JPS62245145A - Method for quantifying composition of electrolyte plate - Google Patents

Method for quantifying composition of electrolyte plate

Info

Publication number
JPS62245145A
JPS62245145A JP61087731A JP8773186A JPS62245145A JP S62245145 A JPS62245145 A JP S62245145A JP 61087731 A JP61087731 A JP 61087731A JP 8773186 A JP8773186 A JP 8773186A JP S62245145 A JPS62245145 A JP S62245145A
Authority
JP
Japan
Prior art keywords
electrolyte
composition
lithium
electrolyte plate
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61087731A
Other languages
Japanese (ja)
Inventor
Naohiko Sado
佐渡 直彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61087731A priority Critical patent/JPS62245145A/en
Publication of JPS62245145A publication Critical patent/JPS62245145A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To measure the composition of an electrolyte plate within a short time, by a method wherein lithium aluminate being the electrolyte holding material of a fuel battery, and lithium carbonate and potassium carbonate being electrolytes are melted under heating to be formed into a glass bead which is, in turn, subjected to fluorescent X-ray analysis. CONSTITUTION:The electrolyte plate of a molten carbonate type fuel cell is constituted of lithium aluminate being an electrolyte holding material, and lithium carbonate and potassium carbonate being electrolytes. Said electrolyte plate is heated and melted along with a flux agent at 650-1,000 deg.C to prepare a glass bead specimen. As the flux agent, a composition comprising a mixture consisting of anhydrous lithium borate being a main component, lithium carbonate and sodium iodide and having a compositional wt. ratio of 5:1:0.02-10:1:0.02 is used. The bead specimen is subjected to fluorescent X-ray analysis and lithium aluminate is quantified from AlKalpha fluorescent X-ray intensity while potassium carbonate is quantified from KKalpha fluorescent X-ray intensity and both values are subtracted from the whole to calculate lithium carbonate. Because the bead specimen is prepared and subjected to fluorescent X-ray analysis, the composition can be analyzed within a short time with high accuracy.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、溶融炭酸塩型燃料電池の主要な構成要素の一
つである電解質板の組成分析法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method for analyzing the composition of an electrolyte plate, which is one of the main components of a molten carbonate fuel cell.

より詳しくは、電解質板は電解質となる炭酸塩(例えば
Ls*COs  I(acos )および溶融状態の電
解質を保持するための電解質保持材(例えばLiALO
,)からなる電解質板の構成材料成分を容量分析する方
法に関する。
More specifically, the electrolyte plate contains a carbonate serving as an electrolyte (for example, Ls*COs I (acos)) and an electrolyte holding material (for example, LiALO) for holding the electrolyte in a molten state.
,) relates to a method for volumetric analysis of constituent material components of an electrolyte plate.

〔従来技術とその問題点〕[Prior art and its problems]

燃料電池の開発が活発に行われるようになり、溶融炭酸
塩型燃料電池では電解質として各種アルカリ金属の炭酸
塩が用いられ、一般に炭酸リチウム/炭酸カリウム(L
 t、 co3/に、 Co、 )の二元系であること
が多い。
The development of fuel cells has become active, and molten carbonate fuel cells use carbonates of various alkali metals as electrolytes, and generally lithium carbonate/potassium carbonate (L
It is often a binary system of t, co3/, Co, ).

電解質保持材としては、例えばリチウムアルミネート(
LiAt0鵞)の粉末や多孔質のセラミック板が用いら
れている。
For example, lithium aluminate (
Powder of LiAt (LiAt) and porous ceramic plate are used.

このような電解質板の配合割合の一例を示すと、電解質
保持材と電解質の重量比率で40%LiAtへ。
An example of the mixing ratio of such an electrolyte plate is 40% LiAt in terms of weight ratio of electrolyte holding material and electrolyte.

32wt%に*COs 、 28wt%Li1CO1の
レベルになっている。電解質板の製法は、炭酸塩粉末と
リチウムアルミネート粉末を混合してホットプレスで加
圧成形する方法や電解質保持材をシート状に成形したも
のに電解質を含浸した方法などが知られている。
The level is 32 wt% *COs and 28 wt% Li1CO1. Known methods for manufacturing electrolyte plates include a method in which carbonate powder and lithium aluminate powder are mixed and pressure-molded using a hot press, and a method in which a sheet of electrolyte holding material is formed and impregnated with electrolyte.

この場合の電解質板の厚さは設計や製法によって異なる
が1m前後の薄い板状のものである。この電解質板の組
成は電解質板の機械的強度や電池特性などに大きく影響
する。また、戻rxfflが運転中に損失し寿命を細め
ることもある。そこで、電池の研究開発にとって電解質
板組成の定量的な評価が必要でかつ重要であり、電解質
板の組成を精度よく迅速に定量する方法が求められてい
る。
The thickness of the electrolyte plate in this case varies depending on the design and manufacturing method, but it is a thin plate of about 1 m. The composition of this electrolyte plate greatly influences the mechanical strength of the electrolyte plate, battery characteristics, etc. In addition, the return rxffl may be lost during operation, shortening the service life. Therefore, quantitative evaluation of the electrolyte plate composition is necessary and important for battery research and development, and there is a need for a method for quickly and accurately quantifying the composition of the electrolyte plate.

一般に、電解質板の組成(LiAt0. 、 Li、 
Co、 。
In general, the composition of the electrolyte plate (LiAt0., Li,
Co.

K、Co1)をその化合物形態のまま直接定量できるこ
とが望ましく、その方法としてX線回折法などの手法が
考えられる。しかし、この方法では測定試料の結晶性に
依存することから、非晶質のものや前記化合物間の中間
的な組成物などを形成している場合には正確な定量がで
きない問題がある。
It is desirable to be able to directly quantify K, Co1) in its compound form, and techniques such as X-ray diffraction can be considered as a method for this. However, since this method depends on the crystallinity of the sample to be measured, there is a problem in that accurate quantification cannot be achieved when the sample is amorphous or has an intermediate composition between the aforementioned compounds.

そこで、構成元素の定量分析から化合物の組成に換算す
る方法が一般的といえる。
Therefore, a common method is to convert the quantitative analysis of the constituent elements into the composition of the compound.

Li、At、にの定量分析法としては「分析化学便覧・
改訂三版(1981)J  に述べられている各柚の方
法と前処理の組み合わせによって、次のような方法が一
般に適用できると考えられる。Liの定量は酸分解・過
ヨウ素酸すチウム沈戚分離・ヨウ素滴定法やぼ分解・炎
光元度法、紅の定食は酸分解・アルカリ溶融・キレート
滴定法、Kの定食はローレンススミス分解(NH,Ct
とCaC0,の混合加熱溶融)・塩化白金酸カリウム(
KIPt C4a )重量法や酸分解・原子吸光法など
の分析法などがある。
Quantitative analysis methods for Li, At, and
It is thought that the following methods can be generally applied by combining the methods and pretreatments for each yuzu described in Revised Third Edition (1981) J. Li is determined by acid decomposition, lithium periodate precipitation, separation, iodine titration method, Yabo decomposition, and flame oxidation method.The red set meal is determined by acid decomposition, alkali fusion, and chelate titration method.The K set meal is determined by Lawrence Smith decomposition. (NH,Ct
and CaC0, mixed and heated and melted) and potassium chloroplatinate (
KIPt C4a) There are analytical methods such as gravimetric method and acid decomposition/atomic absorption method.

しかしながら、これらの方法では各成分ごとの分析手法
に適した前処理が不可欠であり、分析操作が複雑で長い
時間を要し、迅速性に欠けるなどの欠点がある。さらに
これらの方法では、試料中成分の分離定量法であって同
時分析評価が困−である。
However, these methods require pretreatment suitable for the analysis method for each component, and have drawbacks such as complicated and time-consuming analysis operations and lack of speed. Furthermore, these methods are methods for separating and quantifying components in a sample, making simultaneous analysis and evaluation difficult.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の点に鑑みてなされたものであり、その
目的はLiAt02− Li2C01−K1CO3を含
む電解質板の組成を短時間に正確な定量分析結果が得ら
れる分析法を提供することにある。
The present invention has been made in view of the above points, and its purpose is to provide an analysis method that can obtain accurate quantitative analysis results for the composition of an electrolyte plate containing LiAt02-Li2C01-K1CO3 in a short time. .

〔発明の要点〕[Key points of the invention]

本発明は、溶融炭酸塩型燃料電池の電解質板が電解質保
持材のLiAt0鵞と電解質のL輸Co、とに、Co、
からなるもので、これを融剤と共に加熱溶融するだけの
簡単な処理で、迅速に均質なガラスビードができる最適
な試料調製条件を見い出した。
In the present invention, an electrolyte plate of a molten carbonate fuel cell is composed of LiAtO as an electrolyte holding material and Co as an electrolyte.
We have found optimal sample preparation conditions that can quickly produce homogeneous glass beads by simply heating and melting them together with a flux.

さらに調製したガラスビードをけい光X線により測定し
ktKα、KKαのけい光X線強度とLiAt0鵞、−
に、Co3の童との開−こ相関性があることを見い出し
、この方法を適用することによって電解質板の1、 i
 AtomとにICo、を同時にかつ正確に定量できる
ようにした。また、電解質成分のL 1 t COn量
については、前記LiAt0*とに、Co、の定量値の
含量を求めたのち、前記電解質板の構成成分の残分とし
て求めるようにし、電解質板組成の定量ができるように
したものである。
Furthermore, the prepared glass beads were measured using fluorescent X-rays, and the fluorescent X-ray intensities of ktKα, KKα and LiAt0, -
It was found that there is an open correlation with Co3, and by applying this method, the electrolyte plate 1, i
Atom and ICo can be quantified simultaneously and accurately. Regarding the amount of L 1 t COn in the electrolyte component, after determining the quantitative value of Co in addition to LiAt0*, it is determined as the remainder of the constituent components of the electrolyte plate. It was made so that it could be done.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明を実施例に基づき説明する。本発明は電解
質板をガラス溶融化したのち、ガラスビードに含まれる
電解質板の成分の定量をけい光X線分析法により行なう
ものであるが、はじめに分析試料の作成方法に関して述
べる。
The present invention will be explained below based on examples. In the present invention, after glass-melting an electrolyte plate, the components of the electrolyte plate contained in glass beads are determined by fluorescent X-ray analysis. First, a method for preparing an analysis sample will be described.

−蚊に溶融炭酸塩型燃料電池の電解質板は、電解質保持
材として不活性な無機材料(例: L 1AtO鵞やA
t!O,など)と電解質の炭酸塩(例:Li、co3゜
K、Co3)からなるため、電解質板の組成評価では、
前記構成成分の量を同時に、または一方のみを求める場
合があり、この要求を満足するための分析試料の作製方
法とその測定法の適用が重要である。
- The electrolyte plate of a mosquito-molten carbonate fuel cell is made of an inert inorganic material (e.g. L 1 AtO or A) as an electrolyte holding material.
T! O, etc.) and electrolyte carbonate (e.g. Li, co3°K, Co3), so when evaluating the composition of the electrolyte plate,
There are cases where the amounts of the above-mentioned constituent components are determined simultaneously or only one of them, and it is important to apply a method for preparing an analytical sample and a method for measuring the same in order to satisfy this requirement.

そこで、分析試料の作製は保持材と電解質を分別するこ
となく同時処理できるアルカリ溶融法とした。より詳し
くは電解質板の試料を融剤と共に加熱溶融し、ガラスビ
ード状の分析試料とする。
Therefore, we used an alkaline melting method to prepare the analytical samples, which allows the holding material and electrolyte to be processed simultaneously without having to be separated. More specifically, an electrolyte plate sample is heated and melted together with a flux to obtain a glass bead-shaped analysis sample.

この方法によれば、けい光Xg分析法において、試料の
粒度の影響や鉱物マ)IJソックス果によるいろいろな
定量分析上の影響が防止できる。さらに、一つのガラス
ビードから前記成分の同時定量も可能となる利点がある
According to this method, in the fluorescence Xg analysis method, it is possible to prevent various influences on quantitative analysis due to the particle size of the sample and minerals such as IJ socks. Furthermore, there is an advantage that the above-mentioned components can be quantified simultaneously from one glass bead.

ここでいうガラスビードとは、試料および融剤を適当な
融解容器(例:95%Pt−5%Auからなる約5Qc
cのルツボ)にとり、加熱溶融後冷却してボタン状に固
化したもの(例:35〜40wφ。
The glass bead here refers to a sample and a flux in a suitable melting container (for example, approximately 5Qc made of 95% Pt-5% Au).
c crucible), heated and melted, then cooled and solidified into a button shape (e.g. 35 to 40 wφ).

厚さ2〜3 van )をいう。この徳の方法は、例え
ば日本鉄鋼協会規格l8IJ 201(1977)の「
ガラスビードによる鉄鉱石類のけい光Xfs分析方法」
があるが、扶鉱石、焼結鉱、砂鉱などを対象にしたもの
であって、用いる融剤が限定されていることや加熱温度
も1100℃以上の蔦い温度に設定するようになってい
る。また、無機材料と炭酸塩からなる電解質板のような
ものへの適用の規定はない。
Thickness: 2-3 van). The method of this virtue is, for example, "Iron and Steel Institute of Japan Standard 18IJ 201 (1977)"
"Fluorescence Xfs analysis method for iron ores using glass beads"
However, this method targets minerals such as ore, sintered ore, and placer, and the flux used is limited and the heating temperature is set at 1100℃ or higher. There is. Furthermore, there is no provision for application to things such as electrolyte plates made of inorganic materials and carbonates.

そこで、本発明では前記電解質板を試料とするガラスビ
ードの調製を可能にし、組成定量ができるように融剤の
種類とその組成、溶融温度の設定条件について実験した
Therefore, in the present invention, it is possible to prepare glass beads using the electrolyte plate as a sample, and experiments were conducted on the type of flux, its composition, and the setting conditions of the melting temperature so that the composition can be determined.

実験では、予め次の要件を満足するように諸条件の検討
を行った。
In the experiment, various conditions were examined in advance to satisfy the following requirements.

■ガラスビードは均質で、室温での冷却時や測定などの
取り扱い中に破損しない十分な機械的強度を有すること
■Glass beads must be homogeneous and have sufficient mechanical strength to avoid breakage during cooling at room temperature or during handling such as measurement.

■ガラスビード作製に関し、溶融操作が容易なこと。つ
まり融剤(剥離剤を含む)の種類と使用量および加熱温
度などは実用的であること。
■Easy melting operation for glass bead production. In other words, the type and amount of flux (including stripping agent), heating temperature, etc. must be practical.

■ガラスビードはけい光X線弦度画定上、Xaの吸収が
小さく、長期的番ζ変質しないこと。つまり、融剤の選
定時はこれらが考慮されていること。
■Glass beads have low absorption of Xa in terms of fluorescence X-ray chord density, and should not undergo long-term deterioration. In other words, these must be taken into consideration when selecting a flux.

以上のことから、前記必懺条件を満足するものとして、
融剤は予備実験で櫨々の試薬(例ニホウ酸塩類、炭酸塩
類など)の適用を検討した結果、ホウ酸リチウム(Li
5B40y )を主体とした炭酸リチウム(Li、co
l)の混合物が適していることが分った。これは、 L
i1CO1の添加によってアルカリ性を高め融点降下を
ねらったものである。
From the above, assuming that the above required conditions are satisfied,
As a fluxing agent, we investigated the application of reagents (e.g. diborates, carbonates, etc.) in preliminary experiments, and found that lithium borate (Li) was used as the fluxing agent.
Lithium carbonate (Li, co
A mixture of l) has been found to be suitable. This is L
The aim is to increase alkalinity and lower the melting point by adding i1CO1.

さらに溶融後、融解容器(白金ルツボ)からのガラスビ
ードの剥離を容易にするためには少量のハロゲン化物の
添加が不可欠であり、種々検討した結果、ヨウ化ナトリ
ウムが適しており本実験では20ミリグラムを加えるよ
うにした。次に融剤の組成および融剤と試料量について
次の条件のもとで実検した。
Furthermore, in order to facilitate the peeling of the glass beads from the melting container (platinum crucible) after melting, it is essential to add a small amount of halide, and after various studies, we found that sodium iodide was suitable, and in this experiment Added milligrams. Next, the composition of the flux, the flux and the amount of sample were examined under the following conditions.

1)融剤の組成の検討 ■融剤;Li、B、Oフ:LiICO3が4=1(全i
5g)〜15:1(全量16g) 剥離剤はすべてに0.02 gを加えた。
1) Examination of composition of flux ■Fluxing agent; Li, B, O: LiICO3 is 4=1 (total i
5g) to 15:1 (total amount 16g) 0.02g of release agent was added to all.

■融解容器;95%Pt−5%A u /L/ツボ(J
&面40■φ、高さ30 m ) ■加熱装置;電気炉型ガラス溶融装置 (設定温度950℃、加熱時間8 分) ■ガラスビードの回収;室温冷却 ■良否判定;外観々察 これより、融剤の組成は重量比で、 L 12B40.
 ;Li、Co3: NaIが5:1:0.02〜10
:1:0.02で良好なガラスビードが調製できること
が分った。また、前記組成比で融剤が5g以下では容器
に対して量的に少なく、必要とするガラスビードが調製
できない。一方10g以上ではガラスビードが厚くなり
、冷却時に冷却速度の差によると思われるクラックが生
じる時があり適当でない。
■ Melting container; 95% Pt-5% Au / L / pot (J
& surface 40■φ, height 30m) ■Heating device; Electric furnace type glass melting device (set temperature 950℃, heating time 8 minutes) ■Recovery of glass beads; Cooling at room temperature ■Quality judgment; Appearance observation From this, The composition of the flux is L 12B40 in weight ratio.
;Li, Co3: NaI 5:1:0.02-10
:1:0.02 revealed that good glass beads could be prepared. Furthermore, if the amount of flux is less than 5 g in the above composition ratio, the amount is small relative to the container, and the required glass beads cannot be prepared. On the other hand, if it exceeds 10 g, the glass bead becomes thick and cracks may occur during cooling, which may be due to the difference in cooling rate, which is not appropriate.

よりよくは、融剤ノ組成比カLi、B4o、 :Lil
Co、 :N310重量比で7:1:0.02の全量&
02gが最適である。
More preferably, the composition ratio of the flux is Li, B4o, :Lil
Co, :N310 weight ratio 7:1:0.02 total amount &
02g is optimal.

2)融剤と試料量の混合比の検討 ■融剤: L”xB+Ot * L t2cO3: N
aI (7e 1 e O,02で全ji8.02g) ■試料と融剤の混合比;電解質板粉末:融剤(1:4〜
1:800で全 :jft 10 g以下) ■融解容器;95%pt−5%Auルツボ(底面40−
φ、高さ30露) ■加熱装置;電気炉型ガラス溶融装置 (設定温度950℃、加熱時間 8分) ■ガラスビードの回収;室温冷却 ■良否判定:外観々察およびけい光X線分析装置による
AAKα、KWαX線強度の 測定。
2) Examining the mixing ratio of flux and sample amount ■ Flux: L”xB+Ot * L t2cO3: N
aI (total ji8.02g at 7e 1e O,02) ■ Mixing ratio of sample and flux; electrolyte plate powder: flux (1:4~
Total at 1:800: jft 10 g or less) ■ Melting container; 95% PT-5% Au crucible (bottom 40-
(φ, height 30 dew) ■Heating device; Electric furnace type glass melting device (set temperature 950℃, heating time 8 minutes) ■Recovery of glass beads; Cooling at room temperature ■Quality judgment: Visual inspection and fluorescent X-ray analysis device Measurement of AAKα, KWα X-ray intensity.

これより、検討した混合比の範囲ではガラスビードが作
製できる。ただし、試料量が多いと溶融時にアルカリが
増え過ぎるためルツボの変色や腐食が起こりやすい。ま
た少ないと融剤による希釈でX線強度が低くなる。検討
結果として試料と融剤の混合比は重量比1:8〜1:8
00がよく、よりよくは1:16〜1:160(例えば
試料量0.5〜o、05g:I!it剤aozg)であ
る。
From this, glass beads can be produced within the studied mixing ratio range. However, if the amount of sample is large, the amount of alkali increases too much during melting, which tends to cause discoloration and corrosion of the crucible. If the amount is too low, the X-ray intensity will decrease due to dilution with the flux. As a result of the study, the mixing ratio of the sample and flux was 1:8 to 1:8 by weight.
00 is good, and more preferably 1:16 to 1:160 (for example, sample amount 0.5 to 0, 05g:I!it agent aozg).

次に、融剤および試料の電解質板の加熱挙動を明らかに
し、ガラス溶融時の加熱温度等、ガラスビード作製条件
を設定することは重要である。そこで、融剤についての
示差熱天秤測定と融剤および試料の電解質板の加熱減量
測定を行った。なお前者の測定試料量は30ミリグラム
で後者は0.5gである。
Next, it is important to clarify the heating behavior of the flux and the sample electrolyte plate, and to set the glass bead production conditions, such as the heating temperature during glass melting. Therefore, the flux was measured using a differential thermal balance, and the flux and the sample electrolyte plate were subjected to heating loss measurements. The amount of sample measured in the former case was 30 milligrams, and the amount in the latter case was 0.5 g.

第1図は、本発明の詳細な説明するための融剤(例; 
Lt2B、O,: hi鵞co、の重量比で7:1)の
熱重量・示差熱分析曲線である。第1図において、DT
A(示差熱分析)1とTG(熱重量測定)2を示す。1
aはL 1. co、の融点633℃で、1bは融点8
32℃、ICは融点893℃でこれはLi、B2O−r
に基因するものと考えられる。これより、Li、Co、
の共存によってLi、B、0.の本来の融点(915℃
)より降下し、832℃で大部分溶融することを示して
いる。したがって、融剤は893℃以上で完全に溶融す
ることが分る。次に、熱重量測定曲線からは633℃ま
でに約9%の減量が進み、その後1000℃までほぼ一
定であることが分る。この減量は炭[IJチウムの融点
以上で次式の分解反応による炭酸ガス(Co鵞)の放出
のための減量とj1外られる・ Li1CO1−+ Li、0  +CO。
FIG. 1 shows a fluxing agent (for example;
This is a thermogravimetric/differential thermal analysis curve of Lt2B,O,: hi-co, weight ratio of 7:1). In Figure 1, DT
A (differential thermal analysis) 1 and TG (thermogravimetry) 2 are shown. 1
a is L 1. co, has a melting point of 633°C, and 1b has a melting point of 8
32℃, IC has a melting point of 893℃, which is Li, B2O-r
This is thought to be due to. From this, Li, Co,
Due to the coexistence of Li, B, 0. The original melting point of (915℃
), and most of it melts at 832°C. Therefore, it can be seen that the fluxing agent completely melts at 893°C or higher. Next, from the thermogravimetric measurement curve, it can be seen that the weight loss progresses by about 9% up to 633°C, and then remains almost constant until 1000°C. This weight loss is excluded from the weight loss due to the release of carbon dioxide gas (Co) by the decomposition reaction of the following formula above the melting point of charcoal [IJ thium.Li1CO1-+ Li, 0 +CO.

また、前記混合融剤中のLi、Co3 含有量から計算
して前記減量外はCO!放出分に相当する値であった。
Also, calculated from the Li and Co3 contents in the mixed flux, the amount other than the above reduction is CO! This value corresponded to the amount released.

したがって、共存する他成分の損失ではないことが分り
ガラスビード化の加熱処理が適用できるといえる。
Therefore, it can be said that the heat treatment for forming glass beads can be applied since it is clear that the loss is not due to the loss of other coexisting components.

第2図は、本発明の詳細な説明するための試料の電解質
板と融剤の加熱減量を示す曲線で、11は電解質板であ
り12は融剤(例; Li!B、O,:L輸Co、の重
量比で7:1)である。これは白金ルツボに試料を0.
5g秤量し、電気炉(マツフル炉)にて各指定温度にお
ける加熱時間を30分として求めた減tであり、前記方
法の熱重量分析に比べ試料量が多く、加熱温度を保持す
るなど精度の向上を配慮した測定法である。第2図に2
いて、試料の電解質板は600℃で0.5 %の威童が
あり1000℃までほぼ一定であり、1100℃でz3
チの減量がみられるようになる。さらに融剤は700℃
で約9チ減量し、1000℃までほぼ一定であることが
分る。つまり、ガラスビードの作製は、これまでの測定
結果から加熱温度は650〜1000℃の範囲に設定す
ればよく、溶融操作を考慮すれば可能な限り高い温度で
あれば艮好な結果が得られることから融剤が完全に#融
する900−1000℃が推奨される。ここで1000
℃以下の減量は融剤の炭mIJチウムなどの炭酸ガス分
の放出であって、ガラスビード処理における他成分の加
熱減量はないことが分っているので電解質板の構成元素
のAA、にの損失がないことからガラスビード調製法が
適することが分る。したがって、本実験結果から加熱温
度は総じて950℃とするのが実用的であると考える。
FIG. 2 is a curve showing the heating loss of the electrolyte plate and flux of a sample for explaining the present invention in detail, where 11 is the electrolyte plate and 12 is the flux (e.g. Li!B, O, :L). The weight ratio of imported Co is 7:1). This is done by placing the sample in a platinum crucible at 0%.
The reduction in t was calculated by weighing 5g and heating time at each specified temperature in an electric furnace (Matsuful furnace) for 30 minutes.Compared to the thermogravimetric analysis of the above method, the amount of sample is larger, and accuracy is reduced by maintaining the heating temperature. This is a measurement method that takes into account improvement. 2 in Figure 2
The sample electrolyte plate has a 0.5% drop at 600°C, which is almost constant up to 1000°C, and z3 at 1100°C.
You will start to see a decrease in weight. Furthermore, the flux is 700℃
It can be seen that the weight loss is approximately 9 inches at 100°C, and remains almost constant up to 1000°C. In other words, when producing glass beads, the heating temperature should be set in the range of 650 to 1000 degrees Celsius based on previous measurement results, and good results can be obtained if the temperature is as high as possible considering the melting operation. Therefore, a temperature of 900-1000°C is recommended, where the flux is completely melted. 1000 here
It is known that the weight loss below ℃ is due to the release of carbon dioxide gas such as charcoal, thium, etc. in the flux, and there is no loss on heating of other components during glass bead treatment. The absence of loss indicates that the glass bead preparation method is suitable. Therefore, based on the results of this experiment, it is considered that it is practical to set the heating temperature to 950°C in general.

以上の実験結果から、ガラスビード作製条件をまとめて
第1表に示、す。この条件のもとての試料作製時間は、
秤量からガラスビードを作製し冷却の工程を経て測定で
きる状態ζζなるまで、約30分以内である。
Based on the above experimental results, the glass bead manufacturing conditions are summarized in Table 1. The sample preparation time under these conditions is:
It takes about 30 minutes from weighing to preparing glass beads and cooling them to a state where they can be measured.

第  1  表 次に本発明のjlt解負板の組成定量に関し、L i 
kLOxとに、Co、の濃度測定法について述べる。
Table 1 Next, regarding the composition determination of the jlt solution board of the present invention, Li
A method for measuring the concentration of kLOx and Co will be described.

ガラスビードは前記カブスピード作製条件1こよって作
製した。この場合、Liのけい元X線による測定は取扱
う波長が長いことから検出できないのが一般的である。
Glass beads were produced according to the Cubspeed production conditions 1 described above. In this case, measurement using atomic X-rays of Li generally cannot detect it because the wavelength involved is long.

さらに電解質保持材と電解質にLi系材料が用いられて
いるため、電解質板の構成元素であるLiAAO鵞とに
lCo3を求め、Li1C03を残分として求める方法
で実験した。検出方法は、けい光X線分析方法でL 1
 kLOxはAtKα、に、Co3は肱αのX線強度比
とLiAt0. 、 K2CO2の濃度の関係を検量線
化する。
Furthermore, since a Li-based material is used for the electrolyte holding material and the electrolyte, the experiment was conducted using a method in which lCo3 was determined from LiAAO, which is a constituent element of the electrolyte plate, and Li1C03 was determined as the remainder. The detection method is L 1 by fluorescence X-ray analysis method.
kLOx is AtKα, and Co3 is X-ray intensity ratio of elbow α and LiAt0. , Convert the relationship between the concentrations of K2CO2 into a calibration curve.

第3図は、本発明の実施例のL i kLOxとに、C
o。
FIG. 3 shows the L i kLOx and C
o.

の濃度測定法を説明するためのもので、L i kLO
xとに、co、の検量線である。第3図は前記ガラスビ
ード作製条件のもとてガラスビードを作製し、AtKα
、KKαのけい光X線強度比とLikl O! p K
鵞CO!の濃度の関係を検量線化したものであり、検量
線21はにICo、、検量線22はLiAt0*である
。いずれも検量線の直線性は良く、カラスビード中のL
iAt0鵞、にICo、とAtKα、KKαの相関係数
は0.999であって良好であることが分る。さらに、
前記検1i21および検量*22の検量縁定数を求めた
式は次式で表わすことができる。
This is to explain the concentration measurement method of L i kLO
This is a calibration curve of x and co. FIG. 3 shows glass beads prepared under the above-mentioned glass bead preparation conditions, and AtKα
, KKα fluorescence X-ray intensity ratio and Likl O! pK
Goose CO! The calibration curve 21 is for ICo, and the calibration curve 22 is for LiAt0*. In both cases, the linearity of the calibration curve was good, and the L in the crow beads was
It can be seen that the correlation coefficient between iAt0, ICo, AtKα, and KKα is 0.999, which is good. moreover,
The equations for determining the calibration edge constants of the test 1i21 and the test *22 can be expressed by the following equations.

検量線21式二に鵞Cへ(wt%) =28.64 X
−3,32(x : KKαX線強度比) 検量線22式: LiAt0* (wt%) =45.
76X 0.22(x:“AlKαX線強度比) 本実験での検isは試料の電解質板の量が0.5gで、
前記所定の条件のもので作製したガラスビード試料の場
合は適用できる。また、この時の繰り返し分析精度は変
動係数で1%以下で良好であり、さらに電解質板の量が
o、 o s gでガラスビードを作製した場合におい
ても同等の分析精度で定量できることを確認している。
Calibration curve 21 formula 2 to Goose C (wt%) = 28.64 X
−3,32 (x: KKα X-ray intensity ratio) Calibration curve formula 22: LiAt0* (wt%) =45.
76X 0.22 (x: "AlKα X-ray intensity ratio)
This method can be applied to glass bead samples prepared under the above-mentioned predetermined conditions. In addition, the accuracy of repeated analysis at this time was good with a coefficient of variation of 1% or less, and it was further confirmed that quantification could be performed with the same analytical accuracy even when glass beads were prepared with the amount of electrolyte plate o or o s g. ing.

次に本発明を適用した具体的な分析結果について述べる
。試料は溶融炭酸塩型燃料電池の運転前の電解質板であ
る。分析試料は前記表1のガラスビード作製条件のもと
で作製し、不法による定量分析を行った結果の一例を第
2表に示す。電解質板の組成分析は、ガラスビード試料
を10個作成し繰り返し分析精度の検討も行った。さら
に、従来の化学分析法での定量値を求め、不法での定量
値との相対誤差を求めた検討結果を第3表に示す。
Next, specific analysis results using the present invention will be described. The sample is an electrolyte plate of a molten carbonate fuel cell before operation. Analytical samples were prepared under the glass bead preparation conditions shown in Table 1 above, and Table 2 shows an example of the results of illegal quantitative analysis. For the compositional analysis of the electrolyte plate, ten glass bead samples were prepared and repeated analyzes were conducted to examine the accuracy of the analysis. Furthermore, Table 3 shows the results of a study in which quantitative values were determined using conventional chemical analysis methods, and relative errors with the illegal quantitative values were determined.

第  3  表 第2表において、Li、CO,の値は前述した通り予め
LiAt0.とに、C03を定量し残分として求めた。
Table 3 In Table 2, the values of Li and CO are determined in advance by LiAt0. At the same time, C03 was quantified and obtained as a residue.

本発明の電解質板の組成定量方法によれば、変動係数1
%以下で精度よく分析できることが分る。
According to the method for quantifying the composition of an electrolyte plate of the present invention, the coefficient of variation is 1
% or less, it can be seen that analysis can be performed with high accuracy.

この時の一試料の測定時間は1分以内である。The measurement time for one sample at this time is within 1 minute.

第3表において、化学分析値は従来法であり、LiAA
O!はAtのキレート滴定法で求め、K鵞co3および
LiIC0IはK 、 L iの炎光法で求めたもので
ある。この時の3成分の分析所要時間は、各前処理が複
雑で約20時間以上を要する。また、相対誤差は次式に
より求めた。
In Table 3, the chemical analysis values are based on the conventional method, and LiAA
O! was determined by the chelate titration method for At, and Kco3 and LiICOI were determined by the flame method for K and Li. The time required for analyzing the three components at this time is about 20 hours or more because each pretreatment is complicated. In addition, the relative error was calculated using the following formula.

これより、本性は従来の化学分析法と比べて相対誤差が
2.1 %以下で定量できる良好な方法であることが分
る。
From this, it can be seen that the present method is a good method that allows quantitative determination with a relative error of 2.1% or less compared to conventional chemical analysis methods.

本発明の電解質板の組成定量方法の適用によって迅速に
精度よく定量分析ができたことにより、電解質板の組成
管理が容易になった。また、運転前後などの電解質板の
組成定量への適用によって、電解質保持材や電解質量の
全体または個々の迅速な評価が可能になったことは極め
て実用性の高い方法といえる。
By applying the method for quantifying the composition of an electrolyte plate of the present invention, quantitative analysis can be performed quickly and with high accuracy, making it easier to manage the composition of the electrolyte plate. Furthermore, by applying this method to quantifying the composition of electrolyte plates before and after operation, it is possible to quickly evaluate the electrolyte holding material and the amount of electrolyte as a whole or individually, which can be said to be an extremely practical method.

〔発明の効果〕〔Effect of the invention〕

溶融炭散塩型燃料電池の電解質板は、電解質保持材と電
解質からなり、組成の*iまたは評価では前記構成材料
を同時にしかも一方の量を求める必要があるが、本発明
によれば分析試料の作製は、保持材と電解質を同時に溶
融固化してガラスビードにするようにしたため、けい光
X線分析法によって一つのガラスビードから前記構成材
料の組成定量が精度よく(変動係数1%以下)、短時間
(試料作製から測定まで約30分以内)で同時定量でき
るようになった。
The electrolyte plate of a molten carbon salt fuel cell consists of an electrolyte holding material and an electrolyte, and in order to evaluate the composition, it is necessary to simultaneously determine the amount of one of the constituent materials. was manufactured by simultaneously melting and solidifying the holding material and the electrolyte to form glass beads, so that the composition of the constituent materials can be determined with high accuracy (coefficient of variation of 1% or less) from a single glass bead using fluorescent X-ray analysis. , it became possible to perform simultaneous quantification in a short time (within about 30 minutes from sample preparation to measurement).

また、試料の作製に3いて、融剤、試料の加熱挙動など
を明らかにすることによって最適処理条件を見い出し、
試料量が少ないミリグラムレベルでも電解質板の組成定
量ができるようになった。
In addition, during sample preparation, we find the optimal processing conditions by clarifying the flux, the heating behavior of the sample, etc.
It is now possible to quantify the composition of an electrolyte plate even with a small amount of sample at the milligram level.

さらに、運転後における電解質板には電池を構成する電
極の金属または金属酸化物が付着などによって含まれる
。本発明によれば、このような混入する金属成分の同時
定量への応用も可能であり、その効果は大きい。
Further, after operation, the electrolyte plate contains metals or metal oxides of the electrodes constituting the battery due to adhesion or the like. According to the present invention, it is possible to apply it to the simultaneous determination of such mixed metal components, and its effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガラスビード試料を作製するために用いる融剤
の加熱4動を説明するための承認天秤測定曲線図、第2
図は試料の電解質板と融剤の加熱挙動を説明するための
加熱減量測定曲線図、M3図はLiAt0!およびに、
CO,の組成定量方法を説明するための検ti図である
。 1・・・DTA(示差熱分析曲線)、1a・・・融点(
633℃)、lb・・・融点(832℃)、IC・・・
融点(893℃)、2・・・TG(熱重量測定曲線)、
11・・・電解質板、12・・・融剤、21・・・K、
Co3の検量線、22・・・L 1ALOx 重量線。 ・イj\病、i′、: 讐7ノ  ロ    且カ08
5KN (’C) v7 z ■
Figure 1 is an approved balance measurement curve diagram to explain the four heating movements of the flux used to prepare glass bead samples.
The figure is a heating loss measurement curve diagram to explain the heating behavior of the sample electrolyte plate and flux, and the M3 diagram is LiAt0! and to,
FIG. 2 is a diagram for explaining a method for quantifying the composition of CO. 1...DTA (differential thermal analysis curve), 1a...melting point (
633°C), lb...Melting point (832°C), IC...
Melting point (893°C), 2...TG (thermogravimetry curve),
11... Electrolyte plate, 12... Fluxing agent, 21... K,
Co3 calibration curve, 22...L 1ALOx weight line.・Ij\illness, i′,: enemy 7 no ro and Ka08
5KN ('C) v7 z ■

Claims (1)

【特許請求の範囲】 1)電解質保持材のリチウムアルミネートと電解質の炭
酸リチウムおよび炭酸カリウムからなる溶融炭酸塩型燃
料電池の電解質板の組成分析において、電解質板を融剤
と共に加熱溶融することによってガラスビード状の試料
を調製し、前記試料中の電解質保持材および電解質のリ
チウムアルミネート、炭酸リチウム、炭酸カリウムを同
時にすることを特徴とする電解質板の組成定量方法。 2)特許請求の範囲第1項記載の方法において、融剤が
無水ホウ酸リチウムが主体で炭酸リチウムとヨウ化ナト
リウムの混合物からなり、その組成比が重量比で5:1
:0.02〜10:1:0.02であって、前記試料と
融剤の混合比が重量比で1:8〜1:800であること
を特徴とする電解質板の組成定量方法。 3)特許請求の範囲第1項記載の方法において、加熱溶
融温度が650〜1000℃であることを特徴とする電
解質板の組成定量方法。 4)特許請求の範囲第1項記載の方法において、分析装
置がけい光X線分析装置であって、AlKαのけい光X
線強度とリチウムアルミネート、KKαのけい光X線強
度と炭酸カリウムの濃度の関係から予め作成しておいた
検量線を適用することによって、リチウムアルミネート
と炭酸カリウムの量を求めることを特徴とする電解質板
の組成定量方法。
[Claims] 1) In compositional analysis of an electrolyte plate of a molten carbonate fuel cell consisting of lithium aluminate as an electrolyte holding material and lithium carbonate and potassium carbonate as electrolytes, by heating and melting the electrolyte plate together with a flux. 1. A method for determining the composition of an electrolyte plate, comprising preparing a glass bead-shaped sample, and simultaneously adding an electrolyte holding material and electrolytes such as lithium aluminate, lithium carbonate, and potassium carbonate in the sample. 2) In the method described in claim 1, the flux is mainly composed of anhydrous lithium borate and a mixture of lithium carbonate and sodium iodide, and the composition ratio is 5:1 by weight.
:0.02 to 10:1:0.02, and the mixing ratio of the sample to the flux is 1:8 to 1:800 by weight. 3) A method for determining the composition of an electrolyte plate according to claim 1, wherein the heating melting temperature is 650 to 1000°C. 4) In the method according to claim 1, the analyzer is a fluorescence X-ray analyzer,
The method is characterized by determining the amounts of lithium aluminate and potassium carbonate by applying a calibration curve prepared in advance from the relationship between the radiation intensity and lithium aluminate, the fluorescent X-ray intensity of KKα, and the concentration of potassium carbonate. A method for quantifying the composition of electrolyte plates.
JP61087731A 1986-04-16 1986-04-16 Method for quantifying composition of electrolyte plate Pending JPS62245145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61087731A JPS62245145A (en) 1986-04-16 1986-04-16 Method for quantifying composition of electrolyte plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61087731A JPS62245145A (en) 1986-04-16 1986-04-16 Method for quantifying composition of electrolyte plate

Publications (1)

Publication Number Publication Date
JPS62245145A true JPS62245145A (en) 1987-10-26

Family

ID=13923060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61087731A Pending JPS62245145A (en) 1986-04-16 1986-04-16 Method for quantifying composition of electrolyte plate

Country Status (1)

Country Link
JP (1) JPS62245145A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056996A (en) * 1973-09-14 1975-05-19
JPS5139188A (en) * 1974-09-30 1976-04-01 Horiba Ltd Hibunsangatakeikoxsenbunsekisochi
JPS6027847A (en) * 1983-07-26 1985-02-12 Nippon Steel Corp Preparation of specimen for fluorescent x-ray analysis
JPS60122363A (en) * 1983-10-28 1985-06-29 Nippon Jiryoku Senko Kk Analyzing method of fine granular metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056996A (en) * 1973-09-14 1975-05-19
JPS5139188A (en) * 1974-09-30 1976-04-01 Horiba Ltd Hibunsangatakeikoxsenbunsekisochi
JPS6027847A (en) * 1983-07-26 1985-02-12 Nippon Steel Corp Preparation of specimen for fluorescent x-ray analysis
JPS60122363A (en) * 1983-10-28 1985-06-29 Nippon Jiryoku Senko Kk Analyzing method of fine granular metal

Similar Documents

Publication Publication Date Title
CN101592571B (en) Method for detecting contents of alloying elements in ferrotitanium and ferrovanadium by X-fluorescence fusion method
CN103149074B (en) X-ray fluorescence spectra analyzes the MTG YBCO bulk method of molybdenum, manganese, vanadium or ferrochrome sample
CN101526488A (en) Method for analyzing components of iron ore by using X-ray fluorescence spectrum
CN103149073B (en) X-ray fluorescence spectra analyzes the MTG YBCO bulk method of ferrosilicon, Si-Ca-Ba, silicomanganese, ferro-aluminum or ferro-titanium sample
CN109142412A (en) The X-fluorescence measuring method of zinc, iron, Ti content during a kind of blast furnace dry method dust is grey
CN103604823A (en) Method for measuring contents of potassium, sodium, lead and zinc in iron ore
CN105717151B (en) The measuring method of platinum, samarium element in reforming catalyst
CA2625318C (en) Nickel flux composition
JP2002372518A (en) Method for determinating platinum group element
CN113295676A (en) Method for measuring calcium, aluminum and barium in deoxidizer
CN106338534B (en) The method of Calcium Fluoride Content in fluorite is quickly measured using Xray fluorescence spectrometer
CN112014379A (en) Method for measuring calcium oxide in limestone and dolomite
CN111060369A (en) Preparation method of alloy melting sample
JPS62245145A (en) Method for quantifying composition of electrolyte plate
JPH05273132A (en) Composition analyzing method for ceramic
JPS6362695B2 (en)
Mihajlović et al. Determination of thallium in sulphide geological samples by x‐ray fluorescence spectrometry
CN111239172A (en) Method for determining phosphorus content in coal
AU2007216909B2 (en) Copper X-ray flux composition
West et al. The analysis of slags from primary and secondary copper smelting processes by X‐ray fluorescence
Vuchkova et al. Fusion method for preparation of refractory nickel based alloy powders for X-ray fluorescence spectrometry
Lounamaa Spectrographic analysis of copper-making and lead-making slags for major constituents
CN116380958A (en) Fluorescence detection method for TiO2 content in ore
Carlsson Comparison of some procedures for X‐Ray fluorescence analysis of metallurgical slags
CN113533401A (en) Method for measuring chemical composition in chromium ore by using X-ray fluorescence spectrum