JPH05326545A - Selective crystal growth method and manufacture of semiconductor device using the same - Google Patents

Selective crystal growth method and manufacture of semiconductor device using the same

Info

Publication number
JPH05326545A
JPH05326545A JP13087592A JP13087592A JPH05326545A JP H05326545 A JPH05326545 A JP H05326545A JP 13087592 A JP13087592 A JP 13087592A JP 13087592 A JP13087592 A JP 13087592A JP H05326545 A JPH05326545 A JP H05326545A
Authority
JP
Japan
Prior art keywords
doped
carbon
semiconductor device
gaas
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13087592A
Other languages
Japanese (ja)
Inventor
Takumi Iritono
巧 入戸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13087592A priority Critical patent/JPH05326545A/en
Publication of JPH05326545A publication Critical patent/JPH05326545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain the title method and the manufacturing method wherein carbon-doped gallium arsenide can be obtained by a lower temperature selective growth technique, and a high yield manufacturing process can be realized without decreasing the quality of a semiconductor device. CONSTITUTION:Trimethylgallium(TMG) and tridimethylaminoarsenic ((Ch3)2N)3 As) are used as row material. The title device is an AlGaAs/GaAs based hetero junction bipolar transistor having a carbon-doped P-type GaAs outer base layer 6 which is selectively regrown on a cabon-doped P-type GaAs base layer 3, by MOMBE or the like at about 400 deg.C and 10<-2>-10<-3>Torr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体装置のp
型電極層等として炭素ドープガリウム砒素結晶を選択的
にエピタキシャル成長させる選択的結晶成長方法および
これを用いた半導体装置の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a selective crystal growth method for selectively epitaxially growing a carbon-doped gallium arsenide crystal as a type electrode layer and the like, and a method for manufacturing a semiconductor device using the same.

【0002】[0002]

【従来の技術】近年、半導体薄膜の積層構造からなるA
lGaAs/GaAs系ヘテロ接合バイポーラトランジ
スタ(HBT)の結晶成長が容易になり、実用化を目指
した研究開発が盛んに行なわれている。
2. Description of the Related Art In recent years, A having a laminated structure of semiconductor thin films
Since the crystal growth of the 1GaAs / GaAs heterojunction bipolar transistor (HBT) is facilitated, research and development aiming at practical use are being actively conducted.

【0003】デバイス作製上一番難しい点は、厚さ0.
8μm程度のベース層を正確に露出させ、ベース金属を
接触させることである。素子歩留りはこの工程で決まる
と言っても過言ではない。この困難さを解決するため、
選択的な再成長法によって、外部ベース領域(電極層)
を形成する方法が提案されている。この場合注意すべき
点は、再成長時の熱履歴で既存エピタキシャル構造が変
化しないようにすることである。したがって、可能なか
ぎり低温で再成長する必要がある。従来提案されている
再成長方法のMBE、MOCVDあるいはMOMBE
は、低温領域での選択性という観点から十分ではない。
なかでも、TMGおよび砒素(固体)を用いたMOMB
E法(嶋脇他 電子情報通信学会電子デバイス研究会
(平成3年1月))は、450℃という低温て炭素ドー
プp型GaAs電極層を選択的に成長できるという点で
は他の2つの方法より優れている。
The most difficult point in manufacturing a device is that the thickness is 0.
Exactly expose the base layer of about 8 μm and contact the base metal. It is no exaggeration to say that the device yield is determined by this process. To solve this difficulty,
External base region (electrode layer) by selective regrowth method
A method of forming the is proposed. In this case, it should be noted that the thermal history during regrowth should not change the existing epitaxial structure. Therefore, it is necessary to regrow at the lowest temperature possible. Previously proposed regrowth methods MBE, MOCVD or MOMBE
Is not sufficient from the viewpoint of selectivity in the low temperature region.
Above all, MOMB using TMG and arsenic (solid)
The E method (Shimanawaki et al. IEICE Technical Committee on Electronic Devices (January 1991)) is superior to the other two methods in that carbon-doped p-type GaAs electrode layers can be selectively grown at a low temperature of 450 ° C. Are better.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この温
度でも、AlGaAs/GaAs系HBTを製作するに
は十分ではない。なぜなら、低温で成長とているSiド
ープInGaAsのキャリア濃度が500℃前後で低下
するため、エミッタ抵抗の増大、高周波特性の低下とい
う事態が懸念される。そこで、より一層の低温選択成長
技術の開発が望まれていた。
However, even at this temperature, it is not sufficient to manufacture an AlGaAs / GaAs system HBT. This is because the carrier concentration of Si-doped InGaAs grown at a low temperature decreases at around 500 ° C., which may cause an increase in emitter resistance and deterioration in high frequency characteristics. Therefore, further development of low-temperature selective growth technology has been desired.

【0005】本発明は上記の事情に鑑みてなされたもの
で、より一層の低温選択成長技術により炭素ドープガリ
ウム砒素結晶を得ることができ、半導体装置の性能を低
下させることなく高歩留りな製作工程にし得る選択的結
晶成長方法およびこれを用いた半導体装置の製造方法を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and a carbon-doped gallium arsenide crystal can be obtained by a further low-temperature selective growth technique, and a high-yield manufacturing process without deteriorating the performance of a semiconductor device. It is an object of the present invention to provide a selective crystal growth method that can be realized and a semiconductor device manufacturing method using the same.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために、トリメチルガリウム(TMG)およびトリ
ジメチルアミノ砒素(((Ch3 2 N)3 As)を原
料として炭素ドープガリウム砒素結晶を選択的にエピタ
キシャル成長することを特徴とする選択的結晶成長方法
であり、また、この選択的結晶成長方法でヘテロ接合バ
イポーラトランジスタの再成長外部ベース領域を形成す
ることを特徴とする半導体装置の製造方法である。
In order to solve the above-mentioned problems, the present invention uses carbon-doped gallium arsenide crystal using trimethylgallium (TMG) and tridimethylaminoarsenic (((Ch 3 ) 2 N) 3 As) as raw materials. And a selective crystal growth method for forming a regrowth external base region of a heterojunction bipolar transistor by the selective crystal growth method. Is the way.

【0007】[0007]

【作用】本発明は、トリメチルガリウム(TMG)およ
びトリジメチルアミノ砒素(((Ch3 2 N)3
s)を原料とすることにより、低温で炭素ドープGaA
sを選択的にエピタキャル成長することができる。この
方法により形成した外部ベース領域を有するAlGaA
s/GaAs系ヘテロ接合バイポーラトランジスタは、
エミッタ抵抗増大の問題がなく、良好な高周波特性を与
える。また、素子歩留りが飛躍的に向上する。
The present invention is based on trimethylgallium (TMG) and tridimethylaminoarsenic (((Ch 3 ) 2 N) 3 A.
By using s) as a raw material, carbon-doped GaA can be obtained at a low temperature.
s can be selectively epitaxially grown. AlGaA with extrinsic base region formed by this method
The s / GaAs-based heterojunction bipolar transistor is
It gives good high-frequency characteristics without the problem of increased emitter resistance. In addition, the device yield is dramatically improved.

【0008】[0008]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0009】図1は本発明の一実施例に係るAlGaA
s/GaAs系ヘテロ接合バイポーラトランジスタを示
す断面図である。即ち、半絶縁性GaAs基板12上
に、n型GaAsコレクタバッファ層1、GaAsコレ
クタ層2、炭素ドープp型GaAsベース層3、n型A
0.3 Ga0.7 Asエミッタ層4、n型InGaAsエ
ミッタキャップ層5を順次エピタキシャル成長する。次
にこれをメサ型に加工し、トリメチルガリウム(TM
G)およびトリジメチルアミノ砒素(((Ch3
2 N)3 As)を原料として前記炭素ドープp型GaA
sベース層3上にMOMBE等により400℃程度、1
-2〜10-3Torrで選択的に再成長した炭素ドープ
p型GaAs外部ベース層6を形成した後、エミッタ電
極(WSi/W)7、ベース電極(Ti/W)8、コレ
クタ電極(AuGe/Ni)9を形成する。その後絶縁
膜11を形成する。10は素子間分離層(イオン注入絶
縁化層)である。尚、製作工程の順序は適宜変更してか
まわない。
FIG. 1 shows an AlGaA according to an embodiment of the present invention.
It is a sectional view showing an s / GaAs system heterojunction bipolar transistor. That is, on the semi-insulating GaAs substrate 12, an n-type GaAs collector buffer layer 1, a GaAs collector layer 2, a carbon-doped p-type GaAs base layer 3, and an n-type A.
l 0.3 Ga 0.7 As emitter layer 4 and n-type InGaAs emitter cap layer 5 are sequentially epitaxially grown. Next, this is processed into a mesa type, and trimethylgallium (TM
G) and tridimethylaminoarsenic (((Ch 3 )
2 N) 3 As) as a raw material, and the carbon-doped p-type GaA
s About 400 ° C. on the base layer 3 by MOMBE, etc., 1
After the carbon-doped p-type GaAs external base layer 6 selectively regrown at 0 −2 to 10 −3 Torr is formed, an emitter electrode (WSi / W) 7, a base electrode (Ti / W) 8, a collector electrode ( AuGe / Ni) 9 is formed. After that, the insulating film 11 is formed. Reference numeral 10 is an element isolation layer (ion implantation insulation layer). The order of the manufacturing steps may be changed as appropriate.

【0010】低温での選択成長実現の鍵は、(1)結晶
成長させたくないマスク上での成長核の形成を極力抑え
ること、および(2)GaAs表面では速やかに結晶成
長が進行することである。したがって原料として、マス
ク表面に付着しやすい金属固体原料ではなく、有機金属
化合物気体原料を用いた方がよい。これは、蒸気圧の高
い砒素も例外ではない。そこで、Ga原料はp型不純物
の炭素の原料をも兼ねてトリメチルガリウム(TMG)
とする。As原料は、上記の理由から金属砒素は除外さ
れ、また通常MOCVD法で用いられているアルシンも
分解温度が高くふさわしくない。アルシンよりも分解温
度が低いという観点で、トリジメチルアミノ砒素
(((Ch3 2 N)3 As)を採用する。
The key to the realization of selective growth at low temperature is (1) to minimize the formation of growth nuclei on a mask where crystal growth is not desired, and (2) to promote rapid crystal growth on the GaAs surface. is there. Therefore, it is better to use the organometallic compound gas raw material as the raw material, rather than the metal solid raw material that tends to adhere to the mask surface. This is no exception to arsenic, which has a high vapor pressure. Therefore, the Ga raw material also serves as a p-type impurity carbon raw material, and is trimethylgallium (TMG).
And Metallic arsenic is excluded from the As raw material for the above reasons, and arsine, which is usually used in the MOCVD method, has a high decomposition temperature and is not suitable. Tridimethylaminoarsenic (((Ch 3 ) 2 N) 3 As) is adopted from the viewpoint of lower decomposition temperature than arsine.

【0011】尚、(Me2 N)3 Asの蒸気圧は次の通
りである。
The vapor pressure of (Me 2 N) 3 As is as follows.

【0012】 log P(Torr)=8.289−2391/T(K) mp.−53℃、 bp. 170℃Log P (Torr) = 8.289-2391 / T (K) mp. -53 ° C, bp. 170 ° C

【0013】[0013]

【発明の効果】以上述べたように本発明によれば、トリ
メチルガリウム(TMG)およびトリジメチルアミノ砒
素(((Ch3 2 N)3 As)を原料とすることによ
り、低温で炭素ドープGaAsを選択的にエピタキャル
成長することができる。この方法により形成した外部ベ
ース領域を有するAlGaAs/GaAs系ヘテロ接合
バイポーラトランジスタは、エミッタ抵抗増大の問題が
なく、良好な高周波特性を与える。また、素子歩留りが
飛躍的に向上する。
As described above, according to the present invention, trimethylgallium (TMG) and tridimethylaminoarsenic (((Ch 3 ) 2 N) 3 As) are used as raw materials, so that carbon-doped GaAs can be obtained at a low temperature. Can be selectively grown epitaxially. The AlGaAs / GaAs heterojunction bipolar transistor having the external base region formed by this method gives good high frequency characteristics without the problem of increase in emitter resistance. In addition, the device yield is dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るAlGaAs/GaA
s系ヘテロ接合バイポーラトランジスタを示す断面図で
ある。
FIG. 1 is an AlGaAs / GaA according to an embodiment of the present invention.
It is sectional drawing which shows an s-system heterojunction bipolar transistor.

【符号の説明】[Explanation of symbols]

1…n型GaAsコレクタバッファ層、2…GaAsコ
レクタ層、3…炭素ドープp型GaAsベース層、4…
n型Al0.3 Ga0.7 Asエミッタ層、5…n型InG
aAsエミッタキャップ層、6…選択再成長炭素ドープ
p型GaAs外部ベース層、7…エミッタ電極(WSi
/W)、8…ベース電極(Ti/W)、9…コレクタ電
極(AuGe/Ni)、10…素子間分離層(イオン注
入絶縁化層)、11…絶縁膜、12…半絶縁性GaAs
基板。
1 ... n-type GaAs collector buffer layer, 2 ... GaAs collector layer, 3 ... carbon-doped p-type GaAs base layer, 4 ...
n-type Al 0.3 Ga 0.7 As emitter layer, 5 ... n-type InG
aAs emitter cap layer, 6 ... Selectively regrown carbon-doped p-type GaAs external base layer, 7 ... Emitter electrode (WSi
/ W), 8 ... Base electrode (Ti / W), 9 ... Collector electrode (AuGe / Ni), 10 ... Element isolation layer (ion implantation insulating layer), 11 ... Insulating film, 12 ... Semi-insulating GaAs
substrate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 トリメチルガリウム(TMG)およびト
リジメチルアミノ砒素(((Ch3 2 N)3 As)を
原料として炭素ドープガリウム砒素結晶を選択的にエピ
タキシャル成長することを特徴とする選択的結晶成長方
法。
1. A trimethyl gallium (TMG) and tri dimethylamino arsenic (((Ch 3) 2 N ) 3 As) selectively selective crystal growth, which comprises epitaxially growing a carbon-doped gallium arsenide crystal as a raw material Method.
【請求項2】 ヘテロ接合バイポーラトランジスタの再
成長外部ベース領域を、請求項1に記載した方法で形成
することを特徴とする半導体装置の製造方法。
2. A method of manufacturing a semiconductor device, wherein the regrown extrinsic base region of a heterojunction bipolar transistor is formed by the method according to claim 1.
JP13087592A 1992-05-22 1992-05-22 Selective crystal growth method and manufacture of semiconductor device using the same Pending JPH05326545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13087592A JPH05326545A (en) 1992-05-22 1992-05-22 Selective crystal growth method and manufacture of semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13087592A JPH05326545A (en) 1992-05-22 1992-05-22 Selective crystal growth method and manufacture of semiconductor device using the same

Publications (1)

Publication Number Publication Date
JPH05326545A true JPH05326545A (en) 1993-12-10

Family

ID=15044739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13087592A Pending JPH05326545A (en) 1992-05-22 1992-05-22 Selective crystal growth method and manufacture of semiconductor device using the same

Country Status (1)

Country Link
JP (1) JPH05326545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741360A (en) * 1994-08-12 1998-04-21 Optoelectronics Technology Research Corporation Method of growing a crystal of a compound semiconductor at a low temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741360A (en) * 1994-08-12 1998-04-21 Optoelectronics Technology Research Corporation Method of growing a crystal of a compound semiconductor at a low temperature

Similar Documents

Publication Publication Date Title
JP2817995B2 (en) III-V compound semiconductor heterostructure substrate and III-V compound heterostructure semiconductor device
JP3368452B2 (en) Compound semiconductor device and method of manufacturing the same
JPH06333937A (en) Bipolar transistor
US5952672A (en) Semiconductor device and method for fabricating the same
US5272095A (en) Method of manufacturing heterojunction transistors with self-aligned metal contacts
JPH0982898A (en) Semiconductor device and manufacturing method therefor
JPH05326545A (en) Selective crystal growth method and manufacture of semiconductor device using the same
JP4883547B2 (en) Compound semiconductor epitaxial substrate
JP4961740B2 (en) Method for manufacturing compound semiconductor epitaxial substrate
US6914274B2 (en) Thin-film semiconductor epitaxial substrate having boron containing interface layer between a collector layer and a sub-collector layer
JP2000323491A (en) Heterojunction bipolar transistor and manufacture thereof
JP3307371B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
US7397062B2 (en) Heterojunction bipolar transistor with improved current gain
JP3408419B2 (en) Method of growing III-V compound semiconductor and heterojunction bipolar transistor
JPH0685239A (en) Manufacture of semiconductor device
JP4150879B2 (en) Compound semiconductor epitaxial wafer
JP2000133654A (en) Manufacture of bipolar transistor
JP3326378B2 (en) Semiconductor device
JPH05129322A (en) Manufacture of semiconductor device
JPH08330240A (en) Preparation of semiconductor epitaxial growth layer
JPH07211729A (en) Hetero-junction bipolar transistor (hbt) and its manufacture
CN117766389A (en) Heterojunction bipolar transistor and MOCVD epitaxial growth method thereof
JP2000223497A (en) Heterojunction bipolar transistor and its manufacture
JP4802442B2 (en) Compound semiconductor epitaxial substrate and manufacturing method thereof
JPH07263460A (en) Hbt type compound semiconductor device and its manufacture