JP2869145B2 - Method for manufacturing solid electrolytic capacitor - Google Patents
Method for manufacturing solid electrolytic capacitorInfo
- Publication number
- JP2869145B2 JP2869145B2 JP14229490A JP14229490A JP2869145B2 JP 2869145 B2 JP2869145 B2 JP 2869145B2 JP 14229490 A JP14229490 A JP 14229490A JP 14229490 A JP14229490 A JP 14229490A JP 2869145 B2 JP2869145 B2 JP 2869145B2
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- case
- aging
- tcnq salt
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は固体電解コンデンサの製造方法に関するもの
であり、更に詳説すると、本発明は電解質としてTCNQ塩
を使用する有機半導体固体電解コンデンサのエージング
法の改善に関するものである。The present invention relates to a method for manufacturing a solid electrolytic capacitor. More specifically, the present invention relates to aging of an organic semiconductor solid electrolytic capacitor using a TCNQ salt as an electrolyte. It is about improving the law.
(ロ) 従来の技術 電解質としてTCNQ塩を使用する有機半導体固体電解コ
ンデンサに関しては、本願出願人が既に種々提案してい
る。例えば、特公昭62−51489号(H01G 9/02)、特開昭
58−191414号(H01G 9/02)等である。(B) Conventional technology The present applicant has already proposed various types of organic semiconductor solid electrolytic capacitors using a TCNQ salt as an electrolyte. For example, Japanese Patent Publication No. Sho 62-51489 (H01G 9/02),
No. 58-191414 (H01G 9/02).
さて、アルミ箔等のコンデンサ素子の陽極酸化被膜の
修復による漏れ電流(Leakage Current)の低減のため
に、通常の電解液型のアルミ電解コンデンサは約85℃で
エージングを行なっている。また、従来、TCNQ塩を用い
た有機半導体固体電解コンデンサにおいても、エージン
グは通常の電解液を含浸したアルミ電解コンデンサと同
様に105℃〜125℃にて約1時間、ほぼ定格電圧を印加し
て主に、陽極酸化膜の修復、即ち、漏れ電流の低減を図
るために行こなわれている。Now, in order to reduce leakage current (Leakage Current) by repairing an anodic oxide film of a capacitor element such as an aluminum foil, a normal electrolytic solution type aluminum electrolytic capacitor is aged at about 85 ° C. Conventionally, in the case of an organic semiconductor solid electrolytic capacitor using a TCNQ salt, aging is performed at approximately 105 ° C. to 125 ° C. for approximately one hour at approximately rated voltage, similarly to an aluminum electrolytic capacitor impregnated with a normal electrolytic solution. It is mainly used to repair the anodic oxide film, that is, to reduce the leakage current.
また、本願出願人は先に特願平1−100769号「固体電
解コデンサの製造方法」(平成1年4月20日出願)を出
願し、エージング温度を150℃以上で且つTCNQ塩の融点
以下にする方法も提案しているが、温度が高い程漏れ電
流の低減の効果は大きくなるが、加熱時のストレスによ
り金属ケースと封口樹脂との接着力が低下し、リードレ
スSMD部品として用いた場合、外部からの熱により内圧
が上昇し、金属ケースが抜け落ちる可能性があった。In addition, the applicant of the present application applied for Japanese Patent Application No. 1-100769 “Method of manufacturing solid electrolytic capacitor” (filed on April 20, 1999), and set the aging temperature at 150 ° C. or higher and the melting point of TCNQ salt or lower. Although the effect of reducing the leakage current increases as the temperature increases, the adhesive force between the metal case and the sealing resin decreases due to the stress during heating, and it was used as a leadless SMD part. In such a case, the internal pressure may increase due to external heat, and the metal case may fall off.
(ハ) 発明が解決しようとする課題 通常のエージング条件(105〜125℃、約1時間)で電
解コンデンサを完成させた場合、電解液型電解コンデン
サとTCNQ塩型固体電解コンデンサとでは漏れ電流(L.
C)の安定性が異なる。即ち、実際に電解コンデンサを
プリント回路基板に装着して使用する際、特に高温下即
ちハンダ付け時の熱が回路基板を通してコンデンサに伝
達された時、漏れ電流の劣化に差が生じ、TCNQ塩型の場
合は劣化が発生することがある。(C) Problems to be Solved by the Invention When an electrolytic capacitor is completed under normal aging conditions (105 to 125 ° C, about 1 hour), the leakage current between the electrolytic solution type electrolytic capacitor and the TCNQ salt type solid electrolytic capacitor ( L.
C) The stability is different. In other words, when an electrolytic capacitor is actually mounted on a printed circuit board and used, especially when heat is transferred to the capacitor through the circuit board under high temperatures, that is, when soldering, a difference occurs in the deterioration of the leakage current, and the TCNQ salt type In the case of, deterioration may occur.
特に、ハンダ熱(230〜260℃)がコンデンサに直接短
時間でも伝導すれば、TCNQ塩の融解する温度以下であっ
ても、漏れ電流の劣化が発生することがある。しかし、
これらの劣化は一時的で徐々に常温であっても、所定電
圧印加により修復するが、回路上問題となる場合があ
る。In particular, if the solder heat (230-260 ° C.) is directly conducted to the capacitor for a short time, the leakage current may deteriorate even at a temperature lower than the melting temperature of the TCNQ salt. But,
Even if these deteriorations are temporary and are gradually at room temperature, they are repaired by applying a predetermined voltage, but this may cause a problem in the circuit.
また、前述の如く、高温によりエージングを行なうと
漏れ電流の劣化は著しく改善されるが、温度が高い程エ
ージング時の熱ストレスにより金属ケースと封口樹脂の
接着力が低下し、リードレスSMD(チップ)部品として
用いた場合外部からの熱により内圧が上昇し、金属ケー
スが抜け落ちる可能性があった。As described above, when aging is performed at high temperatures, the deterioration of leakage current is significantly improved. However, as the temperature increases, the adhesive force between the metal case and the sealing resin decreases due to thermal stress during aging, and leadless SMD (chip ) When used as a component, the internal pressure may increase due to external heat, and the metal case may fall off.
(ニ) 課題を解決するための手段 TCNQ塩を加熱融解し、液状のTCNQ塩にコンデンサ素子
を含浸した後、冷却固化して固体電解コンデンサを形成
し、エージングする際、TCNQ塩の含浸されたコンデンサ
素子を金属ケース内に収納した後、或いはコンデンサ素
子を前記ケース内に収納し、TCNQ塩を加熱融解してコン
デンサ素子に含浸した後、熱硬化性又は熱可塑性樹脂に
て該素子を被覆する。この時被覆する樹脂は該素子が隠
れる程度とする。次にTCNQ塩の融点以下で且つ200℃以
上の温度に上記コンデンサを短時間(10分以下)加熱
し、加熱又は加熱温度冷却時にこのコンデンサに所定の
電圧を印加する。その後、熱硬化性樹脂を金属ケースに
注入し、前記素子を被覆した樹脂の上から二重に被覆す
る。更に105〜125℃で所定の電圧を印加し、通常のエー
ジングを行なえば、より効果的である。(D) Means to solve the problem After heating and melting the TCNQ salt, impregnating the capacitor element with the liquid TCNQ salt, solidifying by cooling to form a solid electrolytic capacitor, and impregnating the TCNQ salt when aging. After storing the capacitor element in the metal case, or storing the capacitor element in the case, heating and melting the TCNQ salt to impregnate the capacitor element, and then covering the element with a thermosetting or thermoplastic resin . At this time, the resin to be coated is such that the element is hidden. Next, the capacitor is heated to a temperature not higher than the melting point of the TCNQ salt and not lower than 200 ° C. for a short time (10 minutes or less), and a predetermined voltage is applied to the capacitor during heating or cooling to a heated temperature. Thereafter, a thermosetting resin is injected into a metal case, and the resin covering the element is double-coated on the resin. Further, it is more effective to apply a predetermined voltage at 105 to 125 ° C. and perform normal aging.
(ホ) 作用 固体電解コンデンサに使用されるTCNQ塩の融点は略21
0〜260℃であり、このコンデンサのエージングは通常10
5〜125℃で行なわれている。しかし、本発明においては
この通常のエージング温度より格段に高い温度である約
200〜250℃の温度下でエージングを行なうので、漏れ電
流を修復するために生じる絶縁皮膜の耐熱性が増すもの
と推察される(第1表参照)。そしてハンダ付け時に相
当する高温下に放置した場合でも、漏れ電流の増大を抑
えることができる。また、TCNQ塩を含浸したアルミ電解
コンデンサの場合、エージング温度は高い程、通電電流
に対するエージングの効率(絶縁皮膜の生成率)は良好
であることから高温下(150℃以上)ではエージング時
間の格段の短縮が可能となる。更に、また本発明におい
ては高温によるエージングの後に更に熱硬化性樹脂によ
り封口するために封口樹脂と金属ケースの接着面に熱ス
トレスがかかることはなく、接着力の劣化がないので、
ケースが抜け落ちることもない。(E) Function The melting point of TCNQ salt used in solid electrolytic capacitors is approximately 21
0-260 ° C, the aging of this capacitor is usually 10
Performed at 5-125 ° C. However, in the present invention, the temperature which is much higher than the normal aging temperature is about
Since aging is performed at a temperature of 200 to 250 ° C., it is presumed that the heat resistance of the insulating film generated to repair the leakage current increases (see Table 1). Also, even when left at a high temperature corresponding to the time of soldering, an increase in leakage current can be suppressed. In the case of aluminum electrolytic capacitors impregnated with TCNQ salt, the higher the aging temperature, the better the aging efficiency (generation rate of the insulating film) with respect to the flowing current. Can be shortened. Further, in the present invention, after aging by high temperature, the sealing surface is further sealed with a thermosetting resin, so that no thermal stress is applied to the bonding surface between the sealing resin and the metal case, and there is no deterioration in the adhesive strength.
The case never falls off.
(ヘ) 実施例 本発明について説明する。第1図は本発明に使用する
コンデンサ素子を示す。まず、高純度(99.9%以上)の
アルミニウム箔を化学的処理により粗面化し、実効表面
積を増加させるためのいわゆるエッチング処理を行な
う。次に電解液中にて、電気化学的にアルミニウム箔表
面に酸化皮膜(酸化アルミニウムの薄膜)を形成する
(化成処理)。次にエッチング処理、化学処理を行なっ
たアルミニウム箔を陽極箔(1)とし、対向陰極箔
(2)との間にセパレータ(3)としてマニラ紙を挟
み、第1図に示すように円筒状に巻き取る。こうしてア
ルミニウム箔に酸化皮膜を形成した陽極箔(1)及び陰
極箔(2)と両電極箔間に介挿されたセパレータ(3)
とを捲回してコンデンサ素子(6)が形成される。なお
(4)(4′)はアルミリード、(5)(5′)はリー
ド線である。(F) Example The present invention will be described. FIG. 1 shows a capacitor element used in the present invention. First, a high-purity (99.9% or more) aluminum foil is roughened by a chemical treatment to perform a so-called etching treatment for increasing an effective surface area. Next, in an electrolytic solution, an oxide film (a thin film of aluminum oxide) is electrochemically formed on the aluminum foil surface (chemical conversion treatment). Next, the aluminum foil subjected to the etching treatment and the chemical treatment is used as an anode foil (1), and a manila paper is sandwiched as a separator (3) between the aluminum foil and the counter cathode foil (2). Take up. Thus, the anode foil (1) and the cathode foil (2) having the oxide film formed on the aluminum foil and the separator (3) interposed between the two electrode foils.
Are wound to form the capacitor element (6). (4) and (4 ') are aluminum leads, and (5) and (5') are lead wires.
さらにコンデンサ素子(6)に熱処理を施し、セパレ
ータ(3)を構成するマニラ紙を炭化して繊維の細径化
による密度の低下を計る。Further, the capacitor element (6) is subjected to a heat treatment to carbonize the manila paper constituting the separator (3) to measure the decrease in density due to the reduction in the diameter of the fiber.
第3図は従来例を示し、このコンデンサ素子(6)を
アルミケース(7)内に収納した状態の断面図である。
所定量の各種TCNQ塩(8)をケース(7)内に入れ、加
熱した熱板上にアルミケース(7)を載置し、210〜260
℃にてケース(7)中の粉末状TCNQ塩を加熱融解させ
る。一方、予め加熱してあるコンデンサ素子(6)をア
ルミケース(7)内に挿入して、融解したTCNQ塩の液体
をコンデンサ素子(6)に含浸させ、すぐに冷却固化さ
せる。その後、樹脂(9)を封入して封口する。FIG. 3 is a sectional view showing a conventional example, in which the capacitor element (6) is housed in an aluminum case (7).
A predetermined amount of each TCNQ salt (8) is put in the case (7), the aluminum case (7) is placed on a heated hot plate, and
Heat and melt the powdered TCNQ salt in case (7) at 0 ° C. On the other hand, the previously heated capacitor element (6) is inserted into the aluminum case (7), and the molten liquid of the TCNQ salt is impregnated into the capacitor element (6) and immediately cooled and solidified. Thereafter, the resin (9) is sealed and sealed.
次に本発明の実施例について第2図と共に説明する。 Next, an embodiment of the present invention will be described with reference to FIG.
第2図において、コンデンサ素子(6)にN−フェネ
チルルチジニウム・(TCNQ)2と、N、N−ペンタメチ
レン・(ルチジニウム)2・(TCNQ)4を等量づつ混合
したもの(8)を用いて融解液化して素子(6)に含浸
し、アルミケース(7)に収納したものを一次封口とし
て素子が隠れる程度に各樹脂(10)を注入硬化する。こ
の実施例では定格25V、1μFである。このコンデンサ
をこのコンデンサの外径より少許大きく且つこのコンデ
ンサを挿入すると、完全に埋没する深さを有する円筒状
熱板穴に収納し、次の(l)〜(n)の各条件でエージ
ングを行ない、更に、二次封口としてエポキシ樹脂
(7)にて封口したものを125℃で1時間、定格電圧を
印加し、通常のエージングを行なった。In FIG. 2, a capacitor element (6) is prepared by mixing N-phenethyllutidinium (TCNQ) 2 and N, N-pentamethylene (rutidinium) 2 (TCNQ) 4 in equal amounts (8). Each element (6) is melted and immersed in the element (6), and each resin (10) is injected and hardened to such an extent that the element contained in the aluminum case (7) is used as a primary seal to hide the element. In this embodiment, the rating is 25 V and 1 μF. When this capacitor is slightly larger than the outer diameter of the capacitor and this capacitor is inserted, the capacitor is housed in a cylindrical hot plate hole having a depth that is completely buried, and aging is performed under the following conditions (l) to (n). After that, the secondary sealing was further sealed with an epoxy resin (7), and a rated voltage was applied at 125 ° C. for 1 hour to perform normal aging.
次に耐熱テストとして220℃、30秒間のVPSテストを行
なった結果、第1表に示す如き実験結果が得られた。こ
の実験結果は実験サンプル各10個の数値の平均値であ
る。尚、この際、使用した混合TCNQ塩の融点は210〜220
℃である。また、エージング中にコンデンサに印加する
エージング電圧は加熱温度が高温になる程電圧を低くし
て行く所謂軽減電圧を印加する。Next, as a heat resistance test, a VPS test at 220 ° C. for 30 seconds was performed. As a result, the experimental results shown in Table 1 were obtained. This experimental result is the average value of the numerical values of ten experimental samples. In this case, the melting point of the mixed TCNQ salt used was 210 to 220.
° C. As the aging voltage applied to the capacitor during aging, a so-called reduced voltage is applied in which the voltage is reduced as the heating temperature increases.
エージング条件: l:250℃の熱板穴中で15秒加熱、25V印加 m:200℃の熱板穴中で30秒加熱、25V印加 n:180℃の熱板穴中で60秒加熱、25V印加 また、資料(A)(B)(D)(E)は本発明の実施
例、(C)は参考例、(F)〜(I)は従来例である。Aging conditions: l: Heated in hotplate hole of 250 ° C for 15 seconds, applied 25V m: Heated in hotplate hole of 200 ° C for 30 seconds, applied 25V n: Heated in hotplate hole of 180 ° C for 60 seconds, 25V Materials (A), (B), (D) and (E) are examples of the present invention, (C) is a reference example, and (F) to (I) are conventional examples.
なお、第1表の中の記号は次のことを意味する。即
ち、 CaP;静電容量(μF)、120Hz L.C.;漏れ電流(μA/30秒後) E.S.R.;等価直列抵抗(mΩ)、100KHz Δc/c;静電容量変化率(%) ケース抜け落ち;金属ケースが抜けて落ちてしまったも
の ケースずれ;金属ケースは落ちなかったがわずかにずれ
たもの また、従来例(F)(G)(H)のエージング条件
(o)(p)(q)はエポキシ樹脂により完全に封口、
硬化した後(o)は250℃、(p)は200℃、(q)は18
0℃の熱板穴中で、(o)は15秒、(p)は30秒、
(q)は60秒加熱し、加熱時に25Vを印加した後、通常
のエージング(125℃、25V、1時間)を行なったもので
ある。 The symbols in Table 1 mean the following. CaP; capacitance (μF), 120Hz LC; leakage current (μA / 30 seconds later) ESR; equivalent series resistance (mΩ), 100KHz Δc / c; capacitance change rate (%) The case was displaced; the metal case did not fall, but it was slightly displaced. The aging conditions (o), (p), and (q) of the conventional examples (F), (G), and (H) were epoxy. Completely sealed with resin,
After curing, (o) is 250 ° C, (p) is 200 ° C, (q) is 18
In a hot plate hole at 0 ° C, (o) is 15 seconds, (p) is 30 seconds,
(Q) is obtained by heating for 60 seconds, applying 25 V during heating, and then performing normal aging (125 ° C., 25 V, 1 hour).
また、従来例(I)のエージング条件(r)はエポキ
シ樹脂により完全に封口、硬化した後、通常のエージン
グ(125℃、25V、1時間)のみを行なったものである。The aging condition (r) of the conventional example (I) is such that after normal sealing and curing with an epoxy resin, only normal aging (125 ° C., 25 V, 1 hour) is performed.
第1表をみると、従来例(F)および(G)ではケー
ス抜け落ち又はケースずれが発生し、(H)では発生し
ていないことより200℃以上に加熱することにより金属
ケースと樹脂の接着力が劣化してるものと推察される。
また、従来例(I)ではケース抜け落ちはないものの、
VPS(耐熱)テスト後の特性が著しく劣化している。し
かし、本実施例(A)(B)(C)(D)(E)では特
性劣化も少なく、またケースの抜け落ちも発生していな
い。従って、200℃以上でエージングを行なう場合に本
発明の効果が現れる。すなわち一次封口後にエージング
した後、更に二次封口を行なう本発明のエージング法を
行えばVPSテストにおける特性劣化は少なく、またケー
スの抜け落ちも防止することができる。As can be seen from Table 1, in the conventional examples (F) and (G), the case came off or the case slipped. In the case of (H), the case did not occur. It is presumed that the power has deteriorated.
In the conventional example (I), although there is no case dropout,
The characteristics after the VPS (heat resistance) test are significantly deteriorated. However, in the examples (A), (B), (C), (D), and (E), there is little characteristic deterioration, and the case does not fall off. Therefore, the effect of the present invention appears when aging is performed at 200 ° C. or higher. That is, if the aging method of the present invention in which aging is performed after the primary sealing and then the secondary sealing is further performed, the characteristic deterioration in the VPS test is small, and the case can be prevented from falling off.
また、本発明において、素子(6)をケース(7)に
挿入後樹脂注入前にエージングを行ない、その後、熱硬
化性樹脂により封口を行なっても同様の結果が得られる
が、工程上の機械的ストレス等によりリード線が動き、
漏れ電流が劣化する場合があるので、エージング前にあ
る程度樹脂により素子を固めておいた方が確実な効果が
得られる。In the present invention, the same result can be obtained by inserting the element (6) into the case (7), aging the resin before injecting the resin after the element is inserted into the case (7), and thereafter sealing the same with a thermosetting resin. Lead wire moves due to mechanical stress, etc.
Since the leakage current may be deteriorated, a certain effect can be obtained by solidifying the element with resin to some extent before aging.
(ト) 発明の効果 本発明の製造方法を行なうことによりコンデンサの耐
熱テスト後の特性を改善することができ、またケース抜
け等の外観不良も防止することができる。(G) Effects of the Invention By performing the manufacturing method of the present invention, it is possible to improve the characteristics of the capacitor after the heat resistance test, and it is also possible to prevent the appearance defect such as the missing of the case.
第1図は本発明に使用するコンデンサ素子の斜視図、第
2図は本発明の固体電解コンデンサの製造方法を用いた
コンデンサの実施例を示す断面図、第3図は従来例の断
面図である。 (1)(2)……陽……陰極箔、(3)……セパレー
タ、(6)……コンデンサ素子、(7)……アルミケー
ス、(8)……TCNQ塩、(9)……エポキシ樹脂、(1
0)……一次封口樹脂。FIG. 1 is a perspective view of a capacitor element used in the present invention, FIG. 2 is a sectional view showing an embodiment of a capacitor using the method for manufacturing a solid electrolytic capacitor of the present invention, and FIG. 3 is a sectional view of a conventional example. is there. (1) (2) ... positive ... cathode foil, (3) ... separator, (6) ... capacitor element, (7) ... aluminum case, (8) ... TCNQ salt, (9) ... Epoxy resin, (1
0) ...... Primary sealing resin.
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01G 9/04 H01G 9/028 H01G 9/08 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01G 9/04 H01G 9/028 H01G 9/08
Claims (1)
用電解質として使用しうる電導度を有するTCNQ塩を加熱
融解してコンデンサ素子に含浸し、冷却固化後、樹脂或
は金属ケース内に収納し、或は前記コンデンサ素子を前
記ケース内に収納した後、TCNQ塩を加熱融解して前記コ
ンデンサ素子に含浸し、該ケース内に収納された前記素
子上に熱硬化性または熱可塑性合成樹脂を充填被覆して
硬化させ、前記TCNQ塩の融点以下で且つ200℃以上の温
度に加熱し、該加熱時または加熱冷却時にコンデンサの
電極端子に所定のエージング電圧を印加した後、コンデ
ンサの前記ケースの開口部を熱硬化性合成樹脂にて封口
することを特徴とする固体電解コンデンサの製造方法。1. A TCNQ salt having conductivity which can be heated and melted and which can be used as an electrolyte for a capacitor after cooling and solidifying, is heated and melted to impregnate the capacitor element, and after cooling and solidifying, is stored in a resin or metal case. Alternatively, after the capacitor element is housed in the case, TCNQ salt is heated and melted to impregnate the capacitor element, and the element housed in the case is filled with a thermosetting or thermoplastic synthetic resin. After coating and curing, heating to a temperature below the melting point of the TCNQ salt and 200 ° C. or higher, and applying a predetermined aging voltage to the electrode terminals of the capacitor during the heating or heating / cooling, the opening of the case of the capacitor is opened. A method for manufacturing a solid electrolytic capacitor, comprising sealing a part with a thermosetting synthetic resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14229490A JP2869145B2 (en) | 1990-05-31 | 1990-05-31 | Method for manufacturing solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14229490A JP2869145B2 (en) | 1990-05-31 | 1990-05-31 | Method for manufacturing solid electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0435014A JPH0435014A (en) | 1992-02-05 |
JP2869145B2 true JP2869145B2 (en) | 1999-03-10 |
Family
ID=15312034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14229490A Expired - Fee Related JP2869145B2 (en) | 1990-05-31 | 1990-05-31 | Method for manufacturing solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2869145B2 (en) |
-
1990
- 1990-05-31 JP JP14229490A patent/JP2869145B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0435014A (en) | 1992-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07211596A (en) | Electronic component and its manufacture | |
JP2869145B2 (en) | Method for manufacturing solid electrolytic capacitor | |
US6801423B2 (en) | Capacitor element with thick cathode layer | |
US5766271A (en) | Process for producing solid electrolyte capacitor | |
US5031077A (en) | Solid electrolyte capacitor and manufacturing method therefor | |
JPH05234828A (en) | Manufacture of solid electrolytic capacitor | |
JP4767479B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4066473B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP3266205B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP3556045B2 (en) | Solid electrolytic capacitors | |
JP2755767B2 (en) | Manufacturing method of organic semiconductor solid electrolytic capacitor | |
KR0154126B1 (en) | Solid electrolyte capacitor and manufacturing method therefor | |
JP3367221B2 (en) | Electrolytic capacitor | |
JP2869131B2 (en) | Solid electrolytic capacitors | |
JP2950898B2 (en) | Manufacturing method of organic semiconductor solid electrolytic capacitor | |
JP3474986B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
JPH0744131B2 (en) | Method for manufacturing solid electrolytic capacitor | |
KR970006432B1 (en) | Solid electrolytic capacitor | |
JPS6032346B2 (en) | Manufacturing method of electrolytic capacitor | |
JP2001284179A (en) | Solid electrolytic capacitor and method of manufacturing the same | |
JP3162738B2 (en) | Solid electrolytic capacitors | |
JP3438900B2 (en) | Solid electrolytic capacitors | |
JP2726009B2 (en) | Solid electrolytic capacitors | |
JPH10125558A (en) | Solid-state capacitor using conductive functional high polymer film as solid electrolyte | |
JP3656666B2 (en) | Manufacturing method of solid electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081225 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20081225 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091225 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |