JPS63100710A - Solid electrolyte capacitor and manufacture of the same - Google Patents

Solid electrolyte capacitor and manufacture of the same

Info

Publication number
JPS63100710A
JPS63100710A JP24588786A JP24588786A JPS63100710A JP S63100710 A JPS63100710 A JP S63100710A JP 24588786 A JP24588786 A JP 24588786A JP 24588786 A JP24588786 A JP 24588786A JP S63100710 A JPS63100710 A JP S63100710A
Authority
JP
Japan
Prior art keywords
voltage
capacitor element
organic semiconductor
capacitor
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24588786A
Other languages
Japanese (ja)
Inventor
博文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24588786A priority Critical patent/JPS63100710A/en
Publication of JPS63100710A publication Critical patent/JPS63100710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 イ1 産業上の利用分野 本発明はTONQ、の錯塩からなる有機半導体を固体電
解質とする固体電解コンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of Industrial Application The present invention relates to a method for producing a solid electrolytic capacitor using an organic semiconductor composed of a complex salt of TONQ as a solid electrolyte.

(ロ) 従来の技術 TCNQ、と称される7、7.8.8−テトラシアノキ
ノジメタンの錯塩からなる有機半導体を溶融し、それを
コンデンサ素子に含浸後、冷却して固体電解質を形成す
る方法は特開昭57−173928号公報などに開示さ
れている。
(b) Conventional technology An organic semiconductor consisting of a complex salt of 7,7.8.8-tetracyanoquinodimethane called TCNQ is melted, impregnated into a capacitor element, and then cooled to form a solid electrolyte. A method for doing this is disclosed in Japanese Patent Application Laid-Open No. 57-173928.

上述した方法により形成される固体電解コンデンサは、
有機半導体をコンデンサに含浸し、冷却固化後、エポキ
シ樹脂等を用いて封口している。
The solid electrolytic capacitor formed by the method described above is
A capacitor is impregnated with an organic semiconductor, cooled and solidified, and then sealed using an epoxy resin or the like.

この固体電解コンデンサによれば、TCNQ、塩のコン
デンサ素子への含浸率が高まり、かつTONQ、塩本来
の優れた性質を活かすことができ、コンデンサ特性の向
上が図れる。
According to this solid electrolytic capacitor, the impregnation rate of TCNQ and salt into the capacitor element is increased, and the excellent properties inherent in TONQ and salt can be utilized, and the capacitor characteristics can be improved.

ところで、コンデンサ素子の陽極は誘電体である酸化皮
膜が形成されているが、コンデンサ素子の余熱および含
浸時の熱的あるいは含浸時の機械的衝撃によって酸化皮
、膜が傷つけられる。
Incidentally, the anode of the capacitor element is formed with an oxide film which is a dielectric material, but the oxide film and film are damaged by residual heat of the capacitor element and thermal shock during impregnation or mechanical impact during impregnation.

一般に固体電解コンデンサにおいて酸化皮膜を修復し漏
れ電流特性等の改善のため、素子の外装後に定格電圧の
1.0〜2.0倍の電圧を85〜150℃の温度範囲内
で印加するいわゆるエージング処理が行なわれている。
In general, in solid electrolytic capacitors, in order to repair the oxide film and improve leakage current characteristics, etc., a voltage of 1.0 to 2.0 times the rated voltage is applied within a temperature range of 85 to 150 degrees Celsius after the device is packaged. Processing is in progress.

H発明が解決しようとする問題点 固体電解質としての有機半導体は、一般の電解コンデン
サに使用されている電解液に比べ酸化皮膜の修復性が弱
いため酸化皮膜の修復性は容易ではなかった。
H Problems to be Solved by the Invention Organic semiconductors used as solid electrolytes have weak oxide film repair properties compared to electrolytic solutions used in general electrolytic capacitors, so it has not been easy to repair oxide films.

本発明は、有機半導体を電解質に用いた固体電解コンデ
ンサにおいて、漏れ電流特性の改善をし、歩留りを向上
させることを目的とする。
The present invention aims to improve leakage current characteristics and increase yield in a solid electrolytic capacitor using an organic semiconductor as an electrolyte.

に)問題点を解決するための手段 本発明の固体電解コンデンサの製造方法は、コンデンサ
素子に所定の電圧を印加しつつ、このコンデンサ素子に
、溶融した有機半導体を含浸し、その後、冷却固化する
ことを特徴とする。
B) Means for Solving the Problems The method for manufacturing a solid electrolytic capacitor of the present invention involves impregnating a capacitor element with a molten organic semiconductor while applying a predetermined voltage to the capacitor element, and then cooling and solidifying the capacitor element. It is characterized by

(ホ)作 用 有機半導体が高温で且つ液化の状態で陽極と陰極となる
有機半導体の間に、所定電圧が印加されるため、酸化皮
膜の修復性が著しく向上する。
(E) Function Since a predetermined voltage is applied between the organic semiconductors serving as an anode and a cathode when the organic semiconductor is at high temperature and in a liquefied state, the repairability of the oxide film is significantly improved.

(へ)実施例 以下、本発明の製造方法を実施例に基いて説明する。(f) Example Hereinafter, the manufacturing method of the present invention will be explained based on Examples.

化成済のアルミニウム箔と陰極アルミニウム箔とを厚さ
50μmのマニラ紙からなるセパレータを介して、巻回
し、ポリエステルテープにて巻き止めしたコンデンサ素
子(1)の陽極箱の切り口を化成液を用いて陽極化成電
圧と略同じ電圧を印加して化成する。このようにして、
準備されたコンデンサ素子(1)の陽極リード(2)を
正電位が加えられる鉄製の接続板αGにスポット溶接に
より取り着ける。
A chemically treated aluminum foil and a cathode aluminum foil are wound together through a separator made of Manila paper with a thickness of 50 μm, and the cut end of the anode box of a capacitor element (1) is wrapped with a polyester tape using a chemically formed liquid. Formation is performed by applying substantially the same voltage as the anodization voltage. In this way,
The anode lead (2) of the prepared capacitor element (1) is attached by spot welding to the iron connection plate αG to which a positive potential is applied.

また有機半導体としてTCNQの錯塩であるルーブチル
・インキツリウム・TCN Q、の粉末を適度の加圧下
でアルミニウムからなる金属ケース(5)につめる。こ
の金−属ケース(5)を熱・電気伝導性に優れているチ
タン製のケース保持治具■に収容する。
Further, powder of rubutyl inquiturium TCN Q, which is a complex salt of TCNQ as an organic semiconductor, is packed in a metal case (5) made of aluminum under moderate pressure. This metal case (5) is housed in a case holding jig (2) made of titanium, which has excellent thermal and electrical conductivity.

そして、加熱ヒータ(社)により金属ケース(5)を2
60〜300℃に加熱して有機半導体を融解液化する。
Then, the metal case (5) is heated 2 times using a heater (company).
The organic semiconductor is melted and liquefied by heating to 60 to 300°C.

またケース保持治具■には負電位が加えられる。更に、
コンデンサ素子(1)に有機半導体を含浸後、急速冷却
するための、アルミニウムかラナル冷却用液槽■にも負
電位が加えられる。この液槽G内には冷却水等が充填さ
れている。
In addition, a negative potential is applied to the case holding jig ■. Furthermore,
After the capacitor element (1) is impregnated with an organic semiconductor, a negative potential is also applied to the aluminum or ranal cooling liquid tank (2) for rapid cooling. This liquid tank G is filled with cooling water and the like.

而して、前記コンデンサ素子(1)を乾燥後、3〜5分
間予熱した後、ケース(5)にコンデンサ素子(1)Σ 、挿入し、液化状態にある有機半導体を含浸する。
After drying and preheating the capacitor element (1) for 3 to 5 minutes, the capacitor element (1) Σ is inserted into the case (5) and impregnated with an organic semiconductor in a liquefied state.

このとき、接続板αGとケース保持治具■問および接続
板CI(Iと液槽器間に直流電源■より電圧を印加する
。ことによりコンデンサ素子(1)に所定の電圧が印加
される。続いて、ケース(5)を液槽器内の冷却水に浸
漬して、ケース(5)の底面を液槽−に接触させ、冷却
水でケース(5)を急速冷却する。そして、コンデンサ
素子(1)が急速冷却されることによりコンデンサ素子
(1)に有機半導体が含浸した状態で固化し、それが固
体電解コンデンサの電解質となる。
At this time, a voltage is applied from the DC power supply (2) between the connection plate αG, the case holding jig (1), and the connection plate CI (I) and the liquid tank.Thereby, a predetermined voltage is applied to the capacitor element (1). Next, the case (5) is immersed in the cooling water in the liquid tank, the bottom of the case (5) is brought into contact with the liquid tank, and the case (5) is rapidly cooled with the cooling water.Then, the capacitor element (1) is rapidly cooled to solidify the capacitor element (1) impregnated with the organic semiconductor, which becomes the electrolyte of the solid electrolytic capacitor.

この含浸工程中、前述したように直流電源■にて、コン
デンサ素子(1)には所定の電圧が印加される。
During this impregnation step, a predetermined voltage is applied to the capacitor element (1) by the DC power supply (2) as described above.

その後、ケース(5)の開口部を樹脂で封口して、固体
電解コンデンサが得られる。
Thereafter, the opening of the case (5) is sealed with resin to obtain a solid electrolytic capacitor.

次に、本発明により製造した、固体電解コンデンサと、
比較のため有機半導体の含浸時に電圧を印加しない以外
は本発明と同様に製造した従来の固体電解コンデンサを
醜備し、初期特性および高温負荷試験を行なった結果を
第1表ないし第4表に示す。
Next, a solid electrolytic capacitor manufactured according to the present invention,
For comparison, a conventional solid electrolytic capacitor manufactured in the same manner as the present invention except that no voltage was applied during impregnation with an organic semiconductor was equipped, and initial characteristics and high temperature load tests were conducted. Tables 1 to 4 show the results. show.

試料コンデンサは、定格電圧25V−3,3μF。The sample capacitor has a rated voltage of 25V-3, 3μF.

外形寸法φ5wx6.8i(長さ)および定格電圧10
V−220μL 外形寸法$ 10flX 10ff(
長さ)の二種類のものを用いた。
External dimensions φ5wx6.8i (length) and rated voltage 10
V-220μL External dimensions $ 10flX 10ff (
Two different lengths were used.

第1表および第2表は定格25V−5,3μFのコンデ
ンサを測定したもの、 第3表および第4表は定格IQV−220μFのコンデ
ンサを測定した結果を夫々示す。
Tables 1 and 2 show the results of measuring capacitors with a rating of 25V-5, 3 μF, and Tables 3 and 4 show the results of measuring capacitors with a rating of IQV-220 μF, respectively.

以下ぷ白 ここで、Cは容量、LCは漏れ電流ESRは等価直列抵
抗を示す。
Here, C is capacitance, LC is leakage current ESR, and equivalent series resistance.

各表の特性値は各20個の平均値を示す。The characteristic values in each table represent the average values of 20 values.

尚、LCについては平均値と標準偏差を各々示す。Note that for LC, the average value and standard deviation are shown.

また、実施例(1)は10V、実施例(2)は16v1
参考例は22v1実施例(3)は6V、実施例(4)は
10vの電圧を夫々印加して、有機半導体を含浸したも
のである。
Also, Example (1) is 10V, Example (2) is 16v1
In the reference example, a voltage of 6V was applied in 22v1 Example (3), and a voltage of 10V was applied in Example (4), and the organic semiconductor was impregnated.

第1表、第3表に示す通り、本発明による実施例tll
 +21および+31141では、従来例に比べ漏れ電
流値が大幅に改善されていることが分る。
As shown in Tables 1 and 3, Examples tll according to the present invention
It can be seen that at +21 and +31141, the leakage current value is significantly improved compared to the conventional example.

更に、第2表、第4表に示すように、本発明による実施
例ill 121および+31 +4)は信頼性も従来
と同様に高いことがわかる。
Furthermore, as shown in Tables 2 and 4, it can be seen that Examples ill 121 and +31 +4) according to the present invention have high reliability as well as the conventional ones.

また、参考例のように、22vを印加した場合には逆に
特性が劣化している。定格25Vのコンデンサでは、2
2Vを越える電圧を印加して有機半導体を含浸した場合
、コンデンサ素子の陽極化成電圧(およそ20V〜20
0v)に関係なく、含浸時に素子が短絡してしまうこと
がある。このように、印加電圧は、定格電圧によっては
定格電圧内であっても高い電圧を印加すると逆に特性が
劣化する場合がある。定格電圧と印加電圧との関係を種
々検討した結果、定格電圧が16’V以内の1″− の80%以内の電圧を印加して、有機半導体を含浸する
と良い。また、印加電圧は好ましくは、定格電圧内で5
v〜20Vの範囲である。
Furthermore, as in the reference example, when 22V was applied, the characteristics deteriorated on the contrary. For a capacitor rated at 25V, 2
If a voltage exceeding 2V is applied to impregnate an organic semiconductor, the anodization voltage of the capacitor element (approximately 20V to 20V)
0v), the element may be short-circuited during impregnation. As described above, depending on the rated voltage, applying a high voltage may adversely deteriorate the characteristics even if the applied voltage is within the rated voltage. As a result of various studies on the relationship between the rated voltage and the applied voltage, we found that it is preferable to impregnate the organic semiconductor by applying a voltage within 80% of 1"- with the rated voltage within 16'V. , 5 within the rated voltage
The range is from v to 20V.

更に好ましくはコンデンサ素子の定格電圧に関係なく、
すなわち陽極酸化皮膜の厚さには関係なく10V程度の
電圧をコンデンサ素子に印加して、有機半導体を含浸す
るのが良い。
More preferably, regardless of the rated voltage of the capacitor element,
That is, regardless of the thickness of the anodic oxide film, it is preferable to apply a voltage of about 10 V to the capacitor element to impregnate the organic semiconductor.

上述した実施例では、急速冷却するための液槽(ハ)に
も負電圧を印加したが、液槽■に電圧を印加するのを省
略しても良い。
In the embodiment described above, a negative voltage was also applied to the liquid tank (c) for rapid cooling, but the application of voltage to the liquid tank (3) may be omitted.

(ト)  発明の効果 本発明は、コンデンサ素子に有機半導体を含浸する際、
コンデンサ素子に電圧を印加することにより、漏れ電流
が改善され、初期歩留りが向上する。また有機半導体含
浸後あるいは封口後の電圧処理条件等を軽減できるため
工数削減にも役立つ。
(G) Effects of the Invention The present invention provides the following advantages: When impregnating a capacitor element with an organic semiconductor,
By applying a voltage to the capacitor element, leakage current is improved and initial yield is improved. It is also useful for reducing the number of man-hours because the voltage treatment conditions after impregnating the organic semiconductor or sealing can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の製造方法を説明するための模式図で
ある。 (1)・・・コンデンサ素子、(5)・・・ケース、α
G・・・接続板、■・・・ケース保持治具、(社)・・
・加熱ヒータ、■・・・液槽、■・・・直流電源。
FIG. 1 is a schematic diagram for explaining the manufacturing method of the present invention. (1)...Capacitor element, (5)...Case, α
G... Connection plate, ■... Case holding jig, Co., Ltd.
・Heating heater, ■...liquid tank, ■...DC power supply.

Claims (3)

【特許請求の範囲】[Claims] (1)TCNQの錯塩からなる有機半導体を融解液化せ
しめ、溶融状態にある有機半導体をコンデンサ素子に含
浸し、冷却固化してなる固体電解コンデンサの製造方法
であって、前記コンデンサ素子に所定の電圧を印加しつ
つ、 有機半導体を含浸し、冷却固化することを 特徴とする固体電解コンデンサの製造方法。
(1) A method for manufacturing a solid electrolytic capacitor in which an organic semiconductor made of a complex salt of TCNQ is melted and liquefied, a capacitor element is impregnated with the molten organic semiconductor, and the capacitor element is cooled and solidified, the method comprising applying a predetermined voltage to the capacitor element. 1. A method for manufacturing a solid electrolytic capacitor, which comprises impregnating an organic semiconductor and solidifying the solid electrolytic capacitor by cooling.
(2)コンデンサ素子の定格電圧が16V以下の場合に
は定格電圧以下の電圧をコンデンサ素子に印加すること
を特徴とする特許請求の範囲第1項に記載の固体電解コ
ンデンサの製造方法。
(2) The method for manufacturing a solid electrolytic capacitor according to claim 1, characterized in that when the rated voltage of the capacitor element is 16 V or less, a voltage lower than the rated voltage is applied to the capacitor element.
(3)コンデンサ素子の定格電圧が16Vを越える場合
には、定格電圧の80%以内の電圧をコンデンサ素子に
印加することを特徴とする特許請求の範囲第1項に記載
の固体電解コンデンサの製造方法。
(3) Manufacturing a solid electrolytic capacitor according to claim 1, characterized in that when the rated voltage of the capacitor element exceeds 16V, a voltage within 80% of the rated voltage is applied to the capacitor element. Method.
JP24588786A 1986-10-16 1986-10-16 Solid electrolyte capacitor and manufacture of the same Pending JPS63100710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24588786A JPS63100710A (en) 1986-10-16 1986-10-16 Solid electrolyte capacitor and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24588786A JPS63100710A (en) 1986-10-16 1986-10-16 Solid electrolyte capacitor and manufacture of the same

Publications (1)

Publication Number Publication Date
JPS63100710A true JPS63100710A (en) 1988-05-02

Family

ID=17140284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24588786A Pending JPS63100710A (en) 1986-10-16 1986-10-16 Solid electrolyte capacitor and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS63100710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222407A (en) * 1991-05-21 1993-06-29 Asahi Kogaku Kogyo Kabushiki Kaisha Slip clutch mechanism
JP2009053341A (en) * 2007-08-24 2009-03-12 Topcon Corp Lens apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222407A (en) * 1991-05-21 1993-06-29 Asahi Kogaku Kogyo Kabushiki Kaisha Slip clutch mechanism
JP2009053341A (en) * 2007-08-24 2009-03-12 Topcon Corp Lens apparatus

Similar Documents

Publication Publication Date Title
JPH04229611A (en) Solid electrolytic capacitor
JPH04297012A (en) Organic semiconductor solid electrolytic capacitor and manufacture thereof
JPS63100710A (en) Solid electrolyte capacitor and manufacture of the same
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
JP2869131B2 (en) Solid electrolytic capacitors
JP2919726B2 (en) Solid electrolytic capacitors
JP2840516B2 (en) Solid electrolytic capacitors
JP3253126B2 (en) Solid electrolytic capacitors
JPS6337610A (en) Manufacture of solid electrolytic capacitor
JPH09260215A (en) Manufacture of solid electrolytic capacitor
JP2919730B2 (en) Solid electrolytic capacitors
JPH01205412A (en) Manufacture of solid electrolytic capacitor
JPH0321007A (en) Manufacture of solid electrolytic capacitor
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6337609A (en) Manufacture of solid electrolytic capacitor
KR940005995B1 (en) Capacitor
JP2950898B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JP2869145B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0547607A (en) Production of electrolytic capacitor
JPH07249544A (en) Solid electrolytic capacitor
JPH0744131B2 (en) Method for manufacturing solid electrolytic capacitor
JPH07115042A (en) Manufacture of electrolytic capacitor
JPS63127525A (en) Manufacture of solid electrolytic capacitor
JPS61281513A (en) Electrolytic capacitor
JPH01105525A (en) Manufacture of solid electrolytic capacitor