JPH05326345A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH05326345A
JPH05326345A JP16013592A JP16013592A JPH05326345A JP H05326345 A JPH05326345 A JP H05326345A JP 16013592 A JP16013592 A JP 16013592A JP 16013592 A JP16013592 A JP 16013592A JP H05326345 A JPH05326345 A JP H05326345A
Authority
JP
Japan
Prior art keywords
solid electrolytic
capacitor element
organic semiconductor
electrolytic capacitor
anode foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16013592A
Other languages
Japanese (ja)
Inventor
Shinichi Kaneko
信一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP16013592A priority Critical patent/JPH05326345A/en
Publication of JPH05326345A publication Critical patent/JPH05326345A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To prevent a crack of an anodized film due to contraction stress of organic semiconductor when molten semiconductor is cooled and solidified and to improve leakage current characteristics by improving the anode foil structure. CONSTITUTION:A lateral end face of an anode foil 3 disposed on an end face of a solid electrolytic capacitor element 8 of a solid electrolytic capacitor in which organic semiconductor is used as solid electrolyte is coated with an UV curable resin thin film 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンデンサ素子を構成
する陽極箔の端面構造を改良した固体電解コンデンサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor having an improved anode foil end face structure which constitutes a capacitor element.

【0002】[0002]

【従来の技術】一般に、乾式箔形電解コンデンサは、例
えば高純度アルミニウム箔からなる一対の陽・陰極箔に
同じくアルミニウムからなる一対の引出端子を接続し、
前記一対の陽・陰極箔相互間にスペーサを介して巻回し
てなるコンデンサ素子に駆動用電解液を含浸してケース
に収納し、このケース開口部を封口体で密閉してなるも
のである。
2. Description of the Related Art Generally, a dry foil type electrolytic capacitor has, for example, a pair of positive and negative electrode foils made of high-purity aluminum foil and a pair of lead terminals also made of aluminum.
A capacitor element formed by winding a spacer between a pair of positive and negative electrode foils is impregnated with a driving electrolytic solution and housed in a case, and the case opening is sealed with a sealing body.

【0003】しかして、前記駆動用電解液は、例えばエ
チレングリコールなどの有機溶媒にアジピン酸アンモニ
ウムなどの有機カルボン酸塩を使用しているが、tan
δ特性改善に限度があり、また、低温で比抵抗が上がり
低温特性が極度に悪化し広域温度範囲で使用するには信
頼性に欠けるなど市場要求を満足するためには解決すべ
き課題をかかえていた。
The driving electrolytic solution uses an organic carboxylate such as ammonium adipate as an organic solvent such as ethylene glycol.
There is a limit to the improvement of δ characteristics, and there is a problem to be solved in order to satisfy the market requirements such as low specific resistance at low temperature and extremely low temperature characteristics, and lack of reliability for use in a wide temperature range. Was there.

【0004】そのため、近年駆動用電解液にかえTCN
Q錯体からなる有機半導体を固体電解質とした固体電解
コンデンサが種々提案され実用化されてる。
Therefore, in recent years, the TCN has been replaced with the driving electrolyte solution.
Various solid electrolytic capacitors using an organic semiconductor composed of a Q complex as a solid electrolyte have been proposed and put into practical use.

【0005】コンデンサ素子に有機半導体としてのTC
NQ錯体を含浸化する方法として一般に溶液含浸法、分
散含浸法、さらには真空蒸着法があるが、TCNQ錯体
の特性はいろいろの条件で変化し、極めて扱いにくい物
質であるため、使用に当たっては種々の工夫が講じられ
ている。
TC as an organic semiconductor for the capacitor element
Solution impregnation method, dispersion impregnation method, and vacuum vapor deposition method are generally used as the method for impregnating the NQ complex. However, since the characteristics of the TCNQ complex change under various conditions and it is a substance that is extremely difficult to handle, there are various ways to use it. Is devised.

【0006】特に、固体電解コンデンサの固体電解質の
条件としては、コンデンサ特性としてのtanδ及び等
価直列抵抗に影響するそれ自体としての抵抗値が小さ
く、かつ温度、特に高温下でも安定した比抵抗値がある
ことが重要である。
[0006] In particular, as a condition for the solid electrolyte of the solid electrolytic capacitor, the resistance value itself which affects tan δ as a capacitor characteristic and the equivalent series resistance is small, and the specific resistance value is stable even at temperature, especially at high temperature. It is important to be.

【0007】以上のことから、コンデンサ素子へのTC
NQ錯体の含浸手段として、工業的にコンデンサ素子内
部へ満遍なく必要量浸透させるに、従来提案されている
特許公報又は技術文献によって加熱溶融液化処理が有効
とされている。
From the above, TC to the capacitor element
As a means for impregnating the NQ complex, the heating melt liquefaction treatment is considered to be effective according to the patent publications or technical documents that have been proposed in the past, in order to industrially uniformly permeate a required amount into the inside of the capacitor element.

【0008】なお、加熱溶融液化処理の具体的手段は、
外装ケースに入れ加熱溶融させた所望のTCNQ錯体液
にあらかじめ加熱してなるコンデンサ素子を収納し、こ
の素子を構成する絶縁紙(スペーサ)の繊維と電極箔の
微細なエッチングピットを介して含浸し固体電解質を構
成している。
Incidentally, the specific means of the heating melt liquefaction treatment is as follows.
A capacitor element, which is preheated in a desired TCNQ complex solution which is placed in an outer case and melted by heating, is housed and impregnated through fibers of insulating paper (spacer) and fine etching pits of the electrode foil which constitute this element. It constitutes a solid electrolyte.

【0009】しかして、TCNQ錯体を加熱溶融液化処
理してなる固体電解コンデンサを得るための具体的手段
を詳述すれば、有機半導体としてのTCNQ錯体を容器
に一定量秤量してヒーターに上げて、約220℃で溶解
させたTCNQ錯体溶融液にあらかじめ約300℃に加
熱したコンデンサ素子を浸漬する訳であるが、そのとき
の有機半導体溶融液の温度は250℃に達するため、こ
のような高温溶融状態で長時間放置すると、抵抗値が増
大し、製品としたとき、損失の増大、等価直列抵抗の増
大、さらには信頼性寿命試験において静電容量の減少が
大きくなるなどの問題を引き起こすため、すみやかに冷
却する必要がある。
[0009] The specific means for obtaining the solid electrolytic capacitor obtained by subjecting the TCNQ complex to the heat-melting and liquefaction process will be described in detail. A certain amount of the TCNQ complex as an organic semiconductor is weighed in a container and raised to a heater. The TCNQ complex melt melted at about 220 ° C. is immersed in the capacitor element which has been heated to about 300 ° C. in advance. The temperature of the organic semiconductor melt at that time reaches 250 ° C. If it is left in the molten state for a long time, the resistance value will increase, and when it is made into a product, it causes problems such as increase in loss, increase in equivalent series resistance, and further decrease in capacitance in the reliability life test. , Need to be cooled promptly.

【0010】しかし、TCNQ錯体は、溶融状態から冷
却固化する過程で約15%の体積収縮があるが、冷却体
積収縮によるストレスはコンデンサ素子端面が一番大き
く、そのストレスによって、TCNQ錯体は駆動用電解
液のように化成性がないことよりコンデンサ素子巻回
後、化成処理を施しコンデンサ素子端面を構成する陽極
箔の切断面となる幅方向端面に折角生成した陽極酸化皮
膜が劣化し、コンデンサ素子巻回後行う化成の意味をな
くし漏れ電流の増大となる問題を抱える結果となってい
た。
However, the TCNQ complex has a volume contraction of about 15% in the process of cooling and solidifying from the molten state, but the stress due to the cooling volume contraction is the largest at the end face of the capacitor element, and the stress causes the TCNQ complex to drive. Since it does not have a chemical conversion property like an electrolytic solution, it undergoes chemical conversion treatment after winding the capacitor element, and the anodized film formed at the corners in the width direction, which is the cut surface of the anode foil that constitutes the capacitor element end surface, deteriorates and the capacitor element deteriorates. As a result, there is a problem that the meaning of the chemical conversion performed after winding is lost and the leakage current increases.

【0011】[0011]

【発明が解決しようとする課題】以上のように上記構成
になる固体電解コンデンサは、有機半導体としてのTC
NQ錯体の加熱溶融液化含浸−冷却固化時の収縮により
陽極箔端面の酸化皮膜に劣化を与え、漏れ電流の増大の
原因となっていた。
As described above, the solid electrolytic capacitor having the above-mentioned structure has TC as an organic semiconductor.
The NQ complex was impregnated by heating, melted, and liquefied, and contracted during cooling and solidification, which deteriorated the oxide film on the end face of the anode foil, causing an increase in leakage current.

【0012】本発明は、上記の点に鑑みて成されたもの
で、その目的は、コンデンサ素子巻回後の化成処理を省
略し、有機半導体としてのTCNQ錯体の加熱溶融液化
含浸後行われる冷却固化時のストレスによっても酸化皮
膜の劣化を抑制し、漏れ電流特性の良好な固体電解コン
デンサを提供することである。
The present invention has been made in view of the above points, and an object thereof is to omit the chemical conversion treatment after winding the capacitor element, and perform the cooling performed after the heat melting liquefaction impregnation of the TCNQ complex as the organic semiconductor. Another object of the present invention is to provide a solid electrolytic capacitor which suppresses deterioration of an oxide film due to stress during solidification and has excellent leakage current characteristics.

【0013】[0013]

【課題を解決するための手段】本発明による固体電解コ
ンデンサは、弁作用金属からなる陽極箔と陰極箔間にス
ペーサを介在して巻回したコンデンサ素子に有機半導体
を含浸してなる固体電解コンデンサにおいて、前記コン
デンサ素子を構成する陽極箔の幅方向端面に紫外線硬化
樹脂薄膜を形成したことを特徴とするものである。
A solid electrolytic capacitor according to the present invention is a solid electrolytic capacitor obtained by impregnating an organic semiconductor into a capacitor element wound with a spacer interposed between an anode foil and a cathode foil made of a valve metal. In the third aspect, the ultraviolet curable resin thin film is formed on the end face in the width direction of the anode foil forming the capacitor element.

【0014】[0014]

【作用】以上のような構成によれば、陽極箔端面に紫外
線硬化樹脂薄膜を形成したものであるため、コンデンサ
素子巻回後の化成処理を必要とすることなく、コンデン
サ素子への有機半導体としてのTCNQ錯体の加熱溶融
液化含浸−冷却固化時に発生する機械的歪(ストレス)
からの酸化皮膜劣化を有効に防止することができる。
With the above-mentioned structure, since the ultraviolet curable resin thin film is formed on the end face of the anode foil, there is no need for chemical conversion treatment after winding the capacitor element, and as an organic semiconductor for the capacitor element. Melt-Liquefaction Impregnation of TCNQ Complex of Polypropylene-Mechanical Strain (Stress) Generated during Cooling and Solidification
It is possible to effectively prevent deterioration of the oxide film.

【0015】[0015]

【実施例】以下、本発明の一実施例につき図面を参照し
て説明する。まず最初に、図2に示すように、アルミニ
ウム箔表面をエッチング液で粗面化し表面積を拡大した
後、陽極酸化皮膜を生成し、製品に適した幅で裁断しロ
ール状とした両端面に紫外線硬化樹脂を薄く塗布し、す
みやかに紫外線を照射し樹脂を硬化させ両端面に紫外線
硬化樹脂薄膜1層を設けた陽極箔巻2と、アルミニウム
箔表面をエッチング液によって粗面化し表面積を拡大
し、製品に適した幅で裁断された陰極箔巻(図示せず)
を準備し、この陰極箔巻と前記陽極箔巻2とを巻取機
(図示せず)にセットし、この巻取機を駆動させて中間
にスペーサを介在させ両者を重ね合わせ巻回し、図3に
示すように、幅方向の両端部に紫外線硬化樹脂薄膜1を
形成した陽極箔3と陰極箔4間にクラフト紙又はマニラ
紙などからなるスペーサ5を介在させ、前記陽極箔3及
び陰極箔4の任意な箇所それぞれに陽極引出端子6及び
陰極引出端子7を取着して巻回されたコンデンサ素子8
を形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, as shown in FIG. 2, the surface of the aluminum foil is roughened with an etching solution to increase the surface area, and then an anodic oxide film is formed, which is cut into a width suitable for the product, and ultraviolet rays are applied to both end surfaces. A thin layer of cured resin is applied, the resin is rapidly irradiated with ultraviolet rays to cure the resin, and the anode foil winding 2 is provided with one layer of ultraviolet curable resin thin film on both end surfaces, and the aluminum foil surface is roughened with an etching solution to increase the surface area, Cathode foil winding cut into a width suitable for the product (not shown)
The cathode foil winding and the anode foil winding 2 are set on a winder (not shown), and the winder is driven to interpose a spacer in the middle to wind the two together. As shown in FIG. 3, a spacer 5 made of kraft paper or Manila paper is interposed between the anode foil 3 and the cathode foil 4 having the ultraviolet curable resin thin film 1 formed on both ends in the width direction, and the anode foil 3 and the cathode foil 4. A capacitor element 8 in which an anode lead terminal 6 and a cathode lead terminal 7 are attached and wound at arbitrary portions of 4 respectively.
To form.

【0016】次に、図4に示すように、例えばアルミニ
ウムなどからなるケース9内にTCNQ錯体からなる有
機半導体を入れ、この有機半導体を加熱溶融し有機半導
体溶融液10とし、図1に示すように前記コンデンサ素
子8を予熱状態で収納し、前記有機半導体溶融液10を
前記コンデンサ素子8内に含浸し、しかる後、冷却固化
し、含浸されない残余の有機半導体溶融液10をケース
9内底面部に固化状態の有機半導体11とし、前記ケー
ス9開口部を封口体12にて密閉してなるものである。
Next, as shown in FIG. 4, an organic semiconductor made of a TCNQ complex is placed in a case 9 made of, for example, aluminum, and this organic semiconductor is heated and melted to form an organic semiconductor melt 10 as shown in FIG. The capacitor element 8 in a preheated state, and the organic semiconductor melt 10 is impregnated in the capacitor element 8 and then cooled and solidified, and the remaining organic semiconductor melt 10 not impregnated is left in the bottom surface of the case 9. The solidified organic semiconductor 11 is formed, and the opening of the case 9 is sealed with a sealing body 12.

【0017】以上の構成になる固体電解コンデンサによ
れば、コンデンサ素子を構成する陽極箔3の端面に形成
した紫外線硬化樹脂薄膜がコンデンサ素子陽極箔の端面
を被覆する形となるために、有機半導体溶融液10の含
浸において、加熱−冷却固化時の収縮による機械的スト
レスかあったとしても酸化皮膜劣化を防止でき、漏れ電
流特性改善に大きく貢献できる。
According to the solid electrolytic capacitor having the above structure, since the ultraviolet curable resin thin film formed on the end face of the anode foil 3 constituting the capacitor element covers the end surface of the capacitor element anode foil, the organic semiconductor In the impregnation of the melted liquid 10, even if there is mechanical stress due to shrinkage during heating-cooling and solidification, deterioration of the oxide film can be prevented, and the leakage current characteristics can be greatly improved.

【0018】次に、実施例Aと従来例Bの比較の一例に
ついて述べる。すなわち、両端面に紫外線硬化樹脂をバ
ーコート又は噴霧で約50μmの厚さに塗布し、すみや
かに紫外線を照射し樹脂を硬化させ幅5mmの陽極箔巻
と陰極箔巻を用い、前述の手段で製作した実施例Aと、
陽極箔巻の端面に紫外線硬化樹脂を塗布しないでその他
は実施例Aと同一として製作した従来例Bにおける漏れ
電流分布を調べた結果図5に示す通りで、また良品歩留
りを調べた結果表1に示す通りであった。
Next, an example of comparison between Example A and Conventional Example B will be described. That is, an ultraviolet curable resin is applied to both end faces by bar coating or spraying to a thickness of about 50 μm, and the resin is rapidly irradiated with ultraviolet rays to cure the resin, and an anode foil winding and a cathode foil winding having a width of 5 mm are used. Example A produced,
As a result of examining the leakage current distribution in Conventional Example B, which was manufactured in the same manner as in Example A, except that the ultraviolet curable resin was not applied to the end face of the anode foil winding, it is as shown in FIG. It was as shown in.

【0019】なお、定格は実施例A,従来例Bとも16
V−47μFで、有機半導体は実施例A,従来例Bとも
N−nブチルイソキノリニウムのTCNQ錯体を用い
た。
The rating is 16 for both Example A and Conventional Example B.
At V-47 μF, the organic semiconductor used the TCNQ complex of N-n-butylisoquinolinium in both Example A and Conventional Example B.

【0020】[0020]

【表1】 [Table 1]

【0021】図5及び表1から明らかなように、従来例
Bのものは、漏れ電流のレベルが高く、バラツキも多
く、かつ良品率もかなり低いのに対して、実施例Aのも
のは、漏れ電流のレベルも低く、バラツキも少なく、か
つ良品率も高く、実施例Aの優れた陽極箔端面の保護効
果を実証した。
As is clear from FIG. 5 and Table 1, the conventional example B has a high level of leakage current, a large variation, and the yield rate is considerably low, whereas the example A has The leakage current level was low, the variation was small, and the non-defective rate was high, and the excellent effect of protecting the end face of the anode foil of Example A was verified.

【0022】[0022]

【発明の効果】本発明によれば、陽極箔端面の保護を完
全にすることによって、漏れ電流のバラツキをなくし、
レベルを低減することができる実用的価値の高い信頼性
に富む固体電解コンデンサを得ることができる。
According to the present invention, by completely protecting the end face of the anode foil, variations in leakage current are eliminated,
It is possible to obtain a highly reliable solid electrolytic capacitor having a high level of practical value and capable of reducing the level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る固体電解コンデンサを
示す断面図。
FIG. 1 is a sectional view showing a solid electrolytic capacitor according to an embodiment of the present invention.

【図2】本発明の一実施例に係るコンデンサ素子を構成
する陽極箔巻を示す斜視図。
FIG. 2 is a perspective view showing an anode foil winding that constitutes a capacitor element according to an embodiment of the present invention.

【図3】本発明の一実施例に係るコンデンサ素子を示す
展開斜視図。
FIG. 3 is a developed perspective view showing a capacitor element according to an embodiment of the present invention.

【図4】有機半導体の加熱溶融状態を示す断面図。FIG. 4 is a cross-sectional view showing a heated and melted state of an organic semiconductor.

【図5】漏れ電流分布を示す特性図。FIG. 5 is a characteristic diagram showing a leakage current distribution.

【符号の説明】[Explanation of symbols]

1 紫外線硬化樹脂薄膜 2 陽極箔巻 3 陽極箔 4 陰極箔 5 スペーサ 6 陽極引出端子 7 陰極引出端子 8 コンデンサ素子 9 ケース 10 有機半導体溶融液 11 固化状態の有機半導体 12 封口体 1 UV curable resin thin film 2 Anode foil winding 3 Anode foil 4 Cathode foil 5 Spacer 6 Anode extraction terminal 7 Cathode extraction terminal 8 Capacitor element 9 Case 10 Organic semiconductor melt 11 Solidified organic semiconductor 12 Sealed body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 弁作用金属からなる陽極箔と陰極箔間に
スペーサを介在して巻回したコンデンサ素子に有機半導
体を含浸してなる固体電解コンデンサにおいて、前記コ
ンデンサ素子を構成する陽極箔の幅方向端面に紫外線硬
化樹脂薄膜を形成したことを特徴とする固体電解コンデ
ンサ。
1. A solid electrolytic capacitor obtained by impregnating an organic semiconductor into a capacitor element wound with a spacer interposed between an anode foil and a cathode foil made of a valve metal, and the width of the anode foil constituting the capacitor element. A solid electrolytic capacitor having an ultraviolet curable resin thin film formed on the end face in the direction.
JP16013592A 1992-05-26 1992-05-26 Solid electrolytic capacitor Pending JPH05326345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16013592A JPH05326345A (en) 1992-05-26 1992-05-26 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16013592A JPH05326345A (en) 1992-05-26 1992-05-26 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH05326345A true JPH05326345A (en) 1993-12-10

Family

ID=15708634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16013592A Pending JPH05326345A (en) 1992-05-26 1992-05-26 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH05326345A (en)

Similar Documents

Publication Publication Date Title
JPH05326345A (en) Solid electrolytic capacitor
EP0285728B1 (en) Solid electrolytic capacitor, and method of manufacturing same
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
JPH05326344A (en) Solid electrolytic capacitor
JP3253126B2 (en) Solid electrolytic capacitors
JP2951039B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03231414A (en) Solid electrolytic capacitor
JP2950898B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JP3055199B2 (en) Method for manufacturing solid electrolytic capacitor
JP3253216B2 (en) Solid electrolytic capacitors
JPH09260215A (en) Manufacture of solid electrolytic capacitor
JPH03241726A (en) Electrolytic capacitor
JP3030047B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JPH0590083A (en) Manufacture of electrolytic capacitor
JPH062675U (en) Solid electrolytic capacitor
JPH0590082A (en) Manufacture of electrolytic capacitor
JP3556045B2 (en) Solid electrolytic capacitors
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
JP2811646B2 (en) Manufacturing method of electrolytic capacitor
JPH0547607A (en) Production of electrolytic capacitor
JPH06188154A (en) Manufacture of solid electrolytic capacitor
JPH07115042A (en) Manufacture of electrolytic capacitor
JPH0478121A (en) Manufacture of solid electrolytic capacitor
JPS63100710A (en) Solid electrolyte capacitor and manufacture of the same
JPH063786B2 (en) Method for manufacturing solid electrolytic capacitor