JP2001295037A - Sputtering target - Google Patents

Sputtering target

Info

Publication number
JP2001295037A
JP2001295037A JP2000121057A JP2000121057A JP2001295037A JP 2001295037 A JP2001295037 A JP 2001295037A JP 2000121057 A JP2000121057 A JP 2000121057A JP 2000121057 A JP2000121057 A JP 2000121057A JP 2001295037 A JP2001295037 A JP 2001295037A
Authority
JP
Japan
Prior art keywords
powder
coo
sio
sputter target
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000121057A
Other languages
Japanese (ja)
Inventor
Yukio Saito
幸雄 斉藤
Takashi Namekawa
滑川  孝
Takashi Naito
内藤  孝
Yasutaka Suzuki
康隆 鈴木
Tetsuo Nakazawa
哲夫 中澤
Hirotaka Yamamoto
浩貴 山本
Mitsutoshi Honda
光利 本田
Yuzo Kozono
裕三 小園
Tatsumi Hirano
辰巳 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000121057A priority Critical patent/JP2001295037A/en
Publication of JP2001295037A publication Critical patent/JP2001295037A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Abstract

PROBLEM TO BE SOLVED: To provide a sputtering target for deposition of a seed layer, with which the size of magnetic particles in a magnetic film can be refined and simultaneously the size of the magnetic particles can be uniformized, and its manufacturing method. SOLUTION: The sputtering target contains CoO crystal grains and crystal grains of divalent to tetravalent oxides, and respective crystal grains gather densely and are uniformly mixed and dispersed. This sputtering target can be manufactured by selecting CoO powder and at least one or more kinds among powder of Si oxide, such as SiO2 and SiO, powder of Ti oxide, such as TiO2, Ti2O3 and TiO3, powder of Ca oxide, such as CaO and CaO2, and powder of zinc oxide such as ZnO and subjecting these powders to ball mill kneading, drying, compacting and sintering.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録媒体のシ
ード層を形成するためのスパッタターゲット及びその製
造法に関する。
The present invention relates to a sputter target for forming a seed layer of a magnetic recording medium and a method for manufacturing the same.

【0002】[0002]

【従来の技術】磁気記録媒体を高記録密度化するには、
磁性材(膜)の保磁力を増大させることに加えて、磁性
膜の磁化反転が生じる単位を小さくすることが重要であ
る。磁化反転単位を小さくするためには、磁性膜を構成
する磁性粒子のサイズを微細化すること及び磁性粒子の
粒径を均一化することが重要となる。
2. Description of the Related Art To increase the recording density of a magnetic recording medium,
In addition to increasing the coercive force of the magnetic material (film), it is important to reduce the unit in which the magnetization reversal of the magnetic film occurs. In order to reduce the unit of magnetization reversal, it is important to reduce the size of the magnetic particles constituting the magnetic film and to make the particle size of the magnetic particles uniform.

【0003】USP4,652,499は、磁性粒子のサイズ及び粒
子径分布を制御するために、CrVをターゲットとした
DCマグネトロンスパッタ等の成膜技術を用いて、体心
立方CrVの合金薄膜のシード層を、磁性膜の下地層と
して設けることを記載する。
US Pat. No. 4,652,499 discloses a method for controlling the size and particle size distribution of magnetic particles by using a film forming technique such as DC magnetron sputtering targeting CrV to form a seed layer of a body-centered cubic CrV alloy thin film. To be provided as an underlayer of the magnetic film.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、CrV
ターゲットを用いてCrVシード層を形成する従来技術
は、CrV粒子のサイズ及び粒子径分布の制御には限界
があり、シード層には微細な粒子と粗大な粒子が混存し
た。このようなシード層の上に形成された磁性膜には、
CrV粒子のサイズ及び粒子径分布に影響されて、微細
な磁性粒子と粗大な磁性粒子が混存する。したがって、
磁化反転単位を小さくできなかった。
However, the CrV
In the conventional technology of forming a CrV seed layer using a target, there is a limit in controlling the size and particle size distribution of CrV particles, and fine particles and coarse particles coexist in the seed layer. The magnetic film formed on such a seed layer includes:
Fine magnetic particles and coarse magnetic particles are mixed depending on the size and particle size distribution of CrV particles. Therefore,
The unit of magnetization reversal could not be reduced.

【0005】本発明の目的は、磁性膜中の磁性粒子のサ
イズを微細化し、同時に磁性粒子の粒径を均一化するこ
とができるシード層を形成するためのスパッタターゲッ
ト及びその製造法を提供することにある。
An object of the present invention is to provide a sputter target for forming a seed layer capable of reducing the size of magnetic particles in a magnetic film and at the same time making the particle size of the magnetic particles uniform, and a method of manufacturing the same. It is in.

【0006】[0006]

【課題を解決するための手段】本発明のスパッタターゲ
ットはCoO結晶粒子と、CoO結晶粒子、Co2Si
4結晶粒子,Co2TiO4結晶粒子,Ca2SiO3
晶粒子またはZnO結晶粒子等の2価〜4価の酸化物を
結晶粒子とを含み、各結晶粒子が緻密に集まっており、
かつ均一に混合・分散している。
The sputter target of the present invention comprises CoO crystal particles, CoO crystal particles, and Co 2 Si.
O 2 crystal particles, Co 2 TiO 4 crystal particles, Ca 2 SiO 3 crystal particles, ZnO crystal particles, and other divalent to tetravalent oxides and crystal particles, and each crystal particle is densely gathered;
And are uniformly mixed and dispersed.

【0007】スパッタターゲットの組成は、CoO:6
0〜98wt%と、少なくとも一種類以上の2価〜4価
の酸化物:40〜2wt%である。スパッタターゲット
中のCoOの割合が70wt%以下の場合、成膜された
シード層に非晶質部分が多くなって、CoO結晶粒子の
粒径が小さくなり過ぎる。CoOの割合が98wt%以
上の場合、CoO結晶粒子の粒径が大きくなり過ぎる。
The composition of the sputtering target is CoO: 6
0 to 98 wt%, and at least one or more divalent to tetravalent oxides: 40 to 2 wt%. If the proportion of CoO in the sputter target is 70 wt% or less, the formed seed layer has many amorphous portions, and the particle size of the CoO crystal particles is too small. When the ratio of CoO is 98 wt% or more, the particle size of the CoO crystal particles becomes too large.

【0008】本発明のターゲットはCoO粉末と、Si
2,SiO 等のSiの酸化物粉末、TiO2,Ti2
3,TiO3等のTiの酸化物粉末、CaO,CaO2
どのCaの酸化物粉末,亜鉛の酸化物ZnO粉末のう
ち、少なくとも一つ以上を選び、ボールミル混練,乾
燥,成形した後、102Pa 以下の真空中又はAr等の
非酸化性ガス雰囲気中、温度800〜1400℃,圧力
0.1〜10MPa ,時間0.2〜3.0h焼結すること
により製造される。原料粉は酸化物が好ましいが、分解
温度が低いCoCO3,CaCO3,ZnCO3等の炭酸
化合物も用いることができる。
[0008] The target of the present invention is CoO powder, Si
O 2 , SiO 2 or other Si oxide powder, TiO 2 , Ti 2 O
3 , at least one of oxide powders of Ti such as TiO 3 , powders of Ca such as CaO and CaO 2, and powders of zinc oxide ZnO, and kneaded with a ball mill, dried and molded. It is manufactured by sintering in a vacuum of 2 Pa or less or in a non-oxidizing gas atmosphere such as Ar at a temperature of 800 to 1400 ° C., a pressure of 0.1 to 10 MPa, and a time of 0.2 to 3.0 h. The raw material powder is preferably an oxide, but a carbonate compound having a low decomposition temperature such as CoCO 3 , CaCO 3 , or ZnCO 3 can also be used.

【0009】焼結は102Pa 以下の真空中又はAr等
の非酸化性ガス雰囲気中がよい。CoOは酸素が存在す
る雰囲気下で数100℃に加熱されると容易に酸化され
Co34が生成される。したがって、Co34系ターゲ
ットを得たい場合は102Pa 以上から多少の減圧雰囲
気で焼結する。一方、CoO系ターゲットを得たい場合
は102Pa 以下の真空がよい。
The sintering is preferably performed in a vacuum of 10 2 Pa or less or in a non-oxidizing gas atmosphere such as Ar. When CoO is heated to several hundred degrees centigrade in an atmosphere in which oxygen is present, it is easily oxidized to produce Co 3 O 4 . Therefore, when it is desired to obtain a Co 3 O 4 -based target, sintering is performed in a slightly reduced pressure atmosphere from 10 2 Pa or more. On the other hand, when it is desired to obtain a CoO-based target, a vacuum of 10 2 Pa or less is preferable.

【0010】102Pa 以下の真空中又は非酸化性ガス
雰囲気中では、CoOは酸化されないが、逆に還元され
金属Coを生成する。しかし、金属Coは焼結体の表面
層0.1〜0.5mm程度で生成されるだけで、内部のCo
Oは還元されないことを本発明の発明者等は見出した。
これは金属Co層が非常に緻密な膜となっており、Co
Oの分解で生成するO2 が外に逃げ出せないためであ
る。焼結後、表面のCo層を削り取れば金属Coを含有
しないCoO結晶粒子を含むターゲットを製造できる。
In a vacuum of 10 2 Pa or less or in a non-oxidizing gas atmosphere, CoO is not oxidized, but is reduced to produce metal Co. However, metallic Co is generated only in the surface layer of about 0.1 to 0.5 mm of the sintered body, and the internal Co is formed.
The present inventors have found that O is not reduced.
This is because the metal Co layer is a very dense film,
This is because O 2 generated by decomposition of O cannot escape outside. After sintering, if the Co layer on the surface is scraped off, a target containing CoO crystal particles containing no metal Co can be manufactured.

【0011】非酸化性ガスはAr,He,N2が用いら
れるが、価格の点でAr,N2がよく、窒化反応が起こ
らない点でArが最も適している。焼結は約800℃か
ら起こるが時間は約3時間かかる。焼結温度1400℃
では15分ぐらいでも焼結が進む。しかし、高温・長時
間の焼結は金属Co層が厚くなるので好ましくない。ま
た、金属Coの融点が1492℃であるから、これ以上
の温度ではCoOの分解で生成するO2 が逃げ易くな
り、内部まで還元されてしまう。好適な焼結温度は90
0〜1200℃である。
As the non-oxidizing gas, Ar, He, and N 2 are used, but Ar and N 2 are good in terms of cost, and Ar is most suitable because no nitriding reaction occurs. Sintering occurs from about 800 ° C., but takes about 3 hours. Sintering temperature 1400 ° C
Then sintering proceeds for about 15 minutes. However, sintering at a high temperature for a long time is not preferable because the metal Co layer becomes thick. In addition, since the melting point of metal Co is 1492 ° C., at a temperature higher than that, O 2 generated by decomposition of CoO easily escapes and is reduced to the inside. The preferred sintering temperature is 90
0-1200 ° C.

【0012】CoO粉とCo2SiO4,Co2TiO4
よびCaSiO4 等の2価〜4価の酸化物の中から選ば
れた少なくとも一種類以上の粉末とからターゲットを製
造する場合は、102Pa 以下の真空中又は非酸化性ガ
ス雰囲気中、温度900〜1400℃,圧力0.1 〜1
0MPa,時間0.2〜3.0h焼結することによっても
作製することができる。ただし、焼結は900℃ぐらい
から始まるので、1000〜1200℃、1〜2時間が
よい。
When a target is produced from CoO powder and at least one powder selected from divalent to tetravalent oxides such as Co 2 SiO 4 , Co 2 TiO 4 and CaSiO 4 , 10 In a vacuum of 2 Pa or less or in a non-oxidizing gas atmosphere, at a temperature of 900 to 1400 ° C and a pressure of 0.1 to 1
It can also be produced by sintering at 0 MPa for 0.2 to 3.0 hours. However, since sintering starts at about 900 ° C., 1000 to 1200 ° C. for 1 to 2 hours is preferable.

【0013】焼結は直径100mm径以下のターゲットで
あれば常圧やガス圧焼結法を用いることができる。常圧
やガス圧焼結法での焼結時間は焼結温度に依存するが、
焼結温度は1000〜1200℃では1〜2時間であ
る。大きな径のターゲットを製造する場合は、常圧やガ
ス圧焼結法では、焼結過程で成形体の収縮にともない摩
擦力が発生してクラックが入りやすくなるので、ホット
プレス又はヒップで製造するのがよい。
For sintering, a normal pressure or gas pressure sintering method can be used as long as the target has a diameter of 100 mm or less. The sintering time in normal pressure or gas pressure sintering depends on the sintering temperature,
The sintering temperature is 1 to 2 hours at 1000 to 1200 ° C. When manufacturing a target with a large diameter, in a normal pressure or gas pressure sintering method, a friction force is generated due to shrinkage of the molded body in the sintering process and cracks are easily generated, so it is manufactured by a hot press or a hip. Is good.

【0014】[0014]

【発明の実施の形態】(実施例1)本発明の第1の実施
例であるスパッタターゲットについて説明する。
(Embodiment 1) A sputter target according to a first embodiment of the present invention will be described.

【0015】CoO粉末475g,SiO2 粉末25g
を2リットルのポリエチレン製ポットに取り、バインダ
ーとしてPVB(ポリビニルブチラート)5g、分散媒
としてエタノール400mlを添加し、20時間ボール
ミル混練を行った。ボールミルのボールには直径10mm
のSi34ボールを用いた。
475 g of CoO powder, 25 g of SiO 2 powder
Was placed in a 2 liter polyethylene pot, 5 g of PVB (polyvinyl butyrate) was added as a binder, and 400 ml of ethanol was added as a dispersion medium, followed by ball mill kneading for 20 hours. 10mm diameter for ball mill ball
Using the Si 3 N 4 balls.

【0016】ボールミル混練により得られたスラリーを
ステンレス製パットに取り、ドラフト中で風乾したの
ち、直径120mmの一軸プレスを用いて30MPa加圧
し成形体を作製した。
The slurry obtained by kneading with a ball mill was placed on a stainless steel pad, air-dried in a fume hood, and then pressed at 30 MPa using a uniaxial press having a diameter of 120 mm to produce a compact.

【0017】成形体を黒鉛治具にいれ、10-1Paの真
空中,10MPaの加圧条件下,950℃で1時間ホッ
トプレスして焼結体を得た。焼結体は金属Co層で覆わ
れていた。この焼結体をダイヤモンドカッターを用いて
切断し断面を観察したところ、金属Co層の厚さは0.
3〜0.5mmで、内部はCoOの茶黒色を呈していた。
茶黒色部をX線回折により分析したところ、図1に示す
ようにCoOとCo2SiO4に基づく回折ピークのみが
検出された。茶黒色部のSEM写真を図2に示す。茶黒
色部にはCoO結晶粒子とCo2SiO4結晶粒子が観察
された。これらの結晶粒子の粒径は数μm(2〜10μ
m)と小さく、ほぼ均一に分散していた。この茶黒色部
の相対密度は約94%で非常に緻密であった。
The compact was placed in a graphite jig and hot-pressed at 950 ° C. for 1 hour under a vacuum of 10 −1 Pa and a pressure of 10 MPa to obtain a sintered body. The sintered body was covered with a metal Co layer. The sintered body was cut using a diamond cutter and its cross section was observed.
The thickness was 3 to 0.5 mm, and the inside was brownish black of CoO.
When the brownish black portion was analyzed by X-ray diffraction, only diffraction peaks based on CoO and Co 2 SiO 4 were detected as shown in FIG. FIG. 2 shows an SEM photograph of the brown-black portion. CoO crystal particles and Co 2 SiO 4 crystal particles were observed in the brownish black portion. The particle size of these crystal particles is several μm (2 to 10 μm).
m) and were almost uniformly dispersed. The relative density of this brown-black portion was about 94%, which was very dense.

【0018】焼結体の金属Co層の被覆を除去すること
によって、主成分がCoOで、Co2SiO4を副成分と
するターゲットが作製できた。
By removing the coating of the metal Co layer of the sintered body, a target having CoO as a main component and Co 2 SiO 4 as a sub-component was produced.

【0019】次に、SiO2 粉末25gに代えて、同じ
2価の酸化物であるTiO2 粉末25g,CaSiO3
粉末25g,ZnO粉末25g、またはTiO2が14.
3gとSiO2が10.7g(モル比1:1)との混合粉末
25gを用い、上述したSiO2粉末の場合と同様に焼
結体を作製した。焼結体はいずれも、表面が0.2〜0.
7mm 厚さの金属Co層で覆われていたが、内部はそれ
ぞれ、CoO結晶粒子とCo2TiO4結晶粒子、CoO
結晶粒子とCaSiO3 結晶粒子、CoO結晶粒子とZ
nO結晶粒子、CoO結晶粒子とCo2SiO4結晶粒子
およびCo2TiO4結晶粒子であることをX線回折によ
り同定した。また、内部のSEM観察により組織は緻密で
均一であることを確認した。
Next, instead of 25 g of SiO 2 powder, 25 g of TiO 2 powder, which is the same divalent oxide, and CaSiO 3
Powder 25 g, ZnO powder 25 g, or TiO 2 is 14.
Using 25 g of a mixed powder of 3 g and 10.7 g of SiO 2 (molar ratio: 1: 1), a sintered body was produced in the same manner as in the case of the above-mentioned SiO 2 powder. Each sintered body has a surface of 0.2 to 0.2.
It was covered with a 7 mm thick metal Co layer, but the insides were CoO crystal particles, Co 2 TiO 4 crystal particles, and CoO
Crystal particles and CaSiO 3 crystal particles, CoO crystal particles and Z
It was identified by X-ray diffraction that the particles were nO crystal particles, CoO crystal particles, Co 2 SiO 4 crystal particles, and Co 2 TiO 4 crystal particles. In addition, it was confirmed by SEM observation of the inside that the structure was dense and uniform.

【0020】焼結体の金属Co層の被覆を除去すること
によって、主成分がCoOで、Co2TiO4,CaSi
3,ZnO、または、Co2SiO4およびCo2TiO4
を副成分とするターゲットが作製できた。
By removing the coating of the metal Co layer of the sintered body, the main component is CoO, Co 2 TiO 4 , CaSi
O 3 , ZnO, or Co 2 SiO 4 and Co 2 TiO 4
Was produced as a sub-component.

【0021】また、CoO粉末450gに対し、3価ま
たは4価の酸化物であるCo2SiO4粉末50g、Co2Ti
4粉末50g、Ca2SiO3粉末50g、またはCo2
SiO4粉末25gとCo2TiO4粉末25gをそれぞ
れ用い、上述したのと同様に成形体を作製し、10-1
aの真空中、10MPaの加圧条件下、1000℃で1時間
ホットプレスして焼結体を作成した場合にも、上述した
のと同様なスパッタターゲットを作製することができ
た。 (実施例2)本発明の第2の実施例であるスパッタター
ゲットについて説明する。本実施例では、常圧焼結でス
パッタターゲットを作製する。
Further, 50 g of Co 2 SiO 4 powder, which is a trivalent or tetravalent oxide, and 450 g of Co 2 Ti
50 g of O 4 powder, 50 g of Ca 2 SiO 3 powder, or Co 2
Using each of 25 g of SiO 4 powder and 25 g of Co 2 TiO 4 powder, a compact was prepared in the same manner as described above, and 10 -1 P
When a sintered body was prepared by hot pressing at 1000 ° C. for 1 hour under a pressure of 10 MPa in the vacuum of a, a sputter target similar to that described above could be prepared. (Embodiment 2) A sputter target according to a second embodiment of the present invention will be described. In this embodiment, a sputter target is prepared by normal pressure sintering.

【0022】CoO粉末95gと、SiO2 粉末5gを
500mリットルのポリエチレン製ポットに取り、バイ
ンダーとしてPVB(ポリビニルブチラート)1g、分
散媒としてエタノール100mlを添加し、20時間ボ
ールミル混練を行った。ボールミルのボールには直径1
0mmのSi34ボールを用いた。ボールミル混練により
得られたスラリーをステンレス製パットに取り、ドラフ
ト中で風乾したのち、直径60mmの一軸プレスを用いて
30MPa加圧し成形体を作製した。
95 g of CoO powder and 5 g of SiO 2 powder were placed in a 500 ml polyethylene pot, 1 g of PVB (polyvinyl butyrate) was added as a binder, and 100 ml of ethanol was added as a dispersion medium, followed by ball mill kneading for 20 hours. Ball mill balls have a diameter of 1
A 0 mm Si 3 N 4 ball was used. The slurry obtained by ball mill kneading was placed in a stainless steel pad, air-dried in a fume hood, and then pressed at 30 MPa using a uniaxial press having a diameter of 60 mm to produce a compact.

【0023】次に成形体をAl23粉を敷いたAl23
板上に置き、0.2MPa のArガス中、1000℃で
2時間焼結を行い焼結体を得た。
[0023] Al 2 O 3 next molded body was lined with Al 2 O 3 powder
It was placed on a plate and sintered at 1000 ° C. for 2 hours in Ar gas of 0.2 MPa to obtain a sintered body.

【0024】次に、SiO2粉末5gに代えて、TiO2
粉末5g,CaSiO3粉末5g,ZnO粉末5g、ま
たはTiO2が2.86gとSiO2が2.14g(モル比
1:1)との混合粉末5gを用い、上述したSiO2
末の場合と同様に焼結体を作製した。
Next, instead of 5 g of SiO 2 powder, TiO 2
Using 5 g of powder, 5 g of CaSiO 3 powder, 5 g of ZnO powder, or 5 g of a mixed powder of 2.86 g of TiO 2 and 2.14 g of SiO 2 (molar ratio 1: 1), as in the case of the above-mentioned SiO 2 powder A sintered body was produced.

【0025】焼結体はいずれも、実施例1のホットプレ
スで作製した場合と同様に、表面が0.4〜0.6mm厚さ
の金属Co層で覆われていたが、内部はそれぞれ、Co
O結晶粒子とCaSiO3結晶粒子,CoO結晶粒子と
Co2TiO4結晶粒子,CoO結晶粒子とCaSiO3
晶粒子,CoO結晶粒子とZnO結晶粒子,CoO 結
晶粒子とCo2SiO4結晶粒子およびCo2TiO4結晶
粒子であり、内部の組織は緻密で均一であることを確認
した。相対密度は90〜95%であった。
The surface of each sintered body was covered with a metal Co layer having a thickness of 0.4 to 0.6 mm as in the case of the hot press of Example 1, but the inside was Co
O crystal particles and CaSiO 3 crystal particles, CoO crystal particles and Co 2 TiO 4 crystal particles, CoO crystal particles and CaSiO 3 crystal particles, CoO crystal particles and ZnO crystal particles, CoO crystal particles and Co 2 SiO 4 crystal particles and Co 2 It was TiO 4 crystal particles, and it was confirmed that the internal structure was dense and uniform. The relative density was 90-95%.

【0026】これらの焼結体の金属Co層の被覆を除去
することによって、実施例1の場合と同様のスパッタタ
ーゲットを常圧焼結でも作製することができた。 (実施例3)本発明のスパッタターゲットを用いて形成
される磁気記録媒体の一実施例の断面構造を図3に示
す。基板1として例えば2.5″ のガラス基板が用いら
れる。この基板上に実施例1のCoO粉末475gとS
iO2粉末25gとを用いて作成したスパッタターゲッ
トを用いてシード層を形成した。透過型電子顕微鏡像
(TEM)から、シード層は、粒子径分布8〜30nm,
平均粒子径15nm以下,粒子径分布の標準偏差25%
以下のCoO 結晶粒子と、この粒子周辺の0.1〜2n
m厚の非晶質部分から成る。
By removing the coating of the metal Co layer of these sintered bodies, the same sputter target as in Example 1 could be produced by normal pressure sintering. (Embodiment 3) FIG. 3 shows a sectional structure of an embodiment of a magnetic recording medium formed by using the sputter target of the present invention. For example, a 2.5 ″ glass substrate is used as the substrate 1. On this substrate, 475 g of the CoO powder of Example 1 and S
A seed layer was formed using a sputter target prepared using 25 g of iO 2 powder. Transmission electron microscope image
From (TEM), the seed layer has a particle size distribution of 8 to 30 nm,
Average particle size 15 nm or less, standard deviation of particle size distribution 25%
The following CoO 2 crystal particles and 0.1 to 2 n around the particles
It consists of a m-thick amorphous part.

【0027】この上に膜厚10〜15nmのCo−Cr
−Ptからなる磁性層が形成されるが、その粒子径はシ
ード層の粒子径が反映されるため磁性粒子の粒径分布8
〜30nm、平均粒子径15nm以下、粒子径分布の標
準偏差25%程度に制御されるため高記録密度が達成さ
れる。磁性膜の上には膜厚5nm前後のカーボン保護膜
が形成されて、磁気記録媒体が作製される。
On top of this, Co-Cr having a thickness of 10 to 15 nm is formed.
A magnetic layer made of -Pt is formed, and the particle size of the magnetic layer reflects the particle size of the seed layer.
-30 nm, the average particle diameter is 15 nm or less, and the standard deviation of the particle diameter distribution is about 25%, so that a high recording density is achieved. A carbon protective film having a thickness of about 5 nm is formed on the magnetic film, and a magnetic recording medium is manufactured.

【0028】CoO:95wt%、およびCoSiO4
とCo2TiO4(1:1モル比)との混合:5wt%を用
いて実施例2と同様に作製したターゲットAの場合、シ
ード層中のCoO粒子の平均粒子径は4nmであった。
CoO:95wt%、およびCoSiO4とCo2TiO
4(1:1モル比)との混合:5wt%を用いて実施例2
と同様に作製したターゲットA、CoO量:60wt
%、およびCoSiO4とCo2TiO4(1:1モル
比)との混合:40wt%を用いて作製したターゲット
Bの場合、シード層中のCoO粒子の平均粒子径は10
nmであった。これらのシード層の上にCo69Cr19
12(原子%)ターゲットを用いてDCスパッタ(スパ
ッタ条件は、放電ガス:純Ar,ガス圧:0.4Pa ,
基板温度:約200℃,DC電力:300W,時間:8
sec である。)により膜厚約10nmの磁性膜を形成し
た。
CoO: 95 wt%, and CoSiO 4
And Co 2 TiO 4: mixture of (1 1 molar ratio): If the target A produced in the same manner as in Example 2 using 5 wt%, an average particle diameter of CoO particles in the seed layer was 4 nm.
CoO: 95 wt%, and CoSiO 4 and Co 2 TiO
Example 2 using 5 wt% of a mixture with 4 (1: 1 molar ratio)
Target A prepared in the same manner as above, amount of CoO: 60 wt
% And a mixture of CoSiO 4 and Co 2 TiO 4 (1: 1 molar ratio): 40 wt%, the average particle diameter of the CoO particles in the seed layer is 10 wt.
nm. Co 69 Cr 19 P is deposited on these seed layers.
DC sputtering using a t 12 (atomic%) target (sputtering conditions: discharge gas: pure Ar, gas pressure: 0.4 Pa,
Substrate temperature: about 200 ° C, DC power: 300W, time: 8
sec. ), A magnetic film having a thickness of about 10 nm was formed.

【0029】磁性膜をTEM観察したところ、それぞれ
磁性粒子径は4nm,10nmで、シード層中のCoO
粒子の平均粒子径とほぼ同じであった。また、粒径分布
の標準偏差は20%以下であった。このような磁性膜で
は、磁化反転単位が小さく、20Gb/in2を超える
高記録密度が可能である。 (実施例4)CoO量を50〜100wt%とし、Co
2SiO4量,CaSiO3 量,CoSiO4+Co2Ti
4(1:1モル比)量を50〜0wt%と変化させ、実
施例1のホットプレスの場合と同様にして、直径75mm
のターゲットを作製した。得られたターゲットをRFス
パッタ装置に取り付け、2.5″ 直径のガラス基板上に
約15nm厚の膜(シード層)を形成した。スパッタ条
件は、放電ガス:純Ar,ガス圧:0.5Pa,基板温
度:約200℃,高周波電力:500W,時間:10se
cである。
When the magnetic film was observed with a TEM, the magnetic particles had diameters of 4 nm and 10 nm, respectively.
The average particle diameter was almost the same. The standard deviation of the particle size distribution was 20% or less. In such a magnetic film, the unit of magnetization reversal is small, and a high recording density exceeding 20 Gb / in 2 is possible. (Example 4) The amount of CoO was set to 50 to 100 wt%,
2 SiO 4 amount, CaSiO 3 amount, CoSiO 4 + Co 2 Ti
The O 4 (1: 1 molar ratio) amount was changed to 50 to 0 wt%, and the diameter was 75 mm in the same manner as in the hot press of Example 1.
Was prepared. The obtained target was attached to an RF sputtering apparatus, and a film (seed layer) having a thickness of about 15 nm was formed on a 2.5 ″ diameter glass substrate. The sputtering conditions were discharge gas: pure Ar, gas pressure: 0.5 Pa. , Substrate temperature: about 200 ° C., high frequency power: 500 W, time: 10 se
c.

【0030】図4に各ターゲットのCoO量と膜中のC
oO結晶粒子の平均粒子径との関係を示す。TEM観察
写真の粒子約200個の各々の面積を求め、粒子の形状
を円近似することにより平均粒子径を求めた。図から分
かるようにターゲットのCoO量が多くなるにつれシード
層中のCoO粒子の粒径は大きくなる。シード層中のC
oO結晶粒子の好適な粒径8〜20nmに対応するター
ゲット中のCoO量は約70〜98wt%で、このと
き、粒径分布の標準偏差を20%以下と小さくできる。
ターゲットの材料として用いた酸化物の種類による粒径
への影響は小さい。また、CoOを90〜98wt%、
およびCo2SiO4とCoTiO4 の混合を10〜2w
t%で、Co2SiO4とCoTiO4のモル比が0.5か
ら2.0 の範囲が、微細で均一なCoO結晶粒子を得る
のに適している。
FIG. 4 shows the amount of CoO in each target and C in the film.
The relation with the average particle diameter of oO crystal particles is shown. The area of each of about 200 particles in the TEM observation photograph was determined, and the average particle diameter was determined by approximating the shape of the particles to a circle. As can be seen from the figure, the particle size of the CoO particles in the seed layer increases as the amount of CoO in the target increases. C in seed layer
The amount of CoO in the target corresponding to the preferred particle size of the oO crystal particles of 8 to 20 nm is about 70 to 98 wt%, and the standard deviation of the particle size distribution can be reduced to 20% or less.
The effect on the particle size by the type of oxide used as the target material is small. In addition, 90-98 wt% of CoO,
And a mixture of Co 2 SiO 4 and CoTiO 4 for 10 to 2 w
At t%, the molar ratio of Co 2 SiO 4 to CoTiO 4 in the range of 0.5 to 2.0 is suitable for obtaining fine and uniform CoO crystal particles.

【0031】[0031]

【発明の効果】本発明のスパッタターゲットを用いれ
ば、シード層中のCoO粒子の粒径を微細化できかつ粒
径を均一にでき、磁性膜中の磁性粒子のサイズを微細化
し、同時に磁性粒子の粒径を均一化することができる。
According to the sputter target of the present invention, the particle size of the CoO particles in the seed layer can be reduced and the particle size can be made uniform, and the size of the magnetic particles in the magnetic film can be reduced. Can be made uniform in particle size.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スパッタターゲットのX線分析結果を示す図。FIG. 1 is a diagram showing an X-ray analysis result of a sputter target.

【図2】スパッタターゲットのSEM観察結果を示す
図。
FIG. 2 is a diagram showing the results of SEM observation of a sputter target.

【図3】スパッタターゲットを用いて作製した磁気記録
媒体の断面構造を示す図。
FIG. 3 is a diagram showing a cross-sectional structure of a magnetic recording medium manufactured using a sputter target.

【図4】スパッタターゲット中のCoO量とシード層中
のCoO粒子の粒径との関係を示す図。
FIG. 4 is a view showing the relationship between the amount of CoO in a sputter target and the particle size of CoO particles in a seed layer.

【符号の説明】[Explanation of symbols]

1…ガラス基板、2…シード層、3…磁性膜、4…保護
膜。
1. Glass substrate, 2. Seed layer, 3. Magnetic film, 4. Protective film.

フロントページの続き (72)発明者 内藤 孝 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 鈴木 康隆 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 中澤 哲夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山本 浩貴 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 本田 光利 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小園 裕三 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 平野 辰巳 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4G048 AA03 AB01 AB05 AC08 AD02 AD03 AE05 4G073 BA11 BA20 BA40 BA63 BD12 BD18 BD20 CC08 CD01 FD01 FD23 FD25 FD27 UB11 4K029 BA50 BC06 BD11 DC05 DC09 5D112 AA03 BD01 FA04 FB02 Continued on the front page (72) Inventor Takashi Naito 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Yasutaka Suzuki 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Laboratory (72) Inventor Tetsuo Nakazawa 1-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Laboratory (72) Inventor Hiroki Yamamoto 7-chome, Omikamachi, Hitachi City, Ibaraki Prefecture No. 1-1 Inside Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Mitsutoshi Honda 1-1-1, Omika-cho, Hitachi City, Hitachi, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Yuzo Kozono Hitachi, Ibaraki Prefecture 7-1-1, Omika-cho, Hitachi-shi, Ltd. Hitachi, Ltd., Hitachi Research Laboratory (72) Inventor Tatsumi Hirano 7-1-1, Omika-cho, Hitachi, Ibaraki, Japan F-term in Hitachi, Ltd. Hitachi Research Laboratory 4G048 AA03 AB01 AB05 AC08 AD02 AD03 AE05 4G073 BA11 BA20 BA 40 BA63 BD12 BD18 BD20 CC08 CD01 FD01 FD23 FD25 FD27 UB11 4K029 BA50 BC06 BD11 DC05 DC09 5D112 AA03 BD01 FA04 FB02

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】CoOと、2価−4価の酸化物とを含むこ
とを特徴とするスパッタターゲット。
1. A sputter target comprising CoO and a divalent / tetravalent oxide.
【請求項2】前記CoOが60〜98wt%と、前記2
価−4価の酸化物が40〜2wt%とが含まれることを
特徴とする請求項1のスパッタターゲット。
2. The method according to claim 1, wherein the CoO content is 60 to 98 wt%,
The sputter target according to claim 1, wherein the valence-4 valence oxide contains 40 to 2 wt%.
【請求項3】前記2価−4価の酸化物は、Co2Si
4,Co2TiO4,Ca2SiO3 またはZnOである
ことを特徴とする請求項1のスパッタターゲット。
3. The divalent to tetravalent oxide is Co 2 Si.
2. The sputter target according to claim 1, wherein the target is O 4 , Co 2 TiO 4 , Ca 2 SiO 3 or ZnO.
【請求項4】前記CoOが60〜98wt%と、前記C
2SiO4および前記Co2TiO4を合わせて40〜2
wt%とが含まれ、前記Co2SiO4と前記Co2Ti
4の混合割合がモル比で0.5から2.0の範囲にある
ことを特徴とする請求項1のスパッタターゲット。
4. The method according to claim 1, wherein said CoO is 60-98 wt% and said C
o 2 SiO 4 and the above-mentioned Co 2 TiO 4 in total of 40 to 2
wt%, the Co 2 SiO 4 and the Co 2 Ti
2. The sputter target according to claim 1, wherein the mixing ratio of O 4 is in the range of 0.5 to 2.0 in molar ratio.
【請求項5】CoO結晶粒子と、前記2価−4価の酸化
物の結晶粒子の平均粒径が2〜10μmであることを特
徴とする請求項1のスパッタターゲット。
5. The sputter target according to claim 1, wherein the average particle diameter of the CoO crystal particles and the crystal particles of the divalent / tetravalent oxide is 2 to 10 μm.
【請求項6】CoO粉末と、2価−4価の酸化物の粉末
とを混合し、混合された粉末を加圧成形し、加圧成形体
を焼結することを特徴とするスパッタターゲットの製造
方法。
6. A sputter target characterized in that a CoO powder and a divalent to tetravalent oxide powder are mixed, the mixed powder is pressed, and the pressed compact is sintered. Production method.
【請求項7】前記2価−4価の酸化物は、Co2Si
4,Co2TiO4,Ca2SiO3またはZnOである
ことを特徴とする請求項6のスパッタターゲットの製造
方法。
7. The divalent to tetravalent oxide is Co 2 Si.
7. The method according to claim 6, wherein the sputtering target is O 4 , Co 2 TiO 4 , Ca 2 SiO 3 or ZnO.
【請求項8】前記CoO粉末が60〜98wt%と、前
記2価−4価の酸化物の粉末が40〜2wt%とを混合
することを特徴とする請求項6のスパッタターゲットの
製造方法。
8. The method for manufacturing a sputter target according to claim 6, wherein the CoO powder is mixed with 60 to 98 wt% and the divalent / tetravalent oxide powder is mixed with 40 to 2 wt%.
【請求項9】前記CoO粉末が60〜98wt%と、S
iO2とTiO2 の粉末を合わせて40〜2wt%とを
混合し、SiO2 とTiO2の粉末の混合割合がモル比
で0.5から2.0の範囲にあることを特徴とする請求項
6のスパッタターゲットの製造方法。
9. The method according to claim 1, wherein said CoO powder is contained in an amount of 60 to 98 wt%.
iO 2 and the combined powder of TiO 2 were mixed and 40~2wt%, the mixing ratio of SiO 2 and TiO 2 powder is characterized in that in the range of from 0.5 molar ratio 2.0 claimed Item 6. The method for producing a sputter target according to item 6.
【請求項10】前記CoO粉末が60〜98wt%と、
SiO2とTiO2 の粉末を合わせて40〜2wt%と
を混合し、加圧成形し、前記加圧成形体を102Pa以
下の真空中又は非酸化性ガス雰囲気中で、温度800〜
1400℃,圧力0.1 〜10MPa,時間0.2〜3.
0h焼結することを特徴とする請求項6のスパッタター
ゲットの製造方法。
10. The method according to claim 10, wherein said CoO powder is 60 to 98 wt%.
The powders of SiO 2 and TiO 2 are combined in a total amount of 40 to 2 % by weight, and pressed, and the pressed body is heated to a temperature of 800 to less than 10 2 Pa in a vacuum or a non-oxidizing gas atmosphere.
1400 ° C, pressure 0.1 ~ 10MPa, time 0.2 ~ 3.
The method for manufacturing a sputter target according to claim 6, wherein the sintering is performed for 0h.
【請求項11】前記加圧成形体を102Pa以下の真空
中又は非酸化性ガス雰囲気中で、温度900〜1400
℃,圧力0.1〜10MPa,時間0.1〜3.0h焼結
することを特徴とする請求項6のスパッタターゲットの
製造方法。
11. The pressure-formed body is heated to a temperature of 900 to 1400 in a vacuum of 10 2 Pa or less or in a non-oxidizing gas atmosphere.
7. The method for producing a sputter target according to claim 6, wherein the sintering is performed at a temperature of 0.1 to 10 MPa for 0.1 to 3.0 hours.
JP2000121057A 2000-04-17 2000-04-17 Sputtering target Pending JP2001295037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000121057A JP2001295037A (en) 2000-04-17 2000-04-17 Sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000121057A JP2001295037A (en) 2000-04-17 2000-04-17 Sputtering target

Publications (1)

Publication Number Publication Date
JP2001295037A true JP2001295037A (en) 2001-10-26

Family

ID=18631770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000121057A Pending JP2001295037A (en) 2000-04-17 2000-04-17 Sputtering target

Country Status (1)

Country Link
JP (1) JP2001295037A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1720156A1 (en) * 2005-05-06 2006-11-08 Hitachi Global Storage Technologies Netherlands B.V. Manufacturing of magnetic recording medium
EP1930884A1 (en) * 2006-12-05 2008-06-11 Heraeus, Inc. Ni-X, NI-Y, and NI-X-Y alloys with or without oxides as sputter targets for perpendicular magnetic recording
CN102041475A (en) * 2010-12-30 2011-05-04 陕西科技大学 Method for preparing cobalt titanate film by using hybrid target magnetron sputtering process
CN102041476A (en) * 2010-12-30 2011-05-04 陕西科技大学 Method for preparing cobalt titanate film by dual-target magnetron sputtering method
CN106859658A (en) * 2017-02-14 2017-06-20 西南政法大学 The preparation of spinel-type Preen nono powder and its finger mark process for show

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1720156A1 (en) * 2005-05-06 2006-11-08 Hitachi Global Storage Technologies Netherlands B.V. Manufacturing of magnetic recording medium
US7645363B2 (en) 2005-05-06 2010-01-12 Hitachi Global Storage Technologies Netherlands B.V. Manufacturing of magnetic recording medium
EP1930884A1 (en) * 2006-12-05 2008-06-11 Heraeus, Inc. Ni-X, NI-Y, and NI-X-Y alloys with or without oxides as sputter targets for perpendicular magnetic recording
CN102041475A (en) * 2010-12-30 2011-05-04 陕西科技大学 Method for preparing cobalt titanate film by using hybrid target magnetron sputtering process
CN102041476A (en) * 2010-12-30 2011-05-04 陕西科技大学 Method for preparing cobalt titanate film by dual-target magnetron sputtering method
CN106859658A (en) * 2017-02-14 2017-06-20 西南政法大学 The preparation of spinel-type Preen nono powder and its finger mark process for show

Similar Documents

Publication Publication Date Title
JP2687683B2 (en) Composite material and method for producing the same
JP2012052227A (en) Method for manufacturing sputtering target, and sputtering target
JP6692724B2 (en) Non-magnetic material dispersed Fe-Pt based sputtering target
JP2001295037A (en) Sputtering target
JPH0578107A (en) Nitride powder
EP0330121B1 (en) Non-magnetic substrate of magnetic head, magnetic head and method for producing substrate
CN104126026A (en) Ferromagnetic material sputtering target containing chrome oxide
JP4962905B2 (en) Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
US5231555A (en) Magnetic head comprising a laminated magnetic layer structure between non magnetic rock salt structure oxide substrates
JP2019116682A (en) Ruthenium/rhenium-containing sputtering target, ruthenium/rhenium-containing layer, and manufacturing method therefor
TWI761264B (en) Fe-pt-ag based sputtering target and method of preparing the same
JPH06248445A (en) Sputtering target and magnetic thin film and thin-film magnetic head formed by using the same
JP2833724B2 (en) Manufacturing method of soft ferrite magnetic material
TWI834072B (en) Ru-al alloy target and method of preparing the same
JP3127824B2 (en) Sputtering target for forming ferroelectric film and method for manufacturing the same
JP3129046B2 (en) Sputtered sintered target material with excellent thermal shock resistance
JPH11172423A (en) Production of electrically conductive high-density titanium oxide target
JP4517331B2 (en) Manufacturing method of titanium oxide target with excellent strength and spatter crack resistance
US20130008784A1 (en) Cocrpt-based alloy sputtering targets with cobalt oxide and non-magnetic oxide and manufacturing methods thereof
JPH04321555A (en) Ceramic material and its production
JP3085619B2 (en) Non-magnetic ceramics
WO2022049935A1 (en) Sputtering target, manufacturing method therefor, and manufacturing method for magnetic recording medium
JPS60192410A (en) Surface acoustic wave element
JPH0782616B2 (en) Non-magnetic substrate for magnetic head
JPH0533100A (en) Production of alloy series sintered body