20wt%の範囲に設定さ
れる。
For example, the raw material metals are melted in a high-frequency furnace in a ratio having the above composition and powdered by an atomizing method to produce respective alloy powders. The two kinds of alloy powder thus obtained are mixed by a mixer, and further, a binder (for example,
PVA) is added and mixed, and the mixture is molded by, for example, pressure molding. The binder may be added when mixing the two types of alloy powders. The mixing ratio of the Fe-Cr-Ni-Al-based alloy powder and the Fe-Cr-Al-based alloy powder is 70 to 90 wt% in the former case, 30 to 10 wt% in the latter case, and 70 to 80 wt% in the former case, 30 to 20 wt% in the latter case. It is set to the range of.

【0009】様々な機械部品への利用等を考えると成形
時に適用可能な圧力が低い圧力から高い圧力まで広範囲
であることが好ましいのであるが、この発明の場合、1
00MPa程度の低い圧力も適用でき広い範囲の圧力が
適用可能である。通常、200〜1000MPa程度の
広い範囲から選ばれる。ただ、成形圧力が100MPa
未満だと寸法精度等を十分なものとすることが難しくな
る傾向がみられる。
Considering the use for various machine parts, etc., it is preferable that the pressure applicable during molding is in a wide range from low pressure to high pressure. In the case of the present invention, 1
A low pressure of about 00 MPa can be applied, and a wide range of pressures can be applied. Usually, it is selected from a wide range of about 200 to 1000 MPa. However, the molding pressure is 100 MPa
If it is less than the above range, it tends to be difficult to obtain sufficient dimensional accuracy.

【0010】つぎに、合金粉末の成形体を、非酸化性雰
囲気(不活性ガス雰囲気、還元性ガス雰囲気あるいは真
空雰囲気)において、例えば、1300〜1400℃の
温度で熱処理することにより焼結させる。この熱処理温
度範囲であれば、液相を生じることなく十分な硬度(H
v=300程度)とすることができ、機構部品用として
も十分な強度の母材たりえるものが得られる。
Next, the alloy powder compact is sintered by heat treatment in a non-oxidizing atmosphere (inert gas atmosphere, reducing gas atmosphere or vacuum atmosphere) at a temperature of 1300 to 1400 ° C., for example. Within this heat treatment temperature range, sufficient hardness (H
v = about 300), and a base material having sufficient strength can be obtained even for mechanical parts.

【0011】焼結させた後、アルミナ層(皮膜)形成前
に必要に応じて所定の形状に加工する。アルミナ層形成
前であるから容易に加工できる。セラミック粉末を焼結
したものではなく、前記の合金粉末を焼結したものであ
るから、セラミック粉末を焼結したものの場合のように
欠けたり、割れたりということもない。所定の形状にし
た後、酸化性雰囲気(例えば、大気中や酸化性ガス雰囲
気中)において、例えば、1000℃を超える温度で焼
結体を熱処理する。この熱処理で表面に酸化アルミニウ
ムが析出しアルミナ層付きの合金系焼結体が出来上が
る。
After sintering, if necessary, it is processed into a predetermined shape before forming the alumina layer (coating). Since it is before forming the alumina layer, it can be easily processed. Since it is not the one obtained by sintering the ceramic powder but the one obtained by sintering the above alloy powder, it is not chipped or cracked as in the case where the ceramic powder is sintered. After being formed into a predetermined shape, the sintered body is heat-treated in an oxidizing atmosphere (for example, in the air or an oxidizing gas atmosphere) at a temperature exceeding 1000 ° C., for example. By this heat treatment, aluminum oxide is deposited on the surface and an alloy-based sintered body with an alumina layer is completed.

【0012】2種類の合金粉末のうち一方だけを用いて
も、アルミナ層付き合金系焼結体を得ることはできる
が、以下のような欠点があって実用的ではない。Fe−
Cr−Ni−Al系合金粉末だけを用いた場合の欠点
は、Fe−Cr−Ni−Al系合金粉末の粒子硬度がH
v=400前後と高いことに起因しており、ひとつは、
5トン/cm2 と大きな成形圧力が必要となり大きな制
約を受け製造は容易でなくなるためであり、もうひとつ
は、普通、成形、焼結後に加工が必要である場合が多い
のであるが、母材が硬いくて後加工が困難であるためで
ある。焼結後の後加工が困難な場合、寸法精度よく部品
を作製することは覚束ない。
Although it is possible to obtain an alloy-based sintered body with an alumina layer by using only one of the two types of alloy powders, the following drawbacks are not practical. Fe-
The disadvantage of using only the Cr-Ni-Al alloy powder is that the particle hardness of the Fe-Cr-Ni-Al alloy powder is H.
This is due to the high value of v = 400, and one is
This is because a large molding pressure of 5 ton / cm 2 is required, and it is difficult to manufacture due to a large restriction. Another reason is that it is usually necessary to process after molding and sintering. Is hard and difficult to post-process. If post-processing after sintering is difficult, it is not feasible to manufacture parts with high dimensional accuracy.

【0013】Fe−Cr−Al系合金粉末だけを用いた
場合の欠点は、逆に、Fe−Cr−Al系合金粉末の焼
鈍後の粒子硬度がHv=170程度と柔らかいことに起
因しており、成形圧力や後加工の困難性は解消される
が、十分な母材硬度の確保は難しくて適切な機構部品を
実現することが出来ない。
On the contrary, the disadvantage of using only the Fe-Cr-Al alloy powder is that the particle hardness of the Fe-Cr-Al alloy powder after annealing is as soft as Hv = 170. Although the molding pressure and the difficulty of post-processing are eliminated, it is difficult to secure sufficient base metal hardness and it is not possible to realize an appropriate mechanical component.

【0014】[0014]

【作用】この発明の製造方法による合金系焼結体におい
ては、合金の組成の一つであるAlが酸化性雰囲気での
熱処理により表面層にアルミナ層を形成するのである
が、このアルミナ層が内部を充たす合金の中に根を張っ
た状態で形成され、これが表面層と合金との密着力を大
きくする作用をしており、勿論、表面にHv=2000
程度のアルミナが析出することは表面硬度を高くする作
用をしている。勿論、合金系焼結体の内部を充たす合金
は焼結体の靱性を高くする作用をする。しかも、5〜1
0μm程度の厚みのアルミナ層なら短時間の熱処理で形
成でき、10〜20μmの厚みとすることも十分に可能
であるため、良好な耐磨耗性を容易に確保できるように
なる。
In the alloy-based sintered body according to the manufacturing method of the present invention, Al, which is one of the alloy compositions, forms an alumina layer on the surface layer by heat treatment in an oxidizing atmosphere. It is formed in a state of being rooted in the alloy filling the inside, which has the function of increasing the adhesion between the surface layer and the alloy, and of course Hv = 2000 on the surface.
Precipitation of a certain amount of alumina serves to increase the surface hardness. Of course, the alloy filling the interior of the alloy-based sintered body acts to enhance the toughness of the sintered body. Moreover, 5-1
An alumina layer having a thickness of about 0 μm can be formed by a heat treatment for a short time, and a thickness of 10 to 20 μm can be sufficiently obtained, so that good abrasion resistance can be easily ensured.

【0015】そして、適切量のFe−Cr−Al系合金
粉末の添加により全体としての見かけ上の粉末硬度が和
らげられ、その結果、成形時の圧力が低い圧力から適用
可能で細かな形状の金型成形にも十分に対応できるため
(成形性が向上する)、製造上の制約は少なくなり、し
かも、焼結で生じた変形を切削や研削で簡単に修正でき
るため、寸法精度の良いものが容易に作れるようにな
る。
Then, the apparent powder hardness as a whole is moderated by adding an appropriate amount of the Fe-Cr-Al alloy powder, and as a result, it is possible to apply from a low pressure at the time of molding to a fine metal shape. Since it can also be used for mold forming (improving moldability), there are fewer restrictions on manufacturing, and since the deformation caused by sintering can be easily corrected by cutting or grinding, it is possible to obtain one with good dimensional accuracy. It will be easy to make.

【0016】そして、Fe−Cr−Ni−Al系合金粉
末が主成分として70wt%以上確保されているため、全
体がFe−Cr−Ni−Al系合金粉末である場合に比
べて必要以上に硬度が低下してしまう恐れはない。
Since Fe-Cr-Ni-Al based alloy powder is secured as a main component in an amount of 70 wt% or more, the hardness is more than necessary compared with the case where the whole is Fe-Cr-Ni-Al based alloy powder. There is no fear that it will decrease.

【0017】[0017]

【実施例】以下、この発明の実施例を説明する。勿論、
この発明は、以下の実施例に限らない。 −実施例1− Cr:31wt%、Ni:21wt%、Al:6wt%、Y:
0.1wt%、残部:Feとなる割合で原料金属を高周波
溶解炉で溶解し、アトマイズ法により350メッシュ以
下のFe−Cr−Ni−Al系合金粉末を得た。
Embodiments of the present invention will be described below. Of course,
This invention is not limited to the following embodiments. -Example 1-Cr: 31 wt%, Ni: 21 wt%, Al: 6 wt%, Y:
The raw material metal was melted in a high-frequency melting furnace at a ratio of 0.1 wt% and balance: Fe, and Fe-Cr-Ni-Al alloy powder having 350 mesh or less was obtained by an atomizing method.

【0018】別途、同じように、Cr:18wt%、A
l:3wt%、Zr:0.2wt%、残部:Feとなる割合
で原料金属を高周波溶解炉で溶解し、アトマイズ法によ
り350メッシュ以下のFe−Cr−Al系合金粉末を
得た。そして、Fe−Cr−Ni−Al系合金粉末とF
e−Cr−Al系合金粉末を、前者が90wt%で後者が
10wt%という割合で混合機で十分に混ぜ混合粉末を得
た。
Separately, similarly, Cr: 18 wt%, A
The raw material metal was melted in a high-frequency melting furnace at a ratio of l: 3 wt%, Zr: 0.2 wt%, and the balance: Fe, and Fe-Cr-Al alloy powder of 350 mesh or less was obtained by an atomizing method. And Fe-Cr-Ni-Al alloy powder and F
The e-Cr-Al alloy powder was thoroughly mixed with a mixer at a ratio of 90 wt% for the former and 10 wt% for the latter to obtain a mixed powder.

【0019】このようにして得た混合粉末にバインダー
用のPVAを添加混合し、200MPaの圧力で成形し
た。ついで、成形体を真空中において、1350℃、3
時間の熱処理をすることにより、焼結させたのち研削加
工し所定の形状に正確に合わせた。研削加工において
は、Fe−Cr−Ni−Al系合金粉末のみの焼結体に
比べ加工し易く、容易に所定の形状に出来た。
PVA for a binder was added to and mixed with the mixed powder thus obtained, and molded at a pressure of 200 MPa. Then, the formed body is vacuumed at 1350 ° C. for 3 minutes.
After heat treatment for a long time, the powder was sintered and then ground to be accurately adjusted to a predetermined shape. In the grinding process, it was easier to process than a sintered body containing only Fe-Cr-Ni-Al alloy powder, and could be easily formed into a predetermined shape.

【0020】ついで、大気中において、1150℃、2
0時間の熱処理および1250℃、30分の熱処理によ
りアルミナ層の形成を行い、空冷して合金系焼結体を得
た。−実施例2〜6−Fe−Cr−Ni−Al系合金粉
末とFe−Cr−Al系合金粉末の各組成、および、両
合金粉末の混合割合がそれぞれ表1に示す通りである他
は、実施例1と同様にして合金系焼結体を得た。
Then, in air, at 1150 ° C., 2
An alumina layer was formed by heat treatment for 0 hours and heat treatment at 1250 ° C. for 30 minutes, followed by air cooling to obtain an alloy-based sintered body. Examples 2 to 6-Each composition of the Fe-Cr-Ni-Al alloy powder and Fe-Cr-Al alloy powder, and the mixing ratio of both alloy powders are as shown in Table 1, respectively, An alloy-based sintered body was obtained in the same manner as in Example 1.

【0021】−比較例1− 実施例1においてFe−Cr−Ni−Al系合金粉末だ
けを用いるとともに成形時の圧力を500MPaとした
他は、実施例1と同様にして合金系焼結体を得た。 −比較例2− 実施例1においてFe−Cr−Al系合金粉末だけを用
いるようにした他は、実施例1と同様にして合金系焼結
体を得た。
-Comparative Example 1- An alloy-based sintered body was prepared in the same manner as in Example 1 except that only Fe-Cr-Ni-Al alloy powder was used in Example 1 and the pressure during molding was 500 MPa. Obtained. -Comparative Example 2- An alloy-based sintered body was obtained in the same manner as in Example 1 except that only Fe-Cr-Al-based alloy powder was used in Example 1.

【0022】−比較例3− 刃物用マルテンサイト系ステンレスの表面にスパッタリ
ングによりZrN膜を形成した。ZrN粉末を固めたも
のをターゲットとし、Arガス、10-2〜10 -3Torrの
雰囲気で高周波スパッタリングにより、ステンレス表面
に約0.5μmの厚みに付けた。基板温度は約200℃
とした。
-Comparative Example 3- Spatter on the surface of martensitic stainless steel for blades
To form a ZrN film. Hardened ZrN powder
Target is Ar gas, 10-2-10 -3Torr
Stainless steel surface by high frequency sputtering in atmosphere
And a thickness of about 0.5 μm. Substrate temperature is about 200 ℃
And

【0023】−比較例4− 刃物用マルテンサイト系ステンレスの表面をショットブ
ラストにより10μm前後の凹凸を付け粗化した。そし
て、ステンレスの粗化表面に、粒径約30μmのアルミ
ナ粒子をプラズマ溶射により溶射した。アルミナ層の厚
みは約50μmである。
-Comparative Example 4-The surface of martensitic stainless steel for blades was roughened by shot blasting to give irregularities of about 10 μm. Then, on the roughened surface of stainless steel, alumina particles having a particle diameter of about 30 μm were sprayed by plasma spraying. The thickness of the alumina layer is about 50 μm.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例および比較例について、アルミナ層
等の皮膜の密着性、母材硬度、焼結後の加工性、耐磨耗
性を調べた。結果を表2に示す。なお、表2の○,×は
以下の通りである。 皮膜の密着性−○:150gの鋼球を1mの高さより落
下して膜の割れ無し ×:150gの鋼球を1mの高さより落下して膜の割れ
有り 焼結後の加工性−○:研削加工容易 ×:研削加工困難 耐磨耗性−○:ダイヤモンドヤスリで表面を1分間擦っ
ても下地は露出せず ×:ダイヤモンドヤスリで表面を1分間擦ると下地が露
出する なお、実施例の合金系焼結体では、アルミナ層は厚み5
〜10μmで母材内に根をはったような形で形成されて
いることを顕微鏡観察により確認した。さらに、合金系
焼結体の寸法を測定し寸法精度良く仕上がっていること
も確認した。
For the examples and comparative examples, the adhesion of the coating such as the alumina layer, the hardness of the base material, the workability after sintering, and the wear resistance were examined. The results are shown in Table 2. In addition, ○ and × in Table 2 are as follows. Adhesion of coating- ○: 150 g steel ball dropped from a height of 1 m without film cracking ×: 150 g steel ball dropped from a height of 1 m and film cracking Workability after sintering- ○: Easy to grind ×: Difficult to grind Abrasion resistance − ○: The base is not exposed even if the surface is rubbed with a diamond file for 1 minute. ×: The base is exposed when the surface is rubbed with a diamond file for 1 minute. In the alloy-based sintered body, the alumina layer has a thickness of 5
It was confirmed by microscopic observation that the base material was formed to have a root-like shape with a thickness of 10 μm. Further, the dimensions of the alloy-based sintered body were measured and it was confirmed that the sintered body was finished with high dimensional accuracy.

【0026】[0026]

【表2】 [Table 2]

【0027】表2にみるように、実施例の合金系焼結体
は、アルミナ層の密着性、焼結後の加工性、耐磨耗性が
いずれも良好で、焼結体内部を充たす母材硬度もHv=
500程度と十分な硬さであった。一方、比較例1では
焼結後の加工性が実施例より劣るとともに高い成形圧を
必要とし、比較例2では母材硬度が実施例より遙に劣っ
ており、それぞれ実用性が十分でないという結果であっ
た。また、比較例3,4にみるように、スパッタリング
法や溶射法によるコーティングでは密着性のよい皮膜形
成は出来ていないし、比較例3の場合は耐磨耗性も十分
でない。
As shown in Table 2, the alloy-based sintered bodies of the examples have good adhesion of the alumina layer, workability after sintering, and wear resistance, and the matrix filling the inside of the sintered body is good. Material hardness is also Hv =
The hardness was about 500, which was a sufficient hardness. On the other hand, in Comparative Example 1, the workability after sintering was inferior to that of the Example and required a high molding pressure, and in Comparative Example 2, the base material hardness was much inferior to that of the Example, and the practicality of each was not sufficient. Met. Further, as seen in Comparative Examples 3 and 4, the coating by the sputtering method or the thermal spraying method does not form a film with good adhesion, and in Comparative Example 3, the abrasion resistance is not sufficient.

【0028】[0028]

【発明の効果】以上に述べたように、この発明にかかる
合金系焼結体の製造方法では、Fe−Cr−Ni−Al
系合金粉末にFe−Cr−Al系合金粉末が適切量で混
合されてなる粉末の成形体を焼結したのち酸化処理する
ようにしており、得られた合金系焼結体では、密着力の
大きな十分厚みのアルミナ層が析出しているとともにそ
の内部が合金で充たされているため、耐磨耗性、靱性、
硬度等の機械的性質に非常に優れ、しかも、製造過程に
あっても、全体としての見かけ上の粉末硬度が適度に和
らげられ、成形性が向上しているために製造が容易であ
るとともに焼結後の後加工性で容易に寸法精度をよくす
ることができるから、この発明の方法は非常に有用であ
る。
As described above, in the method for manufacturing an alloy-based sintered body according to the present invention, Fe-Cr-Ni-Al is used.
The Fe-Cr-Al alloy powder is mixed with an appropriate amount of the Fe-Cr-Al alloy powder to sinter a powder compact, which is then subjected to an oxidation treatment. A large, sufficiently thick alumina layer is deposited and the interior is filled with alloy, so wear resistance, toughness,
It has excellent mechanical properties such as hardness. Moreover, even during the manufacturing process, the apparent powder hardness is moderated moderately, and the moldability is improved, so it is easy to manufacture and baked. The method of the present invention is very useful because the dimensional accuracy can be easily improved by post-workability after binding.

【0029】請求項2記載の発明は、加えて、各合金粉
末の組成が適切であるため、耐磨耗性、靱性、硬度等の
機械的性質の良いものが確実に得られるという利点があ
る。
In addition, the composition of each alloy powder is appropriate, so that the invention of claim 2 has an advantage that it is possible to surely obtain those having good mechanical properties such as wear resistance, toughness, and hardness. .

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年11月9日[Submission date] November 9, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】2種類の合金粉末のうち一方だけを用いて
も、アルミナ層付き合金系焼結体を得ることはできる
が、以下のような欠点があって実用的ではない。Fe−
Cr−Ni−Al系合金粉末だけを用いた場合の欠点
は、Fe−Cr−Ni−Al系合金粉末の粒子硬度がH
v=400前後と高いことに起因しており、ひとつは、
500MPaと大きな成形圧力が必要となり大きな制約
を受け製造は容易でなくなるためであり、もうひとつ
は、普通、成形、焼結後に加工が必要である場合が多い
のであるが、母材が硬くて後加工が困難であるためであ
る。焼結後の後加工が困難な場合、寸法精度よく部品を
作製することは覚束ない。
Although it is possible to obtain an alloy-based sintered body with an alumina layer by using only one of the two types of alloy powders, the following drawbacks are not practical. Fe-
The disadvantage of using only the Cr-Ni-Al alloy powder is that the particle hardness of the Fe-Cr-Ni-Al alloy powder is H.
This is due to the high value of v = 400, and one is
This is because a large molding pressure of 500 MPa is required and it is difficult to manufacture due to a large restriction. Another reason is that it is usually necessary to process after molding and sintering, but since the base material is hard , This is because processing is difficult. If post-processing after sintering is difficult, it is not feasible to manufacture parts with high dimensional accuracy.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Fe−Cr−Ni−Al系合金粉末が7
0〜90wt%、残りがFe−Cr−Al系合金粉末の混
合粉末を所定の形状に成形した成形体を、非酸化性雰囲
気で焼結させた後、酸化性雰囲気で熱処理することによ
り表面にアルミナ成分を析出させるようにする合金系焼
結体の製造方法。
1. Fe-Cr-Ni-Al alloy powder is 7
The surface of the compact is formed by molding a mixed powder of 0 to 90 wt% and the rest of Fe-Cr-Al alloy powder into a predetermined shape, sintering the mixture in a non-oxidizing atmosphere, and then heat-treating it in an oxidizing atmosphere. A method for producing an alloy-based sintered body, in which an alumina component is precipitated.
【請求項2】 Fe−Cr−Ni−Al系合金は、C
r:25〜40wt%、Ni:15〜25wt%、Al:4
〜8wt%、Zr,Hf,Ce,La,Nd,Gdのうち
いずれか1種又は2種以上:0.05〜1.0wt%、
Y:0〜0.2wt%、Fe:残部からなり、Fe−Cr
−Al系合金は、Cr:15〜20wt%、Al:2〜4
wt%、Zr,Hf,Ce,La,Nd,Gdのうちいず
れか1種又は2種以上:0.05〜1.0wt%、Y:0
〜0.2wt%、Fe:残部からなる請求項1記載の合金
系焼結体の製造方法。
2. The Fe-Cr-Ni-Al alloy is C
r: 25-40 wt%, Ni: 15-25 wt%, Al: 4
-8 wt%, any one or more of Zr, Hf, Ce, La, Nd, and Gd: 0.05-1.0 wt%,
Y: 0 to 0.2 wt%, Fe: balance, Fe-Cr
-Al-based alloy is Cr: 15 to 20 wt%, Al: 2 to 4
wt%, any one or more of Zr, Hf, Ce, La, Nd, and Gd: 0.05 to 1.0 wt%, Y: 0
The method for producing an alloy-based sintered body according to claim 1, wherein the alloy-based sintered body is composed of ˜0.2 wt% and Fe: balance.
JP18666991A 1991-07-25 1991-07-25 Method for manufacturing alloy-based sintered body Expired - Fee Related JPH0826430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18666991A JPH0826430B2 (en) 1991-07-25 1991-07-25 Method for manufacturing alloy-based sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18666991A JPH0826430B2 (en) 1991-07-25 1991-07-25 Method for manufacturing alloy-based sintered body

Publications (2)

Publication Number Publication Date
JPH0533100A true JPH0533100A (en) 1993-02-09
JPH0826430B2 JPH0826430B2 (en) 1996-03-13

Family

ID=16192590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18666991A Expired - Fee Related JPH0826430B2 (en) 1991-07-25 1991-07-25 Method for manufacturing alloy-based sintered body

Country Status (1)

Country Link
JP (1) JPH0826430B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183219A (en) * 2018-04-06 2019-10-24 株式会社ソディック Production method of three-dimensional molded article
CN114774803A (en) * 2022-04-13 2022-07-22 西南交通大学 High-damping high-strength iron-chromium-aluminum alloy containing rare earth elements and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183219A (en) * 2018-04-06 2019-10-24 株式会社ソディック Production method of three-dimensional molded article
CN114774803A (en) * 2022-04-13 2022-07-22 西南交通大学 High-damping high-strength iron-chromium-aluminum alloy containing rare earth elements and preparation method thereof

Also Published As

Publication number Publication date
JPH0826430B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
JPH055106A (en) Production of alloy sintered body
CN113234950A (en) Preparation method of Ti (C, N) -based metal ceramic
JPH09268072A (en) Production of silicon nitride sintered compact
JP2000034581A (en) Production of metal member excellent in oxidation resistance
JP4515692B2 (en) Sputtering target
JPH0533100A (en) Production of alloy series sintered body
JP3132843B2 (en) High toughness high pressure phase boron nitride sintered body
JP2001181776A (en) Cemented carbide sintered alloy and producing method therefor
JP2775298B2 (en) Cermet tool
JPH1179849A (en) Silicon carbide sintered compact and its production
JP3266200B2 (en) Silicon nitride based sintered body
JP2003155537A (en) High-toughness hard alloy and its manufacturing method
JP4081574B2 (en) Method for manufacturing heat-resistant coated member
JP2001295037A (en) Sputtering target
JP3132849B2 (en) High toughness high pressure phase boron nitride sintered body
JP2814452B2 (en) Surface-finished sintered alloy, method for producing the same, and coated surface-finished sintered alloy obtained by coating the alloy with a hard film
JP2980301B2 (en) Manufacturing method of ferrite alloy sintered body
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPH06128604A (en) Production of metallic material
JP2003055729A (en) Sintered alloy material with excellent corrosion resistance and wear resistance, its manufacturing method, and member for machine structure using them
JP2008214757A (en) Hard film, and hard film member using the same
JP2004332012A (en) Heat-resistant holder and heat-treating/sintering method
JPS6369939A (en) Manufacture of sintered high-alloy steel
WO2024096134A1 (en) Lightweight hard alloy and lightweight hard alloy member
JPH06200304A (en) Production of sintered parts having thin and intricate shape

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees