JPH0321007A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH0321007A
JPH0321007A JP15623789A JP15623789A JPH0321007A JP H0321007 A JPH0321007 A JP H0321007A JP 15623789 A JP15623789 A JP 15623789A JP 15623789 A JP15623789 A JP 15623789A JP H0321007 A JPH0321007 A JP H0321007A
Authority
JP
Japan
Prior art keywords
capacitor element
solid electrolytic
water
capacitor
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15623789A
Other languages
Japanese (ja)
Inventor
Katsunori Minatomi
水富 勝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15623789A priority Critical patent/JPH0321007A/en
Publication of JPH0321007A publication Critical patent/JPH0321007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To improve recoverableness of an oxide film to prevent leakage current from increasing by a method wherein steam of 1atm or higher is functioned inside a capacitor element to reinforce bonding between TCNQ complex and water molecules. CONSTITUTION:TCNQ salt 8 is heated melted and impregnated in a capacitor element 6 and cooled to solidify, and then the capacitor element 6 is kept in steam of 1atm or higher. That is, since steam of 1atm or higher is used, water molecules easily transmit through a resin layer for sealing to enter inside the capacitor element 6 to be bonded with the TCNQ complex 8 with strong bonding force. Thus recoverableness of an oxide film can be improved due to function of water than conventional method of soaking in water and drying thereby preventing leakage current from increasing.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はTCNQ塩からなる有機半導体を固体電解質と
して使用する固体電解コンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a solid electrolytic capacitor using an organic semiconductor made of TCNQ salt as a solid electrolyte.

(ロ)従来の技術 固体電解コンデンサの固体電解質としてTCNQ塩から
なる有機半導体を用い得ることは既に知られている。こ
の場合、固体電解質は酸化皮膜を有するアルミニウムな
どの皮膜形成性金属に直接付着されるものであるが、異
なる形態として、陽極箔と陰極箔とをセパレー夕紙を挟
んで巻取ってコンデンサ素子を構戊し、この素子中のセ
パレータ紙に上記の固体電解質を含没する技術は、特公
昭62−52939号(HOIG9/02)に開示され
ている。尚TCNQとは7,  7,  8, 8,テ
トラシアノキノジメタンを意味する。
(b) Prior Art It is already known that an organic semiconductor made of TCNQ salt can be used as a solid electrolyte of a solid electrolytic capacitor. In this case, the solid electrolyte is directly attached to a film-forming metal such as aluminum that has an oxide film, but in a different form, an anode foil and a cathode foil are rolled up with a separator paper in between to form a capacitor element. A technique for impregnating the above-mentioned solid electrolyte in the separator paper in this element is disclosed in Japanese Patent Publication No. 62-52939 (HOIG9/02). Note that TCNQ means 7, 7, 8, 8, tetracyanoquinodimethane.

このような従来の技術においては、有機半導体の粉末を
適度に加圧して良熱伝導性のアルミケースに詰め、これ
を250〜300℃にて融解液化し、子熱されたコンデ
ンサ素子をこの融解液に浸漬して含浸し、アルミケース
ごと素子を冷却固化し、樹脂封口、電圧処理(二一ジン
グ)等の工程を経て完威させている。
In such conventional technology, organic semiconductor powder is appropriately pressurized and packed into an aluminum case with good thermal conductivity, and this is melted and liquefied at 250 to 300°C, and the heated capacitor element is placed in this melt. The device is impregnated by immersion in liquid, cooled and solidified together with the aluminum case, and completed through processes such as resin sealing and voltage treatment (21-ging).

ところでコンデンサ素子の陽極は誘電体である酸化皮膜
が形威されているが、素子予熱及び含浸時の熱的衝撃又
は素子運搬及び含浸時の機械的衝撃によって酸化皮膜が
傷つけられる。そのため有機半導体を含浸後又は樹脂封
口後酸化皮膜を修復し、漏れ電流値を小さくする目的で
100℃前後の高温で電圧処理(エージング)を行なっ
ている。
Incidentally, the anode of a capacitor element is formed of an oxide film which is a dielectric, but the oxide film is damaged by thermal shock during preheating and impregnation of the element or mechanical shock during transport and impregnation of the element. Therefore, after impregnating with an organic semiconductor or sealing with a resin, voltage treatment (aging) is performed at a high temperature of about 100° C. in order to restore the oxide film and reduce the leakage current value.

しかしながら有機半導体から戊る固体電解質は、一般の
電解コンデンサに使用されている電解液に比べ、酸化皮
膜の修復性が弱いという欠点があり、このため漏れ電流
値が大きく歩留りが低いという問題がある。このような
固体電解質の酸化皮膜の修復性が弱く、漏れ電流値が大
きく歩留りが低いという問題を解決するために、本願出
願人は先に、特願昭612−267270号ζ昭和62
年10月21日出願)および特願昭63−264571
号(昭和63年10月20日出願)を出願して次のよう
な技術を提供した。即ち、TCNQ塩よりなる有機半導
体を加熱融解液化してコンデンサ素子に含浸し、冷却固
化した後、コンデンサ素子を純水中に浸漬し、減圧下で
素子内部に純水を含浸させる。そして、該コンデンサの
水分を100℃前後の温度で1〜8時間乾燥させた後、
コンデンサ素子を収納したケースの開口部を樹脂にて封
目し、最後に100℃前後の温度で電圧処理(工一ジン
グ)を行ない固体電解コンデンサを完戒させる。
However, solid electrolytes made from organic semiconductors have the disadvantage that they have weaker oxide film repair properties than electrolytes used in general electrolytic capacitors, resulting in problems such as high leakage current values and low yields. . In order to solve the problem that the repairability of the oxide film of the solid electrolyte is weak, the leakage current value is large, and the yield is low, the applicant of the present application previously filed Japanese Patent Application No. 612-267270 ζ 1986.
(filed on October 21, 2013) and patent application No. 63-264571
(filed on October 20, 1988) and provided the following technology. That is, an organic semiconductor made of TCNQ salt is heated, melted, liquefied, impregnated into a capacitor element, cooled and solidified, and then the capacitor element is immersed in pure water to impregnate the inside of the element with the pure water under reduced pressure. After drying the moisture in the capacitor at a temperature of around 100°C for 1 to 8 hours,
The opening of the case containing the capacitor element is sealed with resin, and finally voltage treatment (engineering) is performed at a temperature of around 100°C to completely cure the solid electrolytic capacitor.

このような従来の純水を含浸させる製造方法においては
、TCNQ塩の含浸済み素子を純水中に浸漬するので、
該コンデンサ素子中に液体として残留する余分な水を乾
燥させる工程が必要不可欠となる。また、純水を含浸さ
せるためには、コンデンサ素子の封目前に行なわなけれ
ばならず、このため純水の含浸および乾燥工程により素
子内部3 4 に導入された水分、即ちTCNQ錯体と結合した水の分
子はTCNQ錯体との結合力が弱いため、その後のアル
ミケース封日時、即ち樹脂硬化時に樹脂と反応したり、
樹脂の硬化時の熱ストレスなどにより少なからず影響を
受ける。その結果、水の作用による電圧処理(エージン
グ)時の酸化皮膜の修復性は弱くなり、漏れ電流低減を
阻害するという欠点があった。
In such a conventional production method of impregnating with pure water, the element impregnated with TCNQ salt is immersed in pure water.
A step of drying excess water remaining as a liquid in the capacitor element is essential. In addition, in order to impregnate the capacitor element with pure water, it must be carried out before sealing the capacitor element. Therefore, the moisture introduced into the element interior 3 4 during the impregnation and drying process with pure water, that is, the water combined with the TCNQ complex, is impregnated with pure water. Since the bonding force of the molecules with the TCNQ complex is weak, they may react with the resin during the subsequent sealing of the aluminum case, that is, when the resin hardens.
It is affected to a large extent by heat stress during curing of the resin. As a result, the repairability of the oxide film during voltage treatment (aging) due to the action of water is weakened, which has the drawback of inhibiting leakage current reduction.

(ハ)発明が解決しようとする課題 本発明は、上記問題点、即ち液体状の水を用いるために
必要となる乾燥工程を省略でき、而もコンデンサ素子の
樹脂等により封口後も使用できる製造方法を提供するこ
とであり、更に従来方法と同様に素子の封目前に行って
もコンデンサ素子内部に導入された水が樹脂硬化時に悪
影響を受けることなく、また電圧処理(エージング)時
に従来以上に酸化皮膜の修復性を向上させ、漏れ電流低
減を阻害する作用を解決するものである。
(c) Problems to be Solved by the Invention The present invention solves the above-mentioned problems, that is, it is possible to omit the drying process necessary for using liquid water, and it can also be used even after sealing with resin of the capacitor element. The purpose of the present invention is to provide a method in which the water introduced into the capacitor element is not adversely affected during resin curing even if it is carried out before the element is sealed, as in the conventional method, and it is more effective than conventional methods during voltage treatment (aging). This improves the repairability of the oxide film and solves the effect of inhibiting leakage current reduction.

(二)課題を解決するための手段 本発明はTCNQ塩を加熱融解してコンデンサ素子に含
浸し、冷却固化した後、1気圧以上の水蒸気下に該コン
デンサ素子を保持するものである。
(2) Means for Solving the Problems In the present invention, TCNQ salt is heated and melted to impregnate a capacitor element, cooled and solidified, and then the capacitor element is held under water vapor at 1 atmosphere or more.

(ホ)作用 1気圧以上の水蒸気(】00℃以上)を用いることによ
り、従来のような液体の水の除去工程(乾燥工程)は不
要となる。またコンデンサ素子の封口後にも加水が可能
となる。即ち、1気圧以上の水蒸気を使用するため水分
子は容易に封日用の樹脂層を透過し、コンデンサの素子
内部に浸入してTCNQ錯体と強い結合力で結合する。
(e) Effect By using water vapor at 1 atm or higher (at 00° C. or higher), the conventional process for removing liquid water (drying process) becomes unnecessary. Furthermore, water can be added even after the capacitor element is sealed. That is, since water vapor of 1 atm or higher is used, water molecules easily pass through the sealing resin layer, enter the inside of the capacitor element, and bond with the TCNQ complex with strong bonding force.

その結果、従来の水中浸漬・乾燥法以上に水の作用によ
る酸化皮膜の修復性は向上し、漏れ電流の増大が防止さ
れる。また、コンデンサ素子の封目前に1気圧以上の水
蒸気を作用させても、TCNQ錯体と水分子の結合力は
、従来方法より強力なものであるため、その後の樹脂封
口における硬化時の影響は従来方法よりかなり少なくな
る。このため、従来方法以上に酸化皮膜の修復性は、向
上し、漏れ電流の低減が計れる。
As a result, the repairability of the oxide film by the action of water is improved more than the conventional method of immersion in water and drying, and an increase in leakage current is prevented. In addition, even if water vapor of 1 atm or more is applied before sealing the capacitor element, the bonding force between the TCNQ complex and water molecules is stronger than that of the conventional method, so the effect of curing in the subsequent resin sealing is less than that of the conventional method. Way less. Therefore, the repairability of the oxide film is improved more than the conventional method, and leakage current can be reduced.

(へ)実施例 次に、本発明の方法をコンデンサ素子の樹脂封口前及び
樹脂封口後に用いる場合についてそれぞれの製造過程を
説明する。
(F) Example Next, the manufacturing process will be described in the case where the method of the present invention is used before and after resin sealing of a capacitor element.

(1)コンデンサ素子の樹脂封口荊の加水処理第1図に
示す如く、エッチング処理、化戊処理を行なったアルミ
ニウム箔を陽極箔(1)とし、対向陰極箔(2)との間
にセパレーク(3)を挟み円筒状に巻き取り、コンデン
サ素子(6)を形戒する。なお、(4 )(4 ’)は
アルミリード、(5)(5゛)はリード線である。
(1) Addition of water to the resin sealant of a capacitor element As shown in Figure 1, an aluminum foil that has been etched and anodized is used as the anode foil (1), and a separate layer (2) is placed between it and the opposing cathode foil (2). 3) and wind it up into a cylindrical shape to form a capacitor element (6). Note that (4) and (4') are aluminum leads, and (5) and (5') are lead wires.

次に、第2図に示す如(TCNQ塩、例えばNn−プチ
ルイソキノリニウムのTCNQ塩((N−n−プチルイ
ソキノリニウム)“(TCNQ)− (TCNQ))の
粉末(8)をアルミケース(7)に収納し、融点(21
0〜230℃)以上の温度、例えば、290℃〜300
℃の温度でTCNQ塩を融解液化する。そして、予熱済
みのコンデンサ素子(6)をケース(7)内のTCNQ
塩の融解液に浸漬してTCNQ塩を含浸する。含浸後ケ
ース(7)を冷却し、コンデンサ素子(6)に含浸した
TCNQ塩(8)を冷却固化し、ケース内にコンデンサ
素子を固定する。なおT C N Q塩を融解液化後冷
却固化するまでの時間は数分以内にする必要があり、こ
の時間を越えると、TCNQ塩よりなる有機半導体はほ
ぼ電気的絶縁物となる。
Next, as shown in FIG. is stored in an aluminum case (7), and the melting point (21
0 to 230°C) or higher, for example, 290°C to 300°C
The TCNQ salt is melted and liquefied at a temperature of °C. Then, insert the preheated capacitor element (6) into the TCNQ inside the case (7).
Impregnate with TCNQ salt by immersing in salt melt. After impregnation, the case (7) is cooled, the TCNQ salt (8) impregnated into the capacitor element (6) is cooled and solidified, and the capacitor element is fixed within the case. Note that the time from melting and liquefying the TCNQ salt to cooling and solidifying it must be within several minutes; after this time, the organic semiconductor made of the TCNQ salt becomes almost an electrical insulator.

次に前記TCNQ塩含浸済み素子(6)を例えば、恒温
多湿高圧試験器内に入れて、約3気圧(飽和温度;l.
32.88℃)の水蒸気を用いて、1時間の間素子内部
に水分子を作用させる。そして、最後にエポキシ系樹脂
(9)にて上記ケースの開口部を封ロし、125℃にて
1時間ほぼコンデンサの定格電圧を印加(二一ジング)
して、目的とする固体電解コンデンサを完戊する。
Next, the TCNQ salt-impregnated element (6) is placed in, for example, a constant temperature, high humidity, high pressure tester, and the temperature is about 3 atm (saturation temperature; l.
Using water vapor at a temperature of 32.88° C., water molecules are caused to act inside the device for one hour. Finally, seal the opening of the case with epoxy resin (9), and apply the rated voltage of the capacitor for approximately 1 hour at 125°C (21-ging).
and complete the desired solid electrolytic capacitor.

(2) コンデンサ素子の樹脂封口後の加水処理前述し
たようにコンデンサ素子(6)をTCNQ塩(8)の含
浸後、冷却固化してケース(7)内に固定後、エポキシ
系樹脂(9)にてケースの開口部を封ロする。次に該コ
ンデンサを例えば恒温多湿高圧試験器内に入れて約2気
圧(飽和温度;7 8 119.62℃)の水蒸気を用いて18時間の間コンデ
ンサの封口樹脂外部からコンデンサの素子内部へ水分子
を浸入させる。そして、125℃にて1時間、ほぼコン
デンサの定格電圧を印加(二一ジング)して、目的とす
る固体電解コンデンサを完戊する。
(2) Water treatment after sealing the capacitor element with resin As mentioned above, the capacitor element (6) is impregnated with TCNQ salt (8), cooled and solidified, and fixed in the case (7), followed by epoxy resin (9). Seal the opening of the case. Next, the capacitor is placed in, for example, a constant temperature, high humidity, high pressure tester, and water vapor at about 2 atm (saturation temperature: 78°C, 119.62°C) is applied for 18 hours to inject water from the outside of the capacitor's sealing resin into the inside of the capacitor element. Infiltrate molecules. Then, approximately the rated voltage of the capacitor is applied (dwelling) at 125° C. for 1 hour to complete the intended solid electrolytic capacitor.

第1表に本発明の製造方法により完或した固体電解コン
デンサと従来の製造方法により完威した固体電解コンデ
ンサの電圧処理(エージング)後の漏れ電流の歩留りの
比較を示す。
Table 1 shows a comparison of the leakage current yield after voltage treatment (aging) of a solid electrolytic capacitor completely manufactured by the manufacturing method of the present invention and a solid electrolytic capacitor completely destroyed by the conventional manufacturing method.

第  1  表 なお、第1表における試験条件および資料コンデンサは
次の通りである。即ち、 (A);本発明の製造方法(前記(1))(C )(E
 )(G )i本発明の製造方法(前記(2))(B 
)(D )(F )(H ) ;従来の製造方法また (A )(B ) ;定格電圧35V、容量3.3μF
(C )(D )i定格電圧35V、容量0.22μF
(E )(F ) i定格電圧3 5 V、容量0.4
7μF(G )(H ) i定格電圧35V、容量1μ
FL.C,  ;漏れ電流(Leakage Curr
ent)なお、また、L,  C欄は漏れ電流のデータ
であり、試料100個中の不良数と歩留りを示しており
、各機種のL.C規格は定格電圧が全て35Vであるか
ら、全て次の値以下ヒなっている。即ち3.37.+F
の場合;2。3( μA /10sec)0.22μF
の場合; 0. 5 ( t−t A /10sec)
0.47μFの場合; 0. 5 ( μA /10s
ec)1μFの場合; 0. 7( p A /10s
ec)第1表から次のことがわかる。即ち本発明方法に
より有機半導体(TCNQ塩)を電解質に用いた固体電
解コンデンサの漏れ電流の歩留りは従来と比較して著し
く改善されていることがわがる。
Table 1 The test conditions and data capacitors in Table 1 are as follows. That is, (A); The manufacturing method of the present invention ((1) above) (C) (E
)(G)iThe manufacturing method of the present invention ((2) above)(B
)(D)(F)(H); Conventional manufacturing method or (A)(B); Rated voltage 35V, capacity 3.3μF
(C) (D)i Rated voltage 35V, capacity 0.22μF
(E) (F) i Rated voltage 35 V, capacity 0.4
7μF (G) (H) i Rated voltage 35V, capacity 1μ
FL. C, ; Leakage current
Furthermore, the L and C columns are leakage current data, indicating the number of defects in 100 samples and the yield. Since the rated voltage of the C standard is all 35V, all of them are below the following value. That is, 3.37. +F
In case of; 2.3 (μA /10sec) 0.22μF
In the case of; 0. 5 (t-t A /10sec)
In the case of 0.47 μF; 0. 5 (μA/10s
ec) For 1 μF; 0. 7( p A /10s
ec) The following can be seen from Table 1. That is, it can be seen that by the method of the present invention, the leakage current yield of a solid electrolytic capacitor using an organic semiconductor (TCNQ salt) as an electrolyte is significantly improved compared to the conventional method.

以」一本実施例ではコンデンサ素子をケースに収納する
タイプの場合について述べたが、ケースを用いずにコン
デンサ素子を全面樹脂封ロするいわゆる樹脂ディップタ
イプのものであってもよい。
Hereinafter, in this embodiment, a type in which the capacitor element is housed in a case has been described, but a so-called resin dip type type in which the capacitor element is entirely sealed with resin without using a case may also be used.

また、今回の実施例は定格35Vのみであるが、35V
以下でも同様の効果がある。また、上記においては固体
電解質としてN−n−プチルイソキノリニウムのTCN
Q塩を用いる場合について説明したが、固体電解質とし
て、N一(n−プロビル)一キノリニウム、N−(n−
アミル)一イソキノリニウム、N−(イソアミル)一イ
ソキノリニウム等の各TCNQ塩を用いてもよいことは
言うまでもない。
In addition, although the current example is only rated at 35V, 35V
The following also has a similar effect. In addition, in the above, TCN of N-n-butylisoquinolinium is used as the solid electrolyte.
Although the case where Q salt is used has been explained, N-(n-probyl)-quinolinium, N-(n-
It goes without saying that TCNQ salts such as amyl) monoisoquinolinium and N-(isoamyl) monoisoquinolinium may also be used.

尚また、本発明はコンデンサ素子として陽極箔と陰極箔
とをセパレータ紙を介して巻回した巻取り素子を使用し
た場合に限られるものではなく、コンデンサ素子として
弁作用を有する金属粉末を加圧或形し焼結した焼結素子
を使用した場合にも適用できる。即ち、アルミニウム微
粉末(粒径約10〜40μ)に陽極用アルミリード線を
植立させて焼結してなるコンデンサ素子を化戒液を用い
て誘電体となる酸化皮膜層を電気科学的に形或させ、該
コンデンサ素子に固体電解質として前述のT C N 
Q塩を用いる場合の製造過程にも本発明の方法を適用す
ることができる。
Furthermore, the present invention is not limited to the case where a wound element in which an anode foil and a cathode foil are wound with separator paper interposed therebetween is used as a capacitor element. It is also applicable when using a sintered element that is shaped and sintered. That is, a capacitor element is made by planting an aluminum lead wire for an anode on fine aluminum powder (approximately 10 to 40 microns in particle size) and sintering it, and electrochemically converting the oxide film layer that will become the dielectric using chemical liquid. the above-mentioned T C N as a solid electrolyte in the capacitor element.
The method of the present invention can also be applied to the production process when Q salt is used.

(ト)発明の効果 上述の如く本発明によれば1気圧以上の水蒸気をコンデ
ンサ素子内部に作用させるため、TCNQ錯体と水分子
との結合が従来法以上に強力なものとなり、たとえ樹脂
封目前に加水処理しても、樹脂硬化時に受ける影響は少
なく、水の作用による酸化皮膜の修復性を損なうことが
ない。その結果、本発明の加水処理をコンデンサ素子の
樹脂封目前或は樹脂封口後のいずれにしようとも、従来
の製造方法に較べて漏れ電流の歩留りが著しく向上する
。また1気圧以上の水蒸気を使用するため、従米の製造
方法の乾燥の工程は不要となり、11 12 そのため製造工程の工数の削減も可能となる。さらに樹
脂封目前及び封口後においても本発明を用いることがで
きるため製造の工程の自由度が増す。
(G) Effects of the Invention As described above, according to the present invention, since water vapor of 1 atm or more is applied inside the capacitor element, the bond between the TCNQ complex and water molecules becomes stronger than that of the conventional method, even before resin sealing. Even if the resin is treated with water, it has little effect on the hardening of the resin and does not impair the repairability of the oxide film due to the action of water. As a result, regardless of whether the hydration treatment of the present invention is performed before or after resin sealing of the capacitor element, the leakage current yield is significantly improved compared to conventional manufacturing methods. In addition, since water vapor of 1 atm or more is used, the drying step of the conventional manufacturing method is not necessary, 11 12 and therefore the number of man-hours in the manufacturing process can be reduced. Furthermore, since the present invention can be used before and after resin sealing, the degree of freedom in the manufacturing process increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用するコンデンサ素子の斜視図、第
2図は本発明の固体電解コンデンサの断面図である。 (1)(2)・・・陽、陰極箔、(3)・・・セパレー
タ、(6)・・・コンデンサ素子、(7)・・・アルミ
ケース、(8)・・・TCNQ錯塩。
FIG. 1 is a perspective view of a capacitor element used in the present invention, and FIG. 2 is a sectional view of the solid electrolytic capacitor of the present invention. (1) (2)...Positive, cathode foil, (3)...Separator, (6)...Capacitor element, (7)...Aluminum case, (8)...TCNQ complex salt.

Claims (3)

【特許請求の範囲】[Claims] (1)皮膜形成性金属に陽極酸化皮膜を形成してなるコ
ンデンサ素子に、融解液化した有機半導体を含浸し、冷
却固化した固体電解コンデンサの製造方法において、 前記有機半導体を含浸し、冷却固化した前記コンデンサ
素子を1気圧以上の水蒸気圧下に保持する工程を含むこ
とを特徴とする固体電解コンデンサの製造方法。
(1) A method for producing a solid electrolytic capacitor in which a capacitor element formed by forming an anodized film on a film-forming metal is impregnated with a molten and liquefied organic semiconductor, and the solid electrolytic capacitor is cooled and solidified. A method for manufacturing a solid electrolytic capacitor, comprising the step of maintaining the capacitor element under a water vapor pressure of 1 atmosphere or more.
(2)前記コンデンサ素子は陽極箔と陰極箔とをセパレ
ータ紙を介して巻回した巻取り素子であることを特徴と
する特許請求の範囲第1項記載の固体電解コンデンサの
製造方法。
(2) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the capacitor element is a wound element in which an anode foil and a cathode foil are wound with a separator paper in between.
(3)前記コンデンサ素子はアルミニウム、タンタル、
ニオブ等の弁作用を有する金属粉末を加圧成形し、或は
焼結してなるコンデンサ素子であることを特徴とする特
許請求の範囲第1項記載の固体電解コンデンサの製造方
法。
(3) The capacitor element is made of aluminum, tantalum,
2. The method of manufacturing a solid electrolytic capacitor according to claim 1, wherein the capacitor element is formed by pressure molding or sintering a metal powder having a valve action such as niobium.
JP15623789A 1989-06-19 1989-06-19 Manufacture of solid electrolytic capacitor Pending JPH0321007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15623789A JPH0321007A (en) 1989-06-19 1989-06-19 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15623789A JPH0321007A (en) 1989-06-19 1989-06-19 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0321007A true JPH0321007A (en) 1991-01-29

Family

ID=15623371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15623789A Pending JPH0321007A (en) 1989-06-19 1989-06-19 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0321007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093019A (en) * 2008-10-07 2010-04-22 Nichicon Corp Solid electrolytic capacitor and manufacturing method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093019A (en) * 2008-10-07 2010-04-22 Nichicon Corp Solid electrolytic capacitor and manufacturing method for the same

Similar Documents

Publication Publication Date Title
JPH04229611A (en) Solid electrolytic capacitor
JPH04297012A (en) Organic semiconductor solid electrolytic capacitor and manufacture thereof
JPH0321007A (en) Manufacture of solid electrolytic capacitor
JP4066473B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
JP2726009B2 (en) Solid electrolytic capacitors
JPS63100710A (en) Solid electrolyte capacitor and manufacture of the same
JP3253216B2 (en) Solid electrolytic capacitors
JPH01205412A (en) Manufacture of solid electrolytic capacitor
JP3363533B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3363508B2 (en) Organic semiconductor solid electrolytic capacitors
JP2869131B2 (en) Solid electrolytic capacitors
JP3978822B2 (en) Manufacturing method of solid electrolytic capacitor
JPH09260215A (en) Manufacture of solid electrolytic capacitor
JPH04302127A (en) Manufacture of solid electrolytic capacitor
JPH07249544A (en) Solid electrolytic capacitor
JPH05243096A (en) Manufacture of organic solid state electrolytic capacitor
KR970006432B1 (en) Solid electrolytic capacitor
JP3253126B2 (en) Solid electrolytic capacitors
JPH0435014A (en) Manufacture of solid electrolytic capacitor
JPH06112097A (en) Manufacture of solid-state electrolytic capacitor
JPH07245245A (en) Manufacture of solid electrolytic capacitor
JPH06252014A (en) Solid electrolytic capacitor
JPH09270371A (en) Solid electrolytic capacitor