JPH0435014A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH0435014A
JPH0435014A JP14229490A JP14229490A JPH0435014A JP H0435014 A JPH0435014 A JP H0435014A JP 14229490 A JP14229490 A JP 14229490A JP 14229490 A JP14229490 A JP 14229490A JP H0435014 A JPH0435014 A JP H0435014A
Authority
JP
Japan
Prior art keywords
capacitor
case
tcnq
resin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14229490A
Other languages
Japanese (ja)
Other versions
JP2869145B2 (en
Inventor
Kenji Kaguma
健二 鹿熊
Katsunori Minatomi
水富 勝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14229490A priority Critical patent/JP2869145B2/en
Publication of JPH0435014A publication Critical patent/JPH0435014A/en
Application granted granted Critical
Publication of JP2869145B2 publication Critical patent/JP2869145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To shorten an aging time, and to eliminate deterioration of an adhesive force between sealing resin and a metal case by heating to a temperature of melting point or less of TCNQ salt to a predetermined value or higher in a short time, applying a predetermined voltage to a capacitor at the time of heating or cooling, then pouring thermosetting resin in the case, and further applying a predetermined voltage at a predetermined temperature. CONSTITUTION:Mixture 8 of N-phenethyl lutidinium.(TCNQ)2 and N,N- pentamethylene.(lutidinium)2.(TCNQ)4 of equal amounts is used, melted, liquefied, immersed with a capacitor element 6, and contained in an aluminum case 7. Resin 10 is poured and cured in the degree of concealing the element as a primary sealing. This capacitor is contained in a cylindrical heat plate hole having a size slightly larger than the outer diameter of the capacitor and such a depth that the capacitor can completely be buried when the capacitor is inserted, and aged at a temperature of the melting point or lower of TCNQ and 200 deg.C or higher. Further, it is sealed with epoxy resin 7 as a secondary sealing, a rated voltage is applied at 105 - 125 deg.C for 1 hour, and it is then normally aged.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は固体電解コンデンサの製造方法に関するもので
あり、更に詳説すると、本発明は電解質としてTCNQ
塩を使用する有機半導体固体電解コンデンサのエージン
グ方法の改善に関するものである。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a method for manufacturing a solid electrolytic capacitor.
This invention relates to an improvement in the aging method of organic semiconductor solid electrolytic capacitors using salt.

(ロ)従来の技術 電解質としてTCNQ塩を使用する有機半導体固体電解
コンデンサに関しては、本願出願人が既に種々提案して
いる。例えば、特公昭62−51489号(I−101
G  9102)、特開昭58−191414号(HO
IG  9102)等である。
(b) Prior Art Regarding organic semiconductor solid electrolytic capacitors using TCNQ salt as an electrolyte, the applicant of the present application has already made various proposals. For example, Special Publication No. 62-51489 (I-101
G9102), JP-A-58-191414 (HO
IG 9102) etc.

さて、アルミ箔等のコンデンサ素子の陽極酸化被膜の修
復による漏れ電流(Leakage Current)
の低減のために、通常の電解液型のアルミ電解コンデン
サは約85℃でエージングを行なっている。
Now, leakage current due to repair of the anodic oxide film of capacitor elements such as aluminum foil.
In order to reduce this, ordinary electrolyte type aluminum electrolytic capacitors are aged at about 85°C.

また、従来、TCNQ塩を用いた有機半導体固体電解コ
ンデンサにおいても、エージングは通常の電解液を含浸
したアルミ電解コンデンサと同様に105℃〜125℃
にて約1時間、はぼ定格電圧を印加して主に、陽極酸化
皮膜の修復、即ち、漏れ電流の低減を図るために行こな
われている。
In addition, conventional organic semiconductor solid electrolytic capacitors using TCNQ salt are aged at 105°C to 125°C, similar to aluminum electrolytic capacitors impregnated with ordinary electrolyte.
The rated voltage is applied for approximately one hour to repair the anodic oxide film, that is, to reduce leakage current.

また、本願出願人は先に特願平1−100769号「固
体電解コンデンサの製造方法」 (平成1年4月20日
出願)を出願し、エージング温度を150℃以上で且つ
TCNQ塩の融点以下にする方法も提案しているが、温
度が高い程漏れ電流の低減の効果は大きくなるが、加熱
時のストレスにより金属ケースと封口樹脂との接着力が
低下し、リードレスSMD部品として用いた場合、外部
からの熱により内圧が上昇し、金属ケースが抜は落ちる
可能性があった。
In addition, the applicant of the present application previously filed Japanese Patent Application No. 1-100769 "Method for Manufacturing Solid Electrolytic Capacitor" (filed on April 20, 1999), and set the aging temperature at 150°C or higher and below the melting point of TCNQ salt. However, the higher the temperature, the greater the effect of reducing leakage current, but the stress during heating reduces the adhesive strength between the metal case and the sealing resin, making it difficult to use it as a leadless SMD component. In such a case, the internal pressure would rise due to heat from the outside, and the metal case could come out and fall.

(ハ)発明が解決しようとする課題 通常のエージング条件(105〜125℃、約1時間)
で電解コンデンサを完成させた場合、電解液型電解コン
デンサとTCNQ塩型固体電解コンデンサとでは漏れ電
流(L、C)の安定性が異なる。即ち、実際に電解コン
デンサをプリント回路基板に装着して使用する際、特に
高温下即ちハンダ付は時の熱が回路基板を通してコンデ
ンサに伝達された時、漏れ電流の劣化に差が生じ、TC
NQ塩型の場合は劣化が発生することがある。
(c) Problems to be solved by the invention Normal aging conditions (105-125°C, about 1 hour)
When an electrolytic capacitor is completed, the stability of leakage current (L, C) is different between the electrolytic solution type electrolytic capacitor and the TCNQ salt type solid electrolytic capacitor. In other words, when an electrolytic capacitor is actually mounted on a printed circuit board and used, especially at high temperatures (i.e., when soldering), when heat is transferred to the capacitor through the circuit board, a difference occurs in the deterioration of leakage current, and the TC
In the case of NQ salt type, deterioration may occur.

特に、ハンダ熱(230〜260℃)がコンデンサに直
接短時間でも伝導すれば、TCNQ塩の融解する温度以
下であっても、漏れ電流の劣化が発生することがある。
In particular, if soldering heat (230 to 260° C.) is directly conducted to the capacitor even for a short time, leakage current may deteriorate even if the temperature is below the melting temperature of the TCNQ salt.

しかし、これらの劣化は一時的で徐々に常温であっても
、所定電圧印加により修復するが、回路上問題となる場
合がある。
However, these deteriorations are temporary and can be gradually repaired by applying a predetermined voltage even at room temperature, but this may cause problems in the circuit.

また、前述の如く、高温によりエージングを行なうと漏
れ電流の劣化は著しく改善されるが、温度が高い程エー
ジング時の熱ストレスにより金属ケースと封口樹脂の接
着力が低下し、リードレスSMD、(チップ)部品とし
て用いた場合外部からの熱により内圧が上昇し、金属ケ
ースが抜は落ちる可能性があった。
In addition, as mentioned above, aging at high temperatures significantly improves the deterioration of leakage current, but the higher the temperature, the more the adhesive strength between the metal case and the sealing resin decreases due to the thermal stress during aging, leading to leadless SMD, ( When used as a chip (chip) component, the internal pressure would rise due to heat from the outside, and there was a possibility that the metal case would come out and fall.

(ニ)課題を解決するための手段 TCNQ塩を加熱融解し、液状のTCNQ塩にコンデン
サ素子を含浸した後、冷却固化して固体電解コンデンサ
を形成し、エージングする際、TCNQ塩の含浸された
コンデンサ素子を金属ケ−ス内に収納した後、或いはコ
ンデンサ素子を前記ケース内に収納し、TCNQ塩を加
熱融解してコンデンサ素子に含浸した後、熱硬化性又は
熱可塑性樹脂にて該素子を被覆する。この時被覆する樹
脂は該素子が隠れる程度とする。次にTCNQ塩の融点
以下で且つ200℃以上の温度に上記コンデンサを短時
間(10分以下)加熱し、加熱又は加熱温度冷却時にこ
のコンデンサに所定の電圧を印加する。その後、熱硬化
性樹脂を金属ケースに注入し、前記素子を被覆した樹脂
の上から二重に被覆する。更に105〜125℃で所定
の電圧を印加し、通常のエージングを行なえば、より効
果的である。
(d) Means for solving the problem TCNQ salt is heated and melted, a capacitor element is impregnated with the liquid TCNQ salt, and then cooled and solidified to form a solid electrolytic capacitor. After the capacitor element is housed in a metal case, or after the capacitor element is housed in the case and TCNQ salt is heated and melted to impregnate the capacitor element, the element is coated with thermosetting or thermoplastic resin. Cover. At this time, the resin to be coated is sufficient to cover the element. Next, the capacitor is heated for a short time (10 minutes or less) to a temperature below the melting point of the TCNQ salt and above 200° C., and a predetermined voltage is applied to the capacitor during heating or cooling. Thereafter, a thermosetting resin is injected into the metal case, and the resin that has covered the element is coated in a double layer. Further, it is more effective to apply a predetermined voltage at 105 to 125° C. and perform normal aging.

(ホ)作 用 固体電解コンデンサに使用されるTCNQ塩の融点は略
210〜260℃であり、このコンデンサのエージング
は通常105〜125℃で行なわれている。しかし、本
発明においてはこの通常のエージング温度より格段に高
い温度である約200〜250℃の温度下でエージング
を行なうので、漏れ電流を修復するために生じる絶縁皮
膜の耐熱性が増すものと推察される(第1表参照)。
(E) Function The melting point of TCNQ salt used in solid electrolytic capacitors is approximately 210-260°C, and aging of this capacitor is normally performed at 105-125°C. However, in the present invention, aging is performed at a temperature of about 200 to 250°C, which is much higher than the normal aging temperature, so it is presumed that the heat resistance of the insulating film produced to repair leakage current increases. (See Table 1).

そしてハンダ付は時に相当する高温下に放置した場合で
も、漏れ電流の増大を抑えることができる。また、TC
NQ塩を含浸したアルミ電解コンデンサの場合、エージ
ング温度は高い程、通電電流に対するエージングの効率
(絶縁皮膜の生成率)は良好であることから高温下(1
50℃以上)ではエージング時間の格段の短縮が可能と
なる。更に、また本発明においては高温によるエージン
グの後に更に熱硬化性樹脂により封口するために封口樹
脂と金属ケースの接着面に熱ストレスがかかることはな
く1、接着力の劣化がないので、ケースが抜は落ちるこ
ともない。
Furthermore, soldering can suppress an increase in leakage current even when the device is left under extremely high temperatures. Also, T.C.
In the case of aluminum electrolytic capacitors impregnated with NQ salt, the higher the aging temperature, the better the aging efficiency (insulation film formation rate) with respect to the applied current.
(50°C or higher), the aging time can be significantly shortened. Furthermore, in the present invention, since the seal is further sealed with a thermosetting resin after aging at high temperatures, no thermal stress is applied to the adhesive surface between the sealing resin and the metal case1, and there is no deterioration of adhesive strength, so the case is There is no chance of a drop.

(へ)実施例 本発明について説明する。第1図は本発明に使用するコ
ンデンサ素子を示す。まず、高純度(99,9z以上)
のアルミニウム箔を化学的処理により粗面化し、実効表
面積を増加させるためのいわゆるエツチング処理を行な
う。次に電解液中にて、電気化学的にアルミニウム箔表
面に酸化皮膜(酸化アルミニウムの薄膜)を形成する(
化成処理)。次にエツチング処理、化学処理を行なった
アルミニウム箔を陽極箔(1)とし、対向陰極箔(2)
との間にセパレータ(3)としてマニラ紙を挟み、第1
図に示すように円筒状に巻き取る。こうしてアルミニウ
ム箔に酸化皮膜を形成した陽極箔(])及び陰極箔(2
)と両電極箔間に介挿されたセパレータ(3)とを持回
してコンデンサ素子(6)が形成される。なお(4)(
4’)はアルミリード、(5)(5’)はリード線であ
る。
(f) Example The present invention will be explained. FIG. 1 shows a capacitor element used in the present invention. First, high purity (99.9z or higher)
The aluminum foil is chemically treated to roughen its surface, and a so-called etching process is performed to increase the effective surface area. Next, an oxide film (thin film of aluminum oxide) is formed on the surface of the aluminum foil electrochemically in an electrolytic solution (
chemical conversion treatment). Next, the etched and chemically treated aluminum foil is used as the anode foil (1), and the opposing cathode foil (2) is used as the anode foil (1).
Sandwich Manila paper as a separator (3) between the
Roll it up into a cylindrical shape as shown in the figure. Anode foil (]) and cathode foil (2) in which an oxide film was formed on aluminum foil in this way.
) and a separator (3) inserted between both electrode foils are rotated to form a capacitor element (6). Note that (4) (
4') is an aluminum lead, and (5) (5') is a lead wire.

さらにコンデンサ素子(6)に熱処理を施し、セパレー
タ(3)を構成するマニラ紙を炭化して繊維の細径化に
よる密度の低下を計る。
Further, the capacitor element (6) is subjected to heat treatment, and the manila paper forming the separator (3) is carbonized to reduce the density by reducing the diameter of the fibers.

第3図は従来例を示し、このコンデンサ素子(6)をア
ルミケース(7)内に収納した状態の断面図である。所
定量の各種TCNQ塩(8)をケース(7)内に入れ、
加熱した熱板」二にアルミケース(7)を載置し、21
0〜260℃にてケース(7)中の粉末状TCNQ塩を
加熱融解させる。一方、予め加熱しであるコンデンサ素
子(6)をアルミケース(7)内に挿入して、融解した
TCNQ塩の液体をコンデンサ素子(6)に含浸させ、
すぐに冷却固化させる。その後、樹脂(9)を封入して
封口する。
FIG. 3 shows a conventional example, and is a sectional view of this capacitor element (6) housed in an aluminum case (7). Put a predetermined amount of various TCNQ salts (8) into the case (7),
Place the aluminum case (7) on the heated hot plate and press 21.
The powdered TCNQ salt in the case (7) is heated and melted at 0 to 260°C. On the other hand, a preheated capacitor element (6) is inserted into the aluminum case (7), and the capacitor element (6) is impregnated with the melted TCNQ salt liquid.
Cool and solidify immediately. Thereafter, resin (9) is encapsulated and sealed.

次に本発明の実施例について第2図と共に説明する。Next, an embodiment of the present invention will be described with reference to FIG.

第2図において、コンデンサ素子(6)にNフエネチル
ルチジニウム・ (TCNQ)2と、N5N−ペンタメ
チレン・ (ルチジニウム)2・(TCNQ)+を等量
づつ混合したもの(8)を用いて融解液化して素子(6
)に合浸し、アルミケス(7)に収納したものを一次封
口として素子が隠れる程度に各樹脂(10)を注入硬化
する。この実施例では定格25V、1μFである。この
コンデンサをこのコンデンサの外径より少許大きく且つ
このコンデンサを挿入すると、完全に埋没する深さを有
する円筒状熱板穴に収納し、次の(N)〜(n)の各条
件でエージングを行ない、更に、二次封口としてエポキ
シ樹脂(7)にて封口したものを125℃で1時間、定
格電圧を印加し、通常のエージングを行なった。
In Figure 2, a mixture (8) of equal amounts of N phenethylrutidinium (TCNQ)2 and N5N-pentamethylene (rutidinium)2 (TCNQ)+ is used in the capacitor element (6). Melt and liquefy the element (6
) and stored in an aluminum case (7) as a primary seal, and inject and harden each resin (10) to the extent that the element is hidden. In this example, the rating is 25V and 1μF. This capacitor is housed in a cylindrical hot plate hole that is slightly larger than the outer diameter of this capacitor and has a depth that allows the capacitor to be completely buried when inserted, and is aged under each of the following conditions (N) to (n). The sample was then sealed with epoxy resin (7) as a secondary seal, and a rated voltage was applied at 125° C. for 1 hour to perform normal aging.

次に耐熱テストとして220℃、30秒間のVPSテス
トを行なった結果、第1表に示す如き実験結果が得られ
た。この実験結果は実験サンプル各10個の数値の平均
値である。尚、この際、使用した混合TCNQ塩の融点
は210〜220℃である。また、エージング中にコン
デンサに印加するエージング電圧は加熱温度が高温にな
る程電圧を低くして行く所謂軽減電圧を印加する。
Next, as a heat resistance test, a VPS test was conducted at 220° C. for 30 seconds, and the experimental results shown in Table 1 were obtained. The experimental results are the average values of 10 values for each experimental sample. In this case, the melting point of the mixed TCNQ salt used was 210 to 220°C. Further, as the aging voltage applied to the capacitor during aging, a so-called reduced voltage is applied in which the voltage is lowered as the heating temperature becomes higher.

エージング条件: f!、:250℃の熱板大中で15秒加熱、25V印加 m : 200℃の熱板穴中で30秒加熱、25V印加 n:180℃の熱板穴中で60秒加熱、25V印加 また、資料(A )(B )(D )(E )は本発明
の実施例、(C)は参考例、(F)〜(I)は従来例で
ある。
Aging condition: f! ,: Heated for 15 seconds in a hot plate at 250°C, applied 25V m: Heated for 30 seconds in a hot plate hole at 200°C, applied 25V n: Heated for 60 seconds in a hot plate hole at 180°C, applied 25V. Materials (A), (B), (D), and (E) are examples of the present invention, (C) is a reference example, and (F) to (I) are conventional examples.

余白 なお、第1表の中の記号は次のことを意味する。即ち、 Ca P ;静電容量(μF)、120 HzL、C,
i漏れ電流(μA/30秒後)E、S、R,i等価直列
抵抗(mΩ)、100Kz Δc/c i静電容量変化率(%) ケース抜は落ち;金属ケースが抜けて落ちてしまったも
の ケースずれ一金属ケースは落ちなかったがわずかにずれ
たもの また、従来例(F )(G )(H)のエージング条件
(o )(p )(q )はエポキシ樹脂により完全に
封口、硬化した後(o)は250℃、(p)は200℃
、(q)は180℃の熱板穴中で、(o)は15秒、(
p)は30秒、(q)は60秒加熱し、加熱時に25V
を印加した後、通常のエージング(125℃、25V、
1時間)を行なったものである。
Margin The symbols in Table 1 have the following meanings. That is, Ca P ; capacitance (μF), 120 HzL, C,
i Leakage current (μA/after 30 seconds) E, S, R, i Equivalent series resistance (mΩ), 100Kz Δc/c i Capacitance change rate (%) When the case is removed, it falls off; The metal case falls off and falls off. However, the aging conditions (o), (p), and (q) of the conventional examples (F), (G), and (H) were completely sealed with epoxy resin. After curing (o) is 250℃, (p) is 200℃
, (q) in a hot plate hole at 180℃, (o) for 15 seconds, (
P) is heated for 30 seconds, (q) is heated for 60 seconds, and 25V is applied during heating.
After applying normal aging (125℃, 25V,
1 hour).

また、従来例(I)のエージング条件(r)はエポキシ
樹脂により完全に封口、硬化した後、通常のエーシング
(125℃、25V、1時間)のみを行なったものであ
る。
Further, the aging condition (r) of Conventional Example (I) is that after complete sealing and curing with epoxy resin, only normal aging (125° C., 25 V, 1 hour) is performed.

第1表をみると、従来例(F)および(G)ではケース
抜は落ち又はケースずれが発生し、(H)では発生して
いないことより200℃以上に加熱することにより金属
ケースと樹脂の接着力が劣化してるものと推察される。
Looking at Table 1, it can be seen that in conventional examples (F) and (G), the case fell off or the case shifted, but in (H), this did not occur. It is presumed that the adhesive strength of the product has deteriorated.

また、従来例(1)ではケース抜は落ちはないものの、
VPS(耐熱)テスト後の特性が著しく劣化している。
In addition, in conventional example (1), although there is no drop in case removal,
The characteristics after the VPS (heat resistance) test have significantly deteriorated.

しかし、本実施例(A )(B )(D )(E )で
は特性劣化も少なく、またケースの抜は落ちも発生して
いない。従って、200℃以上でエージングを行なう場
合に本発明の効果が現れる。すなわち−次封口後にエー
ジングした後、更に二次封口を行なう本発明のエージン
グ法を行えば■PSテストにおける特性劣化は少なく、
またケースの抜は落ちも防止することができる。
However, in Examples (A), (B), (D), and (E), there was little characteristic deterioration, and no cases were removed or dropped. Therefore, the effects of the present invention appear when aging is performed at 200° C. or higher. In other words, if the aging method of the present invention, in which secondary sealing is performed after aging after primary sealing, is performed, ■ there will be little characteristic deterioration in the PS test;
It also prevents the case from being removed or dropped.

また、本発明において、素子(6)をケース(7)に挿
入後樹脂注入前にエージングを行ない、その後、熱硬化
性樹脂により封口を行なっても同様の結果が得られるが
、工程」二の機械的ストレス等によりリード線が動き、
漏れ電流が劣化する場合があるので、エージング前にあ
る程度樹脂により素子を固めておいた方が確実な効果が
得られる。
Furthermore, in the present invention, the same result can be obtained by aging the element (6) after inserting it into the case (7) before injecting the resin, and then sealing it with a thermosetting resin. The lead wire moves due to mechanical stress, etc.
Since leakage current may deteriorate, it is better to harden the element with resin to some extent before aging to obtain a more reliable effect.

(ト)発明の効果 本発明の製造方法を行なうことによりコンデンサの耐熱
テスト後の特性を改善することができ、またケース抜は
等の外観不良も防止することができる。
(G) Effects of the Invention By carrying out the manufacturing method of the present invention, it is possible to improve the characteristics of a capacitor after a heat resistance test, and it is also possible to prevent appearance defects such as case removal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用するコンデンサ素子の斜視図、第
2図は本発明の固体電解コンデンサの製造方法を用いた
コンデンサの実施例を示す断面図、第3図は従来例の断
面図である。 (1)(2)・・・陽・・・陰極箔、(3)・・・セパ
レータ、(6)・・・コンデンサ素子、(7)・・・ア
ルミケース、(8)・・・TCNQ塩、(9)・・・エ
ポキシ樹脂、(10)・・・・・・−次封口樹脂。
Figure 1 is a perspective view of a capacitor element used in the present invention, Figure 2 is a sectional view showing an embodiment of a capacitor using the method of manufacturing a solid electrolytic capacitor of the present invention, and Figure 3 is a sectional view of a conventional example. be. (1) (2)...Positive...Cathode foil, (3)...Separator, (6)...Capacitor element, (7)...Aluminum case, (8)...TCNQ salt , (9)...Epoxy resin, (10)...-Next sealing resin.

Claims (1)

【特許請求の範囲】[Claims] (1)加熱融解可能で且つ冷却固化後コンデンサ用電解
質として使用しうる電導度を有するTCNQ塩を加熱融
解してコンデンサ素子に含浸し、冷却固化後、樹脂或は
金属ケース内に収納し、或は前記コンデンサ素子を前記
ケース内に収納した後、TCNQ塩を加熱融解して前記
コンデンサ素子に含浸し、該ケース内に収納された前記
素子上に熱硬化性または熱可塑性合成樹脂を充填被覆し
て硬化させ、前記TCNQ塩の融点以下で且つ200℃
以上の温度に加熱し、該加熱時または加熱冷却時にコン
デンサの電極端子に所定のエージング電圧を印加した後
、コンデンサの前記ケースの開口部を熱硬化性合成樹脂
にて封口することを特徴とする固体電解コンデンサの製
造方法。
(1) A TCNQ salt that can be heated and melted and has a conductivity that can be used as an electrolyte for a capacitor after being cooled and solidified is heated and melted to impregnate a capacitor element, and after being cooled and solidified, it is stored in a resin or metal case, or After the capacitor element is housed in the case, TCNQ salt is heated and melted to impregnate the capacitor element, and a thermosetting or thermoplastic synthetic resin is filled and coated on the element housed in the case. and cured at a temperature below the melting point of the TCNQ salt and at 200°C.
After heating to a temperature above and applying a predetermined aging voltage to the electrode terminals of the capacitor during heating or heating/cooling, the opening of the case of the capacitor is sealed with a thermosetting synthetic resin. Method of manufacturing solid electrolytic capacitors.
JP14229490A 1990-05-31 1990-05-31 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP2869145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14229490A JP2869145B2 (en) 1990-05-31 1990-05-31 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14229490A JP2869145B2 (en) 1990-05-31 1990-05-31 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0435014A true JPH0435014A (en) 1992-02-05
JP2869145B2 JP2869145B2 (en) 1999-03-10

Family

ID=15312034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14229490A Expired - Fee Related JP2869145B2 (en) 1990-05-31 1990-05-31 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2869145B2 (en)

Also Published As

Publication number Publication date
JP2869145B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
JPH04229611A (en) Solid electrolytic capacitor
KR100199321B1 (en) Solid electrolytic capacitor with organic semiconductor and method of manufacturing the same
US5766271A (en) Process for producing solid electrolyte capacitor
JPH0435014A (en) Manufacture of solid electrolytic capacitor
CA2007997C (en) Solid electrolyte capacitor and manufacturing method therefor
JP2726009B2 (en) Solid electrolytic capacitors
JP2783932B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JP2950898B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JPH04324612A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JP3474986B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3162738B2 (en) Solid electrolytic capacitors
JPH02278807A (en) Manufacture of solid electrolytic capacitor
JP3556045B2 (en) Solid electrolytic capacitors
JP2714281B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH09260215A (en) Manufacture of solid electrolytic capacitor
KR970006432B1 (en) Solid electrolytic capacitor
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
KR0154126B1 (en) Solid electrolyte capacitor and manufacturing method therefor
JPH0321007A (en) Manufacture of solid electrolytic capacitor
JP2869131B2 (en) Solid electrolytic capacitors
JP3326196B2 (en) Method for manufacturing solid electrolytic capacitor
JPH1050560A (en) Solid state electrolytic capacitor
JPH03250724A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JPH07245245A (en) Manufacture of solid electrolytic capacitor
JPH03276711A (en) Manufacture of solid-state electrolytic capacitor of organic semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees