JPS6027847A - Preparation of specimen for fluorescent x-ray analysis - Google Patents

Preparation of specimen for fluorescent x-ray analysis

Info

Publication number
JPS6027847A
JPS6027847A JP58135111A JP13511183A JPS6027847A JP S6027847 A JPS6027847 A JP S6027847A JP 58135111 A JP58135111 A JP 58135111A JP 13511183 A JP13511183 A JP 13511183A JP S6027847 A JPS6027847 A JP S6027847A
Authority
JP
Japan
Prior art keywords
crucible
specimen
flux
powder
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58135111A
Other languages
Japanese (ja)
Inventor
Tadashi Tada
多田 正
Kihachiro Osaka
大坂 喜八郎
Minoru Shibata
実 柴田
Nobutaka Fujiwara
信孝 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58135111A priority Critical patent/JPS6027847A/en
Publication of JPS6027847A publication Critical patent/JPS6027847A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To prevent damage on the surface of a crucible, by preparing a glass- bead specimen by charging consecutively flux, combustible fibrous material, powder specimen and flux into a Pt crucible and allowing the charge to be heated and melted in a sandwich condition by the flux. CONSTITUTION:On the bottom of a Pt crucible 1 a layer 2 of flux (for example, sodium borate) of the specified quantity (4-6 times of the specimens) is spread and combustible fibrous material (for example, filter paper) is spread and on top of the composite layer. A mass of powder specimen 4 (iron are, blast-furnace slug. convertor slug, sintered ore, etc.) of the specified quantity is charged in a layer in such a way that the charge contacts the inner periphery of the Pt crucible and the top surface of the powder specimen is covered and the specified quantity of peeling agent 5 is added. Thus, the powder specimen and the combustible fibrous material are made in the sandwich condition with the flux and after the charge is heated and melted without allowing the powder specimen to contact the Pt crucible and a glass-bead specimen is prepared by normal temperature cooling. Thus, any damage of the crucible surface is prevented.

Description

【発明の詳細な説明】 るものである。[Detailed description of the invention] It is something that

従来鉄鉱石、高炉スラグ、転炉スラグ及び焼結鉱等の粉
末試料の成分含有量を定量する方法として、蛍光X線分
析法が採用されている。この蛍光X線分析法は、試料K
X線を照射すると元素に特有の二次X線が発生し、その
発生量を検出することによって成分含有量を決定するも
のである。分析試料として、従来は粉末試料をプレス成
型したものを用いていたが、鉱物的履歴、粒度、共存元
素等による影響を受けて定量値に誤差が生ずる。
Conventionally, fluorescent X-ray analysis has been employed as a method for quantifying the component content of powder samples such as iron ore, blast furnace slag, converter slag, and sintered ore. This fluorescent X-ray analysis method is used for sample K.
When X-rays are irradiated, secondary X-rays specific to the element are generated, and the component content is determined by detecting the amount of secondary X-rays generated. Conventionally, press-molded powder samples have been used as analysis samples, but errors occur in quantitative values due to the influence of mineral history, particle size, coexisting elements, etc.

従ってこれらの誤差要因を少なくして、分析の正確さを
向上させるため試料を融解する方法が採用されるように
なった。
Therefore, in order to reduce these error factors and improve the accuracy of analysis, a method of melting the sample has been adopted.

前記の融解する方法は、通常粉砕した試料と硼酸ナトリ
ウムの一定量を秤り取り、白金一金(5%)のるつぼに
入れ、剥離剤を加えた後、加熱炉中(例えば7086℃
)で数79分間融解し、放冷後、ガラスビード試料を白
金るつほから剥離し、白金るつほ底面との接触部を上向
きにして、X線を照射して定量していた。
The above-mentioned melting method involves weighing out a crushed sample and a certain amount of sodium borate, placing them in a platinum-platinum (5%) crucible, adding a release agent, and then heating them in a heating furnace (for example, at 7086°C).
) for several 79 minutes, and after cooling, the glass bead sample was peeled off from the platinum rutsuho, the contact part with the bottom of the platinum rutsuho faced upward, and quantification was performed by irradiating it with X-rays.

分析する試料は、天然鉱物のように全てが酸化物になっ
ているとは限らず、中には白金と合金を形成する物質が
含まれていることがある。このような試料を前記のよう
に直接融解すると、白金と合金を形成して、白金が著し
く侵蝕される。白金が侵蝕されると、侵611lの度合
によって、研摩するかまたは改鋳する必要がある。
The samples to be analyzed are not necessarily all oxides like natural minerals, and some may contain substances that form alloys with platinum. If such a sample is directly melted as described above, it will form an alloy with platinum and the platinum will be severely corroded. If the platinum is attacked, it may need to be polished or recast, depending on the degree of attack.

前記の問題点を解決するため、特開昭37−SIIδグ
乙号として白金るつほの底部に可燃性繊維物質(濾紙、
カンナぐず、布、ガーゼ等)を敷き、その上に粉末試料
を乗せ、加熱炉(電気炉、高周波加熱炉等)の扉を開い
、たままで可燃性繊維物質を燃焼させ(予備焙焼)、炎
が消えてから加燃炉の扉を閉め、3〜j分間経過後、白
金るつぼを取り出した後、融解剤(例えば硼酸す) I
Jウム)を一定量(試料に対し、5〜78倍)加えて混
合し、再度加熱炉に装入して、加熱融解し、ガラスビー
ド試料を調製する方法が提案されている。
In order to solve the above problem, combustible fiber material (filter paper,
Place a powder sample on top of it (plane waste, cloth, gauze, etc.), open the door of the heating furnace (electric furnace, high-frequency heating furnace, etc.), and leave the flammable fiber material to burn (preliminary roasting). After the flame is extinguished, close the door of the furnace, take out the platinum crucible after 3 to 3 minutes, and add a melting agent (for example, boric acid).
A method has been proposed in which glass bead samples are prepared by adding a certain amount (5 to 78 times the amount of Jum) to the sample, mixing it, charging it into a heating furnace again, and heating and melting it.

この方法は、例えば高炉スラグの場合には、鉄含有量が
少ないため白金るつぼの底面に薄い被膜がける程度で、
損傷度合は、従来より著しい減少効果があシ優れた方法
である。
For example, in the case of blast furnace slag, since the iron content is low, this method only requires a thin film to be applied to the bottom of the platinum crucible.
This is an excellent method that has the effect of significantly reducing the degree of damage compared to conventional methods.

しかし、この方法は可燃性繊維物質のトに粉末試料を乗
せ、予備焙焼し、かつ予備焙焼した後の粉末試料と融解
剤とを混合し、加熱融解するため、粉末試料と融解剤と
を混合したとき、粉末試料の一部ではあるが白金るつぼ
と直接接触する部分が生ずる。従って、この白金るつぼ
と直接接触している部分の粉末試料、特に鉄分の多い転
炉スラグ等の場合には白金るつぼと合金を形成しセすい
状態となり、白金るつほの損傷を解消することはできな
いという欠点がある。
However, in this method, a powder sample is placed on a combustible fiber material, pre-roasted, the pre-roasted powder sample and a melting agent are mixed, and the powder sample and melting agent are heated and melted. When mixed, a portion of the powder sample comes into direct contact with the platinum crucible. Therefore, if the powder sample is in direct contact with this platinum crucible, especially if it is converter slag with a high iron content, it will form an alloy with the platinum crucible and will be in a state where it can easily dissolve, thereby eliminating damage to the platinum crucible. The disadvantage is that it cannot be done.

本発明は、前記問題点を解決するため、粉末試料全融解
剤で加熱融解する際、白金るつぼと粉末試料が直接接触
しない状態で加熱融71]Iilする条件について種々
検討した結果、白金るつほへ、その底部から融解剤、可
燃性繊維物質、粉末試料、融解剤の順で装入し、該可燃
性物質及び粉末試料を融解剤によりサンドインチ状態で
加熱融解すること1てより白金るつぼの底面に発生した
薄い被膜や、白金るつぼとの合金形成を著しく減少させ
得ることを見出した。
In order to solve the above-mentioned problems, the present invention has been developed as a result of various studies on the conditions for heating and melting the powder sample with a melting agent without direct contact between the platinum crucible and the powder sample. First, charge a melting agent, a combustible fiber material, a powder sample, and a melting agent from the bottom in this order, and heat and melt the combustible material and powder sample in a sandwich state using the melting agent. It has been found that the thin film formed on the bottom of the platinum crucible and the formation of alloys with the platinum crucible can be significantly reduced.

前記のような、蛍光X線分析用試料調製方法によってガ
ラスビード試料を得ることにより、従来法では問題のあ
った、鉄含有量の多い転炉スラグ等においても、白金る
つぼの表面の著しい損傷を防止し、加えて予備焙焼工程
を省略できる。
By obtaining a glass bead sample using the sample preparation method for fluorescent X-ray analysis as described above, it is possible to prevent significant damage to the surface of the platinum crucible even when using converter slag with a high iron content, which was a problem with conventional methods. In addition, the preliminary roasting process can be omitted.

以下、本発明匠ついて、図面に基づき具体的に祝明する
。第1図は、本発明の実施例で、蛍光X線分析用試料調
製前の白金るつぼと粉末試料、融解剤及び剥離剤等の装
入状態を示す断面図である。
Hereinafter, the invention will be specifically congratulated based on the drawings. FIG. 1 is a cross-sectional view showing a platinum crucible, a powder sample, a melting agent, a stripping agent, and the like charged therein before preparing a sample for fluorescent X-ray analysis in an embodiment of the present invention.

まず、白金るつぼ/の底面に融解剤、2(例えば硼酸ナ
トリウム)の一定量(試料に対し、グル6倍)を敷いた
上に可燃性繊維物質3(例えば濾紙)を敷き、その上に
粉末試料ダ(鉄鉱石、高炉スラグ、転炉スラグ、焼結鉱
等)の一定量(通常θ3〜/θ2)を層状に乗せ、さら
に、その上に、融解剤(,2と同じ)の一定量(試料に
対し9〜6倍)を白金るつぼ周辺に接するように、かつ
粉末試料上面を被覆するように層状に入れ、剥離剤j(
例えばよう化ナトリウム)の一定量(通常、融解剤と2
に対して30 +nlF )を加える。
First, on the bottom of a platinum crucible, spread a fixed amount of melting agent 2 (e.g., sodium borate) (6 times the amount of glue for the sample), then spread a combustible fiber material 3 (e.g., filter paper), and place powder on top of it. A certain amount (usually θ3 to /θ2) of the sample (iron ore, blast furnace slag, converter slag, sintered ore, etc.) is placed in a layer, and then a certain amount of melting agent (same as in 2) is placed on top of it. (9 to 6 times the amount of the sample) was added in a layer so as to be in contact with the periphery of the platinum crucible and to cover the top surface of the powder sample, and release agent j (
e.g. sodium iodide) (usually combined with a melting agent and two
30 +nlF) is added to the

このように、粉末試料と可燃性繊維物質を融解剤でサン
ドイッチ状態にし、粉末試料と白金るつぼを直接接触さ
せずに加熱融解し、完全酸化を行なうものである。
In this way, the powder sample and the combustible fiber material are sandwiched with a melting agent, and the powder sample and platinum crucible are heated and melted without direct contact with each other to achieve complete oxidation.

さらに、前記白金るつぼを7000〜7050℃に加温
されている加熱炉に入れ扉を閉めて、約75分間融解さ
せた後、加熱炉の扉を開けて白金るつほを取り出し、常
温下で放冷して、所定形状のガラスビード試料を調製す
る。前記方法により調製したガラスビード試料を白金る
つぼより剥離除去して、蛍光X線分析装置により分析を
行う。
Furthermore, the platinum crucible was placed in a heating furnace heated to 7,000 to 7,050°C, the door was closed, and melted for about 75 minutes.Then, the door of the heating furnace was opened, the platinum crucible was taken out, and the platinum crucible was placed at room temperature. Allow to cool to prepare a glass bead sample with a predetermined shape. The glass bead sample prepared by the above method is peeled off from the platinum crucible and analyzed using a fluorescent X-ray analyzer.

次に本発明方法の具体的実施例を示す。Next, specific examples of the method of the present invention will be shown.

実施例 白金るつぼの底面に硼酸す) IJウムグ2を敷いた上
に、濾紙を敷き、その上に粉末試料θg2を層状に乗せ
、さらに、その上に硼酸ナトリウムダ2を白金るつぼ周
辺に接するように、かつ粉末試料上面を被覆するように
層状に入れ、よう化ナトリウム、30myを加えた後、
/θθ0〜/θSθ℃に加温されている加熱炉に入れ扉
を閉めて7.5分間融解させる。その後、加熱炉の扉を
開けて、白金るつぼを取り出し、常温下で放冷し、得ら
れたガラスビード試料を白金るつぼより剥離除去して、
蛍光X線分析装置に分析を行なった。
Example: Place boric acid on the bottom of a platinum crucible) IJ Umgu 2 is spread, filter paper is placed on top of it, powder sample θg2 is placed on top of it in a layer, and sodium borate DA 2 is placed on top of it so as to be in contact with the periphery of the platinum crucible. After adding 30 my of sodium iodide to the powder sample,
The mixture is placed in a heating furnace heated to /θθ0 to /θSθ°C, the door is closed, and melted for 7.5 minutes. After that, the door of the heating furnace was opened, the platinum crucible was taken out, the platinum crucible was left to cool at room temperature, and the obtained glass bead sample was peeled off from the platinum crucible.
Analysis was performed using a fluorescent X-ray analyzer.

本実施例てよると、従来法(特開昭、ff7−5グgグ
乙号)では白金るつぼの表面に斑点状の合金形成、また
は薄い被膜がはるなど、著しい損傷があった鉄含有量の
多い粉末試料(例えば転炉スラグ)でも、何ら白金るつ
ぼの損傷が見られず、また分析精度上でも満足できる結
果が得られた。
According to this example, in the conventional method (JP-A-Sho, FF7-5 Google Otsu No. 2), there was significant damage to the surface of the platinum crucible, such as spotty alloy formation or thin coating. Even with a large amount of powder sample (for example, converter slag), no damage to the platinum crucible was observed, and satisfactory results were obtained in terms of analysis accuracy.

本発明方法によれば、前記のように転炉スラグ等鉄含有
量の多い粉末試料でも、試料を加熱融解させる際に発生
する白金るつぼの表面の著しい損傷を防止することがで
きる。その結果 (1) 損傷した白金るつぼを修復するための研摩及び
改鋳回数は従来法の5分の/以下に減少でき、白金るつ
ぼの耐久性が著しく向上する。
According to the method of the present invention, it is possible to prevent significant damage to the surface of a platinum crucible that occurs when heating and melting a powder sample such as converter slag with a high iron content as described above. As a result (1) The number of times of polishing and recasting for repairing a damaged platinum crucible can be reduced to 5 minutes/less than that of the conventional method, and the durability of the platinum crucible is significantly improved.

(2) 従来法での予備焙焼工程も省略できるので作業
性が向上する。
(2) Workability is improved because the preliminary roasting step in the conventional method can also be omitted.

等の効果を有するものである。It has the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は蛍光X線分析用試料調製のだめの白金るつぼと
融解剤、可燃性繊維物質、粉末試料及び剥離剤等の装入
状態を示す説明図である。 /・・・白金るつ 2・・・融解剤 3・・・可燃性繊維物質 グ・・粉末試料S・・・剥離
剤  7− 第J図
FIG. 1 is an explanatory diagram showing a platinum crucible used for preparing samples for fluorescent X-ray analysis, and the state in which melting agents, combustible fiber materials, powder samples, stripping agents, etc. are charged. /... Platinum melting agent 2... Melting agent 3... Flammable fiber material G... Powder sample S... Stripping agent 7- Figure J

Claims (1)

【特許請求の範囲】[Claims] 白金るつぼへ、順次融解剤、可燃性繊維物質、粉末試料
、融解剤を装入し、可燃性物質及び粉末試料を融解剤に
よりサンドインチ状態で加熱融解し、ガラスビード試料
を調製することを特徴とする蛍光X線分析用試料調製方
法。
A melting agent, a combustible fiber material, a powder sample, and a melting agent are sequentially charged into a platinum crucible, and the combustible material and powder sample are heated and melted in a sandwich state using the melting agent to prepare a glass bead sample. A sample preparation method for fluorescent X-ray analysis.
JP58135111A 1983-07-26 1983-07-26 Preparation of specimen for fluorescent x-ray analysis Pending JPS6027847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58135111A JPS6027847A (en) 1983-07-26 1983-07-26 Preparation of specimen for fluorescent x-ray analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58135111A JPS6027847A (en) 1983-07-26 1983-07-26 Preparation of specimen for fluorescent x-ray analysis

Publications (1)

Publication Number Publication Date
JPS6027847A true JPS6027847A (en) 1985-02-12

Family

ID=15144088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58135111A Pending JPS6027847A (en) 1983-07-26 1983-07-26 Preparation of specimen for fluorescent x-ray analysis

Country Status (1)

Country Link
JP (1) JPS6027847A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245145A (en) * 1986-04-16 1987-10-26 Fuji Electric Co Ltd Method for quantifying composition of electrolyte plate
JPS63210758A (en) * 1987-02-27 1988-09-01 Aichi Steel Works Ltd Fluorescent x-ray analysis of metal
JPS63219910A (en) * 1987-03-04 1988-09-13 Matsui Seisakusho:Kk Driving shaft and manufacture thereof
EP2750849A1 (en) * 2011-08-30 2014-07-09 Spex Sample Prep Llc Preparation of inorganic samples by fusion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245145A (en) * 1986-04-16 1987-10-26 Fuji Electric Co Ltd Method for quantifying composition of electrolyte plate
JPS63210758A (en) * 1987-02-27 1988-09-01 Aichi Steel Works Ltd Fluorescent x-ray analysis of metal
JPS63219910A (en) * 1987-03-04 1988-09-13 Matsui Seisakusho:Kk Driving shaft and manufacture thereof
EP2750849A1 (en) * 2011-08-30 2014-07-09 Spex Sample Prep Llc Preparation of inorganic samples by fusion
EP2750849A4 (en) * 2011-08-30 2015-08-26 Spex Sample Prep Llc Preparation of inorganic samples by fusion
AU2012302126B2 (en) * 2011-08-30 2017-01-12 Spex Sample Prep Llc Preparation of inorganic samples by fusion

Similar Documents

Publication Publication Date Title
Silver et al. Uranium-lead isotopic variations in zircons: a case study
Berger et al. On smelting cassiterite in geological and archaeological samples: Preparation and implications for provenance studies on metal artefacts with tin isotopes
Blank et al. Specimen preparation in x‐ray fluorescence analysis of materials and natural objects
CN102156142A (en) Method for analyzing ferrosilicon alloy components for X-ray fluorescence spectrum analysis
CN103149074A (en) Molten sample preparation method of molybdenum, manganese, vanadium or chromium iron alloy sample for X-ray fluorescence spectroscopy
JPS6027847A (en) Preparation of specimen for fluorescent x-ray analysis
AU2010249195B1 (en) Lithium X-Ray flux composition
Copeland et al. Development of High-Uranium-Loaded U3O8-Al Fuel Plates
CN109358083A (en) A kind of rapid analysis method for silicon, manganese, P elements in silicomangan
JPH1164186A (en) Preparing method for specimen for fluorescent x-ray analysis
Bunnell Laboratory work in support of West Valley glass development
Benson et al. Investigation of tin as a fuel additive to control FCCI
Fittschen et al. Multimodal spectroscopy and molecular dynamic simulations to understand redox-chemistry and compound formation in pyrometallurgical slags: example of manganese oxidation state with respect to lithium recycling
CN115494097A (en) Simple method for preparing sample wafer for X-ray fluorescence analysis of copper ore and copper concentrate by melting
US3841863A (en) Purification of platinum
Yagoda Analytical Patterns in Study of Mineral and Biological Materials
Lounamaa Spectrographic analysis of copper-making and lead-making slags for major constituents
CN114964999A (en) Method for melting aluminum refractory material containing complex components at high temperature
JPH07239290A (en) Low dilution rate glass bead method
JPH0255941A (en) Analysis of metal oxide
JPS608866B2 (en) Processing method for glass bead sample forming crucible for fluorescent X-ray analysis
SU1626128A1 (en) Sample for simulation of diffusive processes at cutting
CN105486605A (en) Measuring method for gold and silver content in lead anode slime
Andersson et al. Determination of lead in fly-ash from a garbage incinerator by atomic-absorption and x-ray fluorescence spectrometry
Stumpf et al. Dating prograde metamorphism: U–Pb geochronology of allanite and REE-rich epidote in the Eastern Alps