JPH0532700B2 - - Google Patents

Info

Publication number
JPH0532700B2
JPH0532700B2 JP58118682A JP11868283A JPH0532700B2 JP H0532700 B2 JPH0532700 B2 JP H0532700B2 JP 58118682 A JP58118682 A JP 58118682A JP 11868283 A JP11868283 A JP 11868283A JP H0532700 B2 JPH0532700 B2 JP H0532700B2
Authority
JP
Japan
Prior art keywords
graphite crucible
sample
inert gas
gas atmosphere
powder sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58118682A
Other languages
Japanese (ja)
Other versions
JPS608749A (en
Inventor
Katsuya Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP58118682A priority Critical patent/JPS608749A/en
Publication of JPS608749A publication Critical patent/JPS608749A/en
Publication of JPH0532700B2 publication Critical patent/JPH0532700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • G01N33/2025Gaseous constituents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】 本発明は、不活性ガス雰囲気中で一対の電極間
に黒鉛るつぼを設置し、これら両電極に電圧を印
加して前記黒鉛るつぼを高温に加熱して脱ガスを
行ない、その後、黒鉛るつぼに金属等の粉粒体試
料を挿入し、再び不活性ガス雰囲気中で前記黒鉛
るつぼを加熱して試料を融解し、その試料から抽
出される成分ガスの定量をおこなう方法における
黒鉛るつぼの二次脱ガスを実施することを特徴と
する粉粒体試料の定量方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves installing a graphite crucible between a pair of electrodes in an inert gas atmosphere, applying a voltage to both electrodes, heating the graphite crucible to a high temperature, and degassing the crucible. Thereafter, a powder sample of metal or the like is inserted into a graphite crucible, the graphite crucible is heated again in an inert gas atmosphere to melt the sample, and the component gases extracted from the sample are quantified. The present invention relates to a method for quantifying a powder sample, which is characterized by performing secondary degassing of a graphite crucible.

まず、従来の定量装置ならびにその定量方法に
つき、第1図をもとに説明すると、図中1と2は
一対の電極で、これら電極1,2間には黒鉛るつ
ぼ4が設置されている。14は黒鉛るつぼ4の上
方に配設された試料ホルダで、このホルダ14は
ケーシング15内に回転自在に支持されている。
ケーシング15には開閉自在なシヤツタ16が設
けられ、前記ケーシング15内部ならびに黒鉛る
つぼ4周囲が不活性のキヤリアガスで満たされる
ように構成されている。このように構成された定
量装置は、るつぼ4の脱ガスを行ない、ついでシ
ヤツタ16を開けて試料ホルダ14内に定量の金
属試料13を挿入し、シヤツタ16を閉じた後、
試料ホルダ14を回転させて金属試料13をるつ
ぼ4に落下、挿入するのであるが、金属試料13
がバリ片のある切粉や粉粒体のような特殊なもの
であると、該試料13が試料ホルダ14に引つ掛
かつたり付着したり、あるいはホルダ14外に落
下したりして、確実にその全量を黒鉛るつぼ4に
挿入することができない難点があつた。このよう
な事態が生ずれば、正確なガス測定ができないば
かりか、場合によつては異常分析結果の原因とも
なる。また、シヤツタ16を開閉して金属試料1
3をホルダ14に挿入する際、シヤツタ16のシ
ール17に付着して不良を招くおそれすらあつ
た。
First, a conventional quantitative device and its quantitative method will be explained with reference to FIG. 1. In the figure, 1 and 2 are a pair of electrodes, and a graphite crucible 4 is installed between these electrodes 1 and 2. Reference numeral 14 denotes a sample holder disposed above the graphite crucible 4, and this holder 14 is rotatably supported within the casing 15.
The casing 15 is provided with a shutter 16 that can be opened and closed, and is configured so that the inside of the casing 15 and the surrounding area of the graphite crucible 4 are filled with an inert carrier gas. The quantitative device configured in this manner degasses the crucible 4, then opens the shutter 16, inserts a quantitative amount of the metal sample 13 into the sample holder 14, and closes the shutter 16, then
The sample holder 14 is rotated to drop and insert the metal sample 13 into the crucible 4.
If the sample 13 is a special material such as chips or powder particles with burrs, the sample 13 may get caught or stick to the sample holder 14, or fall outside the holder 14, and However, there was a problem in that the entire amount could not be inserted into the graphite crucible 4. If such a situation occurs, not only will accurate gas measurement not be possible, but in some cases it may also cause abnormal analysis results. Also, open and close the shutter 16 to remove the metal sample 1.
3 into the holder 14, there was even a risk that it would adhere to the seal 17 of the shutter 16 and cause a defect.

本発明は、このような従来方法の難点を解消
し、常に定量の粉粒体試料を確実に黒鉛るつぼ内
に挿入し、かつ精度の高いガス分析を行なうこと
のできる新規で有用な定量方法を提供せんとする
ものである。
The present invention solves the difficulties of the conventional methods and provides a new and useful quantitative method that can always reliably insert a fixed amount of powder sample into a graphite crucible and perform highly accurate gas analysis. This is what we intend to provide.

本発明方法の実施の態様を第2図〜第4図にも
とづいて説明すると、図中1,2は上下一対の電
極で、それぞれ電源3に接続され、これら電極
1,2間には黒鉛るつぼ4が設置されている。上
方の電極1には、不活性のキアリアガス挿入用の
パイプ5と計測系6へのパイプ7が連通され、両
電極1,2を閉じた状態においては両電極1,2
が互いにシールされ、黒鉛るつぼ4が不活性ガス
雰囲気中に置かれるように構成されている。前記
計測系6はカラムまたは試薬8、除去試薬9、検
出器10などからなり、この計測系6と上方電極
1との間のパイプ7には切換弁11が介在されて
いて、上方電極1及び下方電極2内からのガスを
放出パイプ12を介して系外へ放出したり、ある
いは計測系6に送り込んだり、択一的に切換え可
能に構成されている。
The embodiment of the method of the present invention will be explained based on FIGS. 2 to 4. In the figures, 1 and 2 are a pair of upper and lower electrodes, each connected to a power source 3, and a graphite crucible is connected between these electrodes 1 and 2. 4 are installed. A pipe 5 for inserting inert Chiaria gas and a pipe 7 to a measurement system 6 are connected to the upper electrode 1, and when both electrodes 1 and 2 are closed, both electrodes 1 and 2 are connected to each other.
are sealed together and the graphite crucible 4 is placed in an inert gas atmosphere. The measurement system 6 includes a column or reagent 8, a removal reagent 9, a detector 10, etc. A switching valve 11 is interposed in the pipe 7 between the measurement system 6 and the upper electrode 1. The gas from within the lower electrode 2 can be selectively discharged to the outside of the system via the discharge pipe 12 or sent to the measurement system 6.

次に、この装置を用いて粉粒体試料13を定量
する方法について説明すると、まず、従来と同様
に、両電極1,2に電力を加えて、黒鉛るつぼ4
を不活性ガス雰囲気中で高温加熱し、るつぼ4の
脱ガスを行なう。この場合には切換弁11によ
り、上方電極1及び下方電極2内からのガスを系
外に放出するようにしておく。次に、両電極1,
2を分離して黒鉛るつぼ4を不活性ガス雰囲気中
から取り出し、定量の粉粒体試料13を挿入す
る。このように、不活性ガス雰囲気中から取り出
した黒鉛るつぼ4に粉粒体試料13を直接挿入す
るものであるから、所望量の粉粒体試料13を外
部に付着させたり落ちこぼしたりすることなく、
確実に正味量を挿入することができ、挿入時の定
量が正確におこなえるようになつた。その後、る
つぼ4を再び両電極1,2間に設置して、不活性
ガス雰囲気中に置くのである。
Next, to explain how to quantify the powder sample 13 using this device, first, as in the conventional method, power is applied to both electrodes 1 and 2, and the graphite crucible 4 is
is heated at high temperature in an inert gas atmosphere to degas the crucible 4. In this case, the gas from inside the upper electrode 1 and the lower electrode 2 is discharged to the outside of the system by the switching valve 11. Next, both electrodes 1,
2 is separated, the graphite crucible 4 is taken out from the inert gas atmosphere, and a fixed amount of the powder sample 13 is inserted. In this way, since the powder sample 13 is directly inserted into the graphite crucible 4 taken out from the inert gas atmosphere, the desired amount of powder sample 13 can be inserted without adhering to the outside or spilling. ,
It has become possible to reliably insert the net amount and accurately quantify the amount at the time of insertion. Thereafter, the crucible 4 is again placed between the electrodes 1 and 2 and placed in an inert gas atmosphere.

しかし、このとき、脱ガス時に活性化された黒
鉛るつぼ4を大気中に取り出しているのでO2
H2Oなどが付着しており、そのまま加熱した場
合には、そのO2やH2Oなどが粉粒体試料13か
らの抽出成分ガスに混入して計測系6に送られる
ことになる。そうすると、測定すべきOやHのブ
ランク値が上昇したり、N測定へのクロマイトグ
ラフ上への影響が生じて正確なガス測定ができな
くなるばかりか、酸化試薬などの劣化速度を速め
るなど種々の不都合が生ずる。
However, at this time, since the graphite crucible 4 activated during degassing is taken out into the atmosphere, O 2 and
If H 2 O or the like is attached and the sample is heated as it is, the O 2 or H 2 O will be mixed into the extracted component gas from the powder sample 13 and sent to the measurement system 6 . If this happens, the blank values of O and H to be measured will increase, and the N measurement will be affected on the chromatograph, making accurate gas measurement impossible. This will cause inconvenience.

そこで、本発明による試料定量方法では、再び
不活性ガス雰囲気中で黒鉛るつぼ4を加熱する際
に、粉粒体試料13が融解する前に、第4図に示
すように、粉粒体試料13から測定すべき成分ガ
スが抽出しない程度の低温度で黒鉛るつぼ4を加
熱して二次脱ガスを行ない、上方電極1及び下方
電極2内からのガスを系外に放出させるようにし
たのである。そして、その後、所定の高温度で黒
鉛るつぼ4を加熱して粉粒体試料13を融解して
その成分ガスを計測系6へ送ることにより、所望
通りの精度の高いガス測定を行ない得るのであ
る。
Therefore, in the sample quantitative method according to the present invention, when the graphite crucible 4 is heated again in an inert gas atmosphere, the powder sample 13 is heated as shown in FIG. 4 before the powder sample 13 is melted. Secondary degassing is performed by heating the graphite crucible 4 at a temperature low enough to prevent the component gases to be measured from being extracted from the graphite crucible 4, thereby releasing the gas from the upper electrode 1 and the lower electrode 2 to the outside of the system. . Thereafter, by heating the graphite crucible 4 at a predetermined high temperature to melt the powder sample 13 and sending its component gas to the measurement system 6, it is possible to perform highly accurate gas measurements as desired. .

この二次脱ガスは、試料融解時よりも相対的に
低い温度、すなわち、例えば50〜100℃の温度で
最大数分間行なう。これにより、前述したよう
に、粉粒体試料13から成分ガスを発生させるこ
となく、黒鉛るつぼ4に付着した大気中成分のみ
を除去することができる。なお、その際に少量の
キヤリアガスを供給すればより効果的に付着成分
を除去することができる。ちなみに、かかる脱ガ
ス方法とは別に、多量のキヤリアガスを用いたパ
ージによる付着成分除去法もあるが、その除去効
果は十分ではなく、かつコスト高となる等の難点
があり、本実施例の方法には及ぶべくもない。
This secondary degassing is performed at a temperature relatively lower than that during sample melting, ie, for example, at a temperature of 50 to 100° C. for a maximum of several minutes. Thereby, as described above, only the atmospheric components adhering to the graphite crucible 4 can be removed without generating component gases from the powder sample 13. Note that if a small amount of carrier gas is supplied at this time, the adhered components can be removed more effectively. Incidentally, apart from such a degassing method, there is also a method for removing adhered components by purging using a large amount of carrier gas, but the removal effect is not sufficient and there are drawbacks such as high cost. There's no way it can reach that.

ところで、上述のような二次脱ガスをおこなう
場合において、測定すべきガスがHの場合には二
次脱ガスの際に、粉粒体試料13から、このHが
H2として抽出されてしまう場合がある。しかし、
黒鉛るつぼ4に付着したH2Oは、そのままH2O
として抽出されるので、二次脱ガスの際、その抽
出ガスをそのまま計測系6に送るようにしてい
る。かくすれば、計測系6の試薬8において、黒
鉛るつぼ4から抽出されたH2Oが除去されるの
で、検出器10で粉粒体試料13からのH2を確
実に測定することができる。よつて、この測定値
に粉粒体試料13の融解時に測定したH2の値を
加算することにより、粉粒体試料13から抽出さ
れたH2の真の値を測定することができるのであ
る。
By the way, when performing secondary degassing as described above, if the gas to be measured is H, this H is removed from the powder sample 13 during the secondary degassing.
It may be extracted as H 2 . but,
The H 2 O attached to the graphite crucible 4 remains as H 2 O.
Therefore, during secondary degassing, the extracted gas is directly sent to the measurement system 6. In this way, H 2 O extracted from the graphite crucible 4 is removed in the reagent 8 of the measurement system 6, so that the detector 10 can reliably measure H 2 from the powder sample 13. Therefore, by adding the H 2 value measured when the powder sample 13 is melted to this measurement value, the true value of H 2 extracted from the powder sample 13 can be measured. .

以上の説明から明らかなように、本発明による
試料定量方法では、まず、黒鉛るつぼを不活性ガ
ス雰囲気中から取り出し可能に構成するととも
に、不活性ガス雰囲気中で前記黒鉛るつぼの脱ガ
スをおこなつた後に、前記黒鉛るつぼを不活性ガ
ス雰囲気中から取り出してその黒鉛るつぼ自体に
直接粉粒体試料を挿入するようにしたので、粉粒
体試料を外部に付着させたり落ちこぼしたりする
ことなく、確実に正味量をその黒鉛るつぼに挿入
することができる。つまり、粉粒体試料の正確な
挿入時定量が可能となつた。
As is clear from the above description, in the method for quantifying a sample according to the present invention, first, a graphite crucible is configured to be removable from an inert gas atmosphere, and the graphite crucible is degassed in an inert gas atmosphere. After that, the graphite crucible is taken out of the inert gas atmosphere and the powder sample is directly inserted into the graphite crucible itself, so the powder sample does not stick to the outside or fall out. It is possible to ensure that a net amount is inserted into the graphite crucible. In other words, it has become possible to accurately quantify the powder sample at the time of insertion.

そして、上述の脱ガス後に、再び不活性ガス雰
囲気中でその黒鉛るつぼを加熱する際に、前記粉
粒体試料が融解する前に、その粉粒体試料から成
分ガスを発生させることなく前記黒鉛るつぼの付
着成分を除去するべく、50℃〜100℃の低温で前
記黒鉛るつぼを加熱する二次脱ガスをおこなうよ
うにしたので、粉粒体試料の挿入時に、前記黒鉛
るつぼに付着したO2やH2O等の大気中成分を効
果的に除去することができ、前述した粉粒体試料
の正確な挿入時定量と相まつて、精度の高い成分
ガスの定量が可能となつた。
After the above-mentioned degassing, when the graphite crucible is heated again in an inert gas atmosphere, the graphite crucible is heated without generating any component gas from the powder sample before the powder sample melts. In order to remove the components adhering to the crucible, secondary degassing was performed by heating the graphite crucible at a low temperature of 50°C to 100°C, so when the powder sample was inserted, the O 2 adhering to the graphite crucible was removed. It is possible to effectively remove atmospheric components such as and H 2 O, and in combination with the above-mentioned accurate quantification when inserting a powder sample, it has become possible to quantify component gases with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の定量装置の概略図、第2図、第
3図は本発明の方法を説明するための定量装置の
概略図、第4図は本発明の方法を示すグラフであ
る。 1,2……電極、4……黒鉛るつぼ、13……
粉粒体試料。
FIG. 1 is a schematic diagram of a conventional quantitative device, FIGS. 2 and 3 are schematic diagrams of a quantitative device for explaining the method of the present invention, and FIG. 4 is a graph showing the method of the present invention. 1, 2... Electrode, 4... Graphite crucible, 13...
Powder sample.

Claims (1)

【特許請求の範囲】[Claims] 1 不活性ガス雰囲気中に設けた一対の電極間に
黒鉛るつぼを設置し、これら両電極に電圧を印加
し、前記黒鉛るつぼを高温に加熱して脱ガスをお
こなつた後、前記黒鉛るつぼ内に試料を挿入し、
再び不活性ガス雰囲気中で前記黒鉛るつぼを高温
で加熱し、前記試料から抽出される成分ガスの定
量をおこなう試料定量方法において、前記黒鉛る
つぼを不活性ガス雰囲気中から取り出し可能に構
成するとともに、不活性ガス雰囲気中で前記黒鉛
るつぼの脱ガスをおこなつた後に、前記黒鉛るつ
ぼを不活性ガス雰囲気中から取り出してその黒鉛
るつぼ自体に直接粉粒体試料を挿入し、再び不活
性ガス雰囲気中でその黒鉛るつぼを加熱する際
に、前記粉粒体試料が融解する前に、その粉粒体
試料から成分ガスを発生させることなく前記黒鉛
るつぼの付着成分を除去するべく、50℃〜100℃
の低温で前記黒鉛るつぼを加熱する二次脱ガスを
おこなうことを特徴とする黒鉛るつぼを用いた試
料定量方法。
1. A graphite crucible is installed between a pair of electrodes provided in an inert gas atmosphere, a voltage is applied to both electrodes, the graphite crucible is heated to a high temperature and degassed, and then the inside of the graphite crucible is Insert the sample into the
In the sample quantification method of heating the graphite crucible at high temperature again in an inert gas atmosphere and quantifying the component gas extracted from the sample, the graphite crucible is configured to be removable from the inert gas atmosphere, and After degassing the graphite crucible in an inert gas atmosphere, the graphite crucible is taken out of the inert gas atmosphere, a powder sample is directly inserted into the graphite crucible itself, and the graphite crucible is placed in the inert gas atmosphere again. When heating the graphite crucible at 50°C to 100°C, in order to remove the components attached to the graphite crucible without generating component gas from the powder sample before the powder sample melts.
A method for quantifying a sample using a graphite crucible, characterized in that secondary degassing is performed by heating the graphite crucible at a low temperature of .
JP58118682A 1983-06-28 1983-06-28 Quantitative analysis of sample such as metal using graphite crucible Granted JPS608749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58118682A JPS608749A (en) 1983-06-28 1983-06-28 Quantitative analysis of sample such as metal using graphite crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58118682A JPS608749A (en) 1983-06-28 1983-06-28 Quantitative analysis of sample such as metal using graphite crucible

Publications (2)

Publication Number Publication Date
JPS608749A JPS608749A (en) 1985-01-17
JPH0532700B2 true JPH0532700B2 (en) 1993-05-17

Family

ID=14742587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58118682A Granted JPS608749A (en) 1983-06-28 1983-06-28 Quantitative analysis of sample such as metal using graphite crucible

Country Status (1)

Country Link
JP (1) JPS608749A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620997Y2 (en) * 1985-02-23 1994-06-01 株式会社堀場製作所 Elemental analyzer for samples using crucible
JPH02234061A (en) * 1989-03-08 1990-09-17 Horiba Ltd Extraction method for gas for analysis of sample
JPH0740027B2 (en) * 1989-03-16 1995-05-01 株式会社堀場製作所 Elemental analysis method
JP2949501B2 (en) * 1989-03-29 1999-09-13 株式会社 堀場製作所 Gas extractor for sample analysis
JP2856006B2 (en) * 1992-11-13 1999-02-10 日本鋼管株式会社 Trace oxygen analysis method for steel
EP4276458B1 (en) * 2022-05-12 2024-05-01 C. Gerhardt GmbH & Co. KG Analytic device for elementary analysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227071A (en) * 1975-08-27 1977-03-01 Hitachi Ltd Simple method of removing substances deposited on vessel walls
JPS55166044A (en) * 1979-06-07 1980-12-24 Oceanography Int Corp Method of and apparatus for measuring whole organic carbon
JPS5640434A (en) * 1979-09-08 1981-04-16 Horiba Ltd Graphite crucible

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227071A (en) * 1975-08-27 1977-03-01 Hitachi Ltd Simple method of removing substances deposited on vessel walls
JPS55166044A (en) * 1979-06-07 1980-12-24 Oceanography Int Corp Method of and apparatus for measuring whole organic carbon
JPS5640434A (en) * 1979-09-08 1981-04-16 Horiba Ltd Graphite crucible

Also Published As

Publication number Publication date
JPS608749A (en) 1985-01-17

Similar Documents

Publication Publication Date Title
JPH0532700B2 (en)
Fassel et al. Emission spectrometric determination of oxygen in titanium and titanium alloys
Moriyama et al. Sample preparation for X-ray fluorescence analysis. VII. Liquid sample
US5591894A (en) Hydrogen sampler for molten metal and method
US4800747A (en) Method of measuring oxygen in silicon
US4590809A (en) Sampler and an apparatus for hydrogen determination in molten metal
JPH09166589A (en) Rapid analyzing method for iron-steel slug
JP2583196Y2 (en) Graphite crucible
JP2949501B2 (en) Gas extractor for sample analysis
Peterson Spectrochemical Determination of Iron; Magnesium, and Manganese in Titanium Metal
US3877311A (en) Method for sieving a sample of particulate materials from a sintering charge
JPH0224344B2 (en)
US4992732A (en) Method and apparatus for magnetic testing of metallic work pieces
GB2040750A (en) Molten metal sampler
JPS6027847A (en) Preparation of specimen for fluorescent x-ray analysis
JP3569711B2 (en) X-ray analysis method
JP2800805B2 (en) Method for analyzing composition of integrated circuit device
JP2001249063A (en) Probe for collecting molten metal sample
Bryan et al. Determination of Nitrogen and Oxygen in Steels Using Inert Gas Fusion-Chromatography
Desmet et al. Recovery of mercury from dental amalgam waste
JPH0674949A (en) Disk type molten metal sample gathering device
SU1096547A1 (en) Device for determination of gas content in metals
JPH1164186A (en) Preparing method for specimen for fluorescent x-ray analysis
Worley et al. Accurate quantification of dried residue thin films using X-ray fluorescence
DE4227684A1 (en) Process for the disposal of high temperature storage batteries