JPH06200304A - Production of sintered parts having thin and intricate shape - Google Patents

Production of sintered parts having thin and intricate shape

Info

Publication number
JPH06200304A
JPH06200304A JP3210197A JP21019791A JPH06200304A JP H06200304 A JPH06200304 A JP H06200304A JP 3210197 A JP3210197 A JP 3210197A JP 21019791 A JP21019791 A JP 21019791A JP H06200304 A JPH06200304 A JP H06200304A
Authority
JP
Japan
Prior art keywords
thin
injection
temperature
sintered
speed steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3210197A
Other languages
Japanese (ja)
Inventor
Koshiro Ueda
公志郎 上田
Mutsumi Moribayashi
睦 森林
Toru Kono
通 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3210197A priority Critical patent/JPH06200304A/en
Publication of JPH06200304A publication Critical patent/JPH06200304A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide the process for production of sintered parts having thin and intricate shapes without deforming these parts. CONSTITUTION:High-speed steel powder is mixed with an org. binder and the mixture is injection molded to produce an injection molded article. After this injection molded article is degreased, the molded article is sintered by a low temp. (1150 to 1190 deg.C) below the eutectic liquid phase generating temp., by which a presintered body is produced. This presintered body is then subjected to an HIP treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高速度鋼粉末を用い
て射出成形法により薄肉複雑形状焼結部品を製造する方
法に関するものであり、特に肉厚が3mm以下の薄肉複雑
形状焼結部品の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thin-walled complex shape sintered part by injection molding using high-speed steel powder, and particularly to a thin-walled complex shape sintered part having a wall thickness of 3 mm or less. Of the manufacturing method of.

【0002】近年、共還元法または水アトマイズ法によ
り製造された高速度鋼粉末をバインダーと加熱混合し、
これをペレット化し、射出成形機により射出成形して射
出成形体を作製し、この射出成形体を水素などの非酸化
性雰囲気中または真空雰囲気中、温度:500〜700
℃に保持して脱脂し、ついで真空雰囲気中、共晶液相発
生温度以上(1200〜1250℃)保持の条件で焼結
することにより薄肉複雑形状部品、例えばロータリーコ
ンプレッサーのベーン、内燃機関のロッカーアームチッ
プなどを製造することは知られている。上記射出成形法
で使用する高速度鋼粉末の粒径は、その寸法が大きくな
るほど脱脂後の射出成形体の形状保持が難しくなること
および焼結性が低下することなどの理由により、平均粒
径:30μm以下の粉末が使用されることも知られてい
る(特開昭64−35091号公報、特開平2−190
401号公報参照)。
In recent years, high-speed steel powder produced by the co-reduction method or the water atomizing method is heated and mixed with a binder,
This is pelletized and injection-molded by an injection molding machine to produce an injection-molded body. The injection-molded body is heated in a non-oxidizing atmosphere such as hydrogen or in a vacuum atmosphere at a temperature of 500 to 700.
Degreasing by holding at ℃, and then sintering in a vacuum atmosphere at a temperature higher than the eutectic liquid phase generation temperature (1200 to 1250 ℃) for thin complex parts such as vanes of rotary compressors and rockers of internal combustion engines. It is known to manufacture arm chips and the like. The particle size of the high-speed steel powder used in the above-mentioned injection molding method is such that the larger the size, the more difficult it becomes to maintain the shape of the injection-molded body after degreasing and the lower the sinterability. It is also known that a powder having a particle size of 30 μm or less is used (Japanese Patent Laid-Open No. 64-35091 and Japanese Patent Laid-Open No. 2-190).
No. 401).

【0003】[0003]

【発明が解決しようとする課題】上記脱脂された射出成
形体を共晶液相発生温度以上(1200〜1250℃)
で焼結すると、得られた高速度鋼薄肉複雑形状焼結部品
は密度は上昇しかつ強度は向上する。しかし特に肉厚が
3mm以下の薄肉複雑形状射出成形体を焼結すると、焼結
中に大きく変形する部分が生じ、製品として出荷するこ
とができないなどの課題があった。
The above-mentioned degreased injection-molded article is subjected to a eutectic liquid phase generation temperature or higher (1200 to 1250 ° C.).
The high-speed steel thin-walled complex shape sintered part obtained by the sintering has an increased density and an improved strength. However, in particular, when a thin-walled complex-shaped injection molded body having a wall thickness of 3 mm or less is sintered, there is a problem that a portion which is largely deformed during sintering cannot be shipped as a product.

【0004】例えば、図1に示されるような、ウェブ1
の片側にのみフランジ2を有する薄肉複雑形状の脱脂さ
れた試験片射出成形体を作製し、この試験片射出成形体
を図2に示されるようにフランジ2が焼結炉床3に接す
るように焼結炉に装入し、共晶液相発生温度以上で焼結
すると、図2に示されるようにウェブ1が変形し、製品
として出荷することができないことがあった。
For example, a web 1 as shown in FIG.
A thin-walled and complex-shaped degreased test piece injection-molded body having a flange 2 only on one side was prepared, and the flange 2 was in contact with the sintering hearth 3 as shown in FIG. When charged in a sintering furnace and sintered at a temperature higher than the eutectic liquid phase generation temperature, the web 1 was deformed as shown in FIG. 2 and could not be shipped as a product.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等は、
かかる課題を解決すべく研究を行った結果、まず、上記
脱脂した射出成形体を共晶液相発生温度未満の低温で焼
結して予焼体を作製し、ついで上記予焼体に熱間静水圧
プレス(以下、HIPという)処理を施すと、上記変形
はほとんど発生せず、また変形が発生しても無視できる
程度に小さく、さらに密度は従来の共晶液相発生温度以
上で焼結した焼結体とほぼ同じ99.5%以上の高密度
の高速度鋼複雑薄肉形状焼結部品が得られるという知見
を得たのである。
Therefore, the present inventors have
As a result of conducting research to solve such problems, first, the degreased injection-molded body was sintered at a low temperature lower than the eutectic liquid phase generation temperature to prepare a pre-fired body, and then the pre-fired body was hot-pressed. When subjected to hydrostatic pressure (hereinafter referred to as HIP) treatment, the above deformation hardly occurs, and even if the deformation occurs, it is negligibly small, and the density is higher than the conventional eutectic liquid phase generation temperature. It was found that a high-speed high-speed steel complex thin-walled sintered part having a high density of 99.5% or more, which is almost the same as the sintered body, can be obtained.

【0006】この発明は、かかる知見にもとづいてなさ
れたものであって、高速度鋼粉末を有機バインダーと混
合し、射出成形して射出成形体を作製し、この射出成形
体を脱脂したのち、共晶液相発生温度未満の低温で焼結
して予焼体を作製し、ついでこの予焼体にHIP処理を
施す、高速度鋼薄肉複雑形状焼結部品の製造法に特徴を
有するものである。
The present invention has been made on the basis of such findings, and high-speed steel powder is mixed with an organic binder, injection-molded to prepare an injection-molded body, and the injection-molded body is degreased. It is characterized by a method for manufacturing high-speed steel thin-walled complex-shaped sintered parts, in which a pre-fired body is produced by sintering at a temperature lower than the eutectic liquid phase generation temperature, and then the pre-fired body is subjected to HIP treatment. is there.

【0007】この発明において使用する高速度鋼粉末
は、その成分組成はJISで規定されているものを用
い、その粒度は平均粒径:1〜30μmのものを用い
る。上記高速度鋼粉末の平均粒径が30μmを越えると
脱脂後の射出成形体の強度が低くなり、形状保持が難し
くなるからであり、一方、平均粒径が1μm未満では射
出成形体の脱バインダーが困難となり、予焼体作製時に
変形が生じるので好ましくないからである。
The high-speed steel powder used in the present invention has a composition specified by JIS, and its particle size is an average particle size of 1 to 30 μm. This is because if the average particle size of the high-speed steel powder exceeds 30 μm, the strength of the injection-molded product after degreasing will be low and it will be difficult to maintain the shape. This is not preferable because it becomes difficult and deformation occurs during preparation of the pre-fired body.

【0008】また、上記予焼体焼結は、上記平均粒径:
1〜30μmの高速度鋼粉末の共晶液相発生温度より低
い温度で行うことが必要であり、その温度は1150〜
1190℃の範囲内の所定の温度である。予焼体焼結温
度が1150℃未満では得られた予焼体の密度は93%
未満となり、その後のHIP処理を施しても十分な緻密
化が起らないからであり、一方、予焼体の焼結温度が1
190℃を越えると得られた予焼体の密度は98%を越
えて高密度化するが、焼結時の変形発生が著しくなるの
で好ましくない。
The above-mentioned pre-sintered body has the above-mentioned average particle size:
It is necessary to carry out at a temperature lower than the eutectic liquid phase generation temperature of the high speed steel powder of 1 to 30 μm, and the temperature is 1150 to 150 μm.
It is a predetermined temperature within the range of 1190 ° C. When the sintering temperature of the pre-fired body is less than 1150 ° C, the density of the pre-fired body obtained is 93%
This is because even if the subsequent HIP treatment is performed, sufficient densification does not occur, while the sintering temperature of the pre-fired body is 1
When the temperature exceeds 190 ° C., the density of the obtained pre-fired body exceeds 98% and the density is increased, but deformation during sintering becomes remarkable, which is not preferable.

【0009】さらに、上記HIP処理としては、圧力:
500kg/cm2 以上、温度:950〜1190℃の条件
で行うことが好ましい。
Further, as the HIP processing, pressure:
It is preferably carried out under the conditions of 500 kg / cm 2 or more and temperature: 950 to 1190 ° C.

【0010】この発明の製造法は、いかなる厚さの薄肉
複雑形状焼結部品の製造にも適用することができるが、
特に厚さ:3mm以下の薄肉複雑形状焼結部品の製造に効
果がある。厚さ:3mmを越える焼結部品は、特にこの発
明の製造法によらずに、従来の焼結法を採用しても変形
することなく製造することがきるからである。
The production method of the present invention can be applied to the production of thin-walled complex shaped sintered parts of any thickness,
Particularly, it is effective for manufacturing thin-walled sintered parts having a thickness of 3 mm or less. This is because a sintered part having a thickness of more than 3 mm can be manufactured without being deformed even if the conventional sintering method is adopted, not depending on the manufacturing method of the present invention.

【0011】[0011]

【実施例】原料粉末として、Cr:4%、Mo:5%、
W:6%、V:2%、C:1%、残部:Feおよび不可
避不純物からなる成分組成(以上、重量%、この成分組
成はJIS規格SKH51に相当する成分組成である)
を有し、表1に示される平均粒径の水アトマイズ高速度
鋼粉末を用意した。
[Example] As a raw material powder, Cr: 4%, Mo: 5%,
W: 6%, V: 2%, C: 1%, balance: Fe and component composition consisting of unavoidable impurities (above, weight%, this component composition corresponds to JIS standard SKH51)
The water atomized high speed steel powder having the average particle diameter shown in Table 1 was prepared.

【0012】これら高速度鋼粉末にEVA(エチレン酢
酸ビニル共重合体):3重量%とパラフィンワックス:
3重量%を含む市販のバインダーを45容量%添加し、
加圧ニーダー装置を用い、温度:135℃、3時間保持
の条件で混練し、ついで射出成形機を用い、射出圧力:
500kgf /cm2 の圧力をかけながら図1に示されるウ
ェブ1の片側に5個のフランジ2を有する形状を有し、
表1に示される肉厚の試験片射出成形体を作製した。上
記試験片射出成形体のフランジ2とフランジ2の間隔L
0 はいずれも5mmとした。
EVA (ethylene vinyl acetate copolymer): 3% by weight and paraffin wax:
Adding 45% by volume of a commercial binder containing 3% by weight,
Kneading is performed using a pressure kneader under the conditions of temperature: 135 ° C. and holding for 3 hours, and then using an injection molding machine, injection pressure:
While having a pressure of 500 kgf / cm 2 , it has a shape having five flanges 2 on one side of the web 1 shown in FIG.
Test piece injection molded bodies having the wall thickness shown in Table 1 were prepared. Distance L between the flange 2 and the flange 2 of the test piece injection molded body
0 was 5 mm in all cases.

【0013】この試験片射出成形体を水素雰囲気中、温
度:700℃、5時間保持の条件で脱脂し、この脱脂し
た試験片射出成形体を1×10-2Torrの真空雰囲気の焼
結炉内に図2に示されるようにフランジ2が焼結炉床3
に接するように載置し、表1に示される条件で焼結し、
予焼体を作製した。
This test piece injection molded article was degreased in a hydrogen atmosphere at a temperature of 700 ° C. for 5 hours, and the degreased test piece injection molded article was sintered in a vacuum atmosphere of 1 × 10 -2 Torr. As shown in FIG. 2, the flange 2 has a sintering hearth 3
Place it in contact with and sinter under the conditions shown in Table 1,
A pre-fired body was prepared.

【0014】これらの予焼体に、アルゴン雰囲気中、表
1に示される条件のHIP処理を施し、本発明法1〜8
および比較法1〜4により薄肉複雑形状試験片を作製し
た。
These pre-fired bodies were subjected to HIP treatment under the conditions shown in Table 1 in an argon atmosphere, and the method 1 to 8 of the present invention was performed.
And the thin-walled complex shape test piece was produced by the comparative methods 1-4.

【0015】得られた薄肉複雑形状試験片の密度並びに
図2の変形量:H1 ,H2 ,H3 ,H4 およびそれらの
平均値H0 {=(H1 +H2 +H3 +H4 )/4}を求
めて表2に示した。
The density of the obtained thin-walled complex-shape test piece and the amount of deformation shown in FIG. 2: H 1 , H 2 , H 3 , H 4 and their average value H 0 {= (H 1 + H 2 + H 3 + H 4 ). / 4} was obtained and shown in Table 2.

【0016】さらに、比較のために、上記本発明法1で
用いた脱脂された試験片射出成形体と同一の試験片射出
成形体を用い、従来の共晶液相発生温度以上である12
00℃、1×10-2Torrの真空雰囲気中焼結炉内に図2
に示されるように載置して焼結し、HIP処理を施すこ
となく従来法により薄肉複雑形状試験片を作製した。上
記従来法で作製した薄肉複雑形状試験片についても密
度、H1 ,H2 ,H3 ,H4 およびH0 の値を測定し、
それらの測定結果を表2に示した。
Further, for comparison, the same test piece injection molded article as the degreased test piece injection molded article used in Method 1 of the present invention was used, and the temperature was above the conventional eutectic liquid phase generation temperature.
Fig. 2 shows a sintering furnace in a vacuum atmosphere of 00 ° C and 1 × 10 -2 Torr.
As shown in (1), the sample was placed and sintered, and a thin-walled complex shape test piece was prepared by the conventional method without HIP treatment. The density, H 1 , H 2 , H 3 , H 4, and H 0 values of the thin-walled and complex-shaped test pieces produced by the above-mentioned conventional method were measured,
The measurement results are shown in Table 2.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】[Table 2]

【0019】[0019]

【発明の効果】表1および表2に示される結果から、本
発明法1で作製された薄肉複雑形状試験片の密度は、同
一試験片射出成形体を用いて従来法により作製された薄
肉複雑形状試験片の密度とほぼ同じであるが、本発明法
1で作製された薄肉複雑形状試験片の変形量(H1 ,H
2 ,H3 ,H4 およびH0 )は、従来法で作製された薄
肉複雑形状試験片の変形量(H1 ,H2 ,H3 ,H4
よびH0 )に比べて極めて小さく、また本発明法2〜8
で作製された薄肉複雑形状試験片の変形量(H1
2 ,H3 ,H4 およびH0 )についても無視できるほ
ど小さいことがわかる。
From the results shown in Tables 1 and 2, the density of the thin-walled complex shape test piece produced by the method 1 of the present invention was found to be the same as that of the thin-walled complex shape produced by the conventional method using the same test piece injection molded article. Although the density is almost the same as that of the shape test piece, the deformation amount (H 1 , H
2 , H 3 , H 4 and H 0 ) are extremely smaller than the deformation amounts (H 1 , H 2 , H 3 , H 4 and H 0 ) of the thin-walled complex shape test pieces produced by the conventional method, and Invention Method 2-8
Deformation amount (H 1 ,
It can be seen that H 2 , H 3 , H 4 and H 0 ) are also small enough to be ignored.

【0020】しかし、比較法1にみられるように、焼結
温度が1150℃より低くなるとHIP処理を施しても
薄肉複雑形状試験片の密度は上らずかつ局部的に大きな
変形が生じ、焼結温度が1190℃より高いと比較法2
は従来法と同様に変形量が大きくなるので好ましくな
い。
However, as seen in Comparative Method 1, when the sintering temperature is lower than 1150 ° C., even if the HIP treatment is applied, the density of the thin-walled complex shape test piece does not increase and a large local deformation occurs, so that the firing is performed. Comparative method 2 when the binding temperature is higher than 1190 ° C
Is not preferable because the amount of deformation increases as in the conventional method.

【0021】さらに、比較例4に見られるように試験片
射出成形体の肉厚が3mmを越えると、焼結時の変形量が
小さくなり、従来の焼結温度で焼結しても変形量は小さ
くなることがわかる。
Further, as seen in Comparative Example 4, when the thickness of the test piece injection-molded body exceeds 3 mm, the amount of deformation at the time of sintering becomes small, and the amount of deformation even at the conventional sintering temperature. It turns out that becomes smaller.

【0022】上述のように、この発明の製造法は、特に
肉厚:3mm以下の薄肉複雑形状焼結部品を変形すること
なく高密度に仕上げることができ、機械部品の軽量化に
優れた効果を奏するものである。
As described above, according to the manufacturing method of the present invention, it is possible to finish a thin-walled sintered part having a thickness of 3 mm or less with a high density without deformation, and it is excellent in reducing the weight of mechanical parts. Is played.

【図面の簡単な説明】[Brief description of drawings]

【図1】試験片射出成形体の斜視図である。FIG. 1 is a perspective view of a test piece injection-molded body.

【図2】試験片射出成形体を焼結炉床に置いた状態を示
す立面図である。
FIG. 2 is an elevational view showing a state where a test piece injection-molded body is placed on a sintering hearth.

【符号の説明】[Explanation of symbols]

1 ウェブ 2 フランジ 3 焼結炉床 1 Web 2 Flange 3 Sintered hearth

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月29日[Submission date] July 29, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】試験片射出成形体の斜視図である。FIG. 1 is a perspective view of a test piece injection-molded body.

【符号の説明】 1 ウェブ 2 フランジ 3 焼結炉床[Explanation of symbols] 1 Web 2 Flange 3 Sintered hearth

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高速度鋼粉末を有機バインダーと混合
し、射出成形して射出成形体を作製し、この射出成形体
を脱脂したのち、上記高速度鋼粉末の共晶液相発生温度
未満の低温で焼結して予焼体を作製し、ついでこの予焼
体に熱間静水圧プレス処理を施すことを特徴とする薄肉
複雑形状焼結部品の製造法。
1. A high-speed steel powder is mixed with an organic binder, injection-molded to prepare an injection-molded body, the injection-molded body is degreased, and the temperature is lower than the eutectic liquid phase generation temperature of the high-speed steel powder. A method for manufacturing a thin-walled complex-shaped sintered part, which comprises sintering at low temperature to prepare a pre-fired body, and then subjecting the pre-fired body to hot isostatic pressing.
【請求項2】 上記高速度鋼粉末の共晶液相発生温度未
満の低温は、1150〜1190℃の範囲内の所定の温
度であることを特徴とする請求項1記載の薄肉複雑形状
焼結部品の製造法。
2. The thin-walled complex shape sintering according to claim 1, wherein the low temperature of the high-speed steel powder, which is lower than the eutectic liquid phase generation temperature, is a predetermined temperature within a range of 1150 to 1190 ° C. Manufacturing method of parts.
【請求項3】 上記薄肉複雑形状焼結部品の肉厚は3mm
以下であることを特徴とする請求項1または2記載の薄
肉複雑形状部品の製造法。
3. The wall thickness of the thin-walled complex-shaped sintered part is 3 mm.
The method for manufacturing a thin-walled complex-shaped component according to claim 1 or 2, wherein:
JP3210197A 1991-07-26 1991-07-26 Production of sintered parts having thin and intricate shape Withdrawn JPH06200304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3210197A JPH06200304A (en) 1991-07-26 1991-07-26 Production of sintered parts having thin and intricate shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3210197A JPH06200304A (en) 1991-07-26 1991-07-26 Production of sintered parts having thin and intricate shape

Publications (1)

Publication Number Publication Date
JPH06200304A true JPH06200304A (en) 1994-07-19

Family

ID=16585397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3210197A Withdrawn JPH06200304A (en) 1991-07-26 1991-07-26 Production of sintered parts having thin and intricate shape

Country Status (1)

Country Link
JP (1) JPH06200304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111266588A (en) * 2020-02-18 2020-06-12 中国地质大学(北京) Hot isostatic pressing shape control method for titanium alloy thin-walled part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111266588A (en) * 2020-02-18 2020-06-12 中国地质大学(北京) Hot isostatic pressing shape control method for titanium alloy thin-walled part

Similar Documents

Publication Publication Date Title
JPH09268072A (en) Production of silicon nitride sintered compact
JPH06200304A (en) Production of sintered parts having thin and intricate shape
JP2743090B2 (en) How to control the carbon content of metal injection products
JP2775298B2 (en) Cermet tool
JPS6152110B2 (en)
JPS62501860A (en) Manufacturing method for iron alloy molded products
CN117020198B (en) Metal injection molding feed of kovar alloy
JPS6389462A (en) Manufacture of silicon nitride base sintered body
JPH11279602A (en) Production of sintered product
JPS5839704A (en) Production of ni-base sintered hard alloy
JPH0339402A (en) Manufacture of metal powder sintered body
JP2892244B2 (en) Manufacturing method of silicon nitride sintered body
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH04280903A (en) Manufacture of cemented carbide powder for injection molding and cemented carbide sintered product
JPH03166301A (en) Manufacture of thin complicated shape sintered parts with injection compacting method
JPH07179960A (en) Production of titanium or titanium alloy sintered compact
JPH0931588A (en) Production of invar (r) sintered compact
JPH06316744A (en) Production of fe-ni-co series alloy parts for sealing
JPH0270004A (en) Method for degreasing injection molded body
JPH09278525A (en) Boride ceramic and its production
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production
JPH0533100A (en) Production of alloy series sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPS62113769A (en) Manufacture of silicon nitride sintered body
CN116693303A (en) TiN-Si 3 N 4 Near net shape forming method for composite material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008