JPH1050560A - Solid state electrolytic capacitor - Google Patents
Solid state electrolytic capacitorInfo
- Publication number
- JPH1050560A JPH1050560A JP21523496A JP21523496A JPH1050560A JP H1050560 A JPH1050560 A JP H1050560A JP 21523496 A JP21523496 A JP 21523496A JP 21523496 A JP21523496 A JP 21523496A JP H1050560 A JPH1050560 A JP H1050560A
- Authority
- JP
- Japan
- Prior art keywords
- foil
- capacitor element
- electrolytic capacitor
- capacitance
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、有機半導体を固体
電解質として用いた固体電解コンデンサに関する。The present invention relates to a solid electrolytic capacitor using an organic semiconductor as a solid electrolyte.
【0002】[0002]
【従来の技術】近年、電子情報機器の高度化に伴い、電
子部品の小形化、高性能化が求められるようになってき
ており、電解コンデンサでも、従来の駆動用電解液を含
浸した電解コンデンサよりも小形化の可能なTCNQ錯
体からなる有機半導体を固体電解質として用いた固体電
解コンデンサが実用化されている。2. Description of the Related Art In recent years, with the advancement of electronic information equipment, miniaturization and high performance of electronic parts have been demanded, and even an electrolytic capacitor impregnated with a conventional driving electrolytic solution has been required. 2. Description of the Related Art Solid electrolytic capacitors using an organic semiconductor made of a TCNQ complex that can be smaller in size as a solid electrolyte have been put to practical use.
【0003】従来、TCNQ錯体からなる有機半導体を
固体電解質として用いた固体電解コンデンサは、アルミ
ニウム、タンタル又はニオブなどの弁作用金属箔表面を
エッチング液で粗面化し表面積を拡大した後、陽極酸化
皮膜を生成した陽極箔と、同様の弁作用金属箔の表面を
前記同様にエッチング液で粗面化し表面積を拡大した陰
極箔とを作製し、これらの陽極箔と陰極箔との間にクラ
フト紙又はマニラ紙などからなるスペーサを介在し、前
記陽極箔及び陰極箔の任意な箇所に陽極引出端子及び陰
極引出端子を取着した状態で巻回してコンデンサ素子を
形成していた。Conventionally, a solid electrolytic capacitor using an organic semiconductor made of a TCNQ complex as a solid electrolyte has a valve-acting metal foil such as aluminum, tantalum or niobium surface roughened with an etchant to increase the surface area and then anodized film. Produced anode foil, the same valve action metal foil surface roughened with an etching solution in the same manner as described above to produce a cathode foil having an increased surface area, kraft paper or cathode paper between these anode foil and cathode foil A capacitor element is formed by winding a state in which an anode lead terminal and a cathode lead terminal are attached to arbitrary portions of the anode foil and the cathode foil with a spacer made of manila paper or the like interposed therebetween.
【0004】金属ケースの中にTCNQ錯体からなる有
機半導体を入れ、この有機半導体を加熱して溶融状態と
なったところに、予熱状態にしてある前記コンデンサ素
子を挿入してコンデンサ素子に有機半導体を含浸し、し
かる後、冷却固化し、前記金属ケース開口部をエポキシ
樹脂などからなる封口樹脂にて密閉していた。[0004] An organic semiconductor comprising a TCNQ complex is placed in a metal case, and when the organic semiconductor is heated to a molten state, the capacitor element in a preheated state is inserted to insert the organic semiconductor into the capacitor element. It was impregnated, then cooled and solidified, and the metal case opening was sealed with a sealing resin made of epoxy resin or the like.
【0005】上記構成になる固体電解コンデンサは、固
体電解質として用いる有機半導体としてのTCNQ錯体
は、その伝導度が約10S/cmと、従来の電解コンデ
ンサに使用されている電解液(0.01S/cm)に比
べ非常に高く、このTCNQ錯体を固体電解質として用
いることにより、インピーダンスの周波数特性、漏れ電
流特性、温度特性などの諸特性が優れており、注目され
ている。In the solid electrolytic capacitor having the above structure, the TCNQ complex as an organic semiconductor used as a solid electrolyte has a conductivity of about 10 S / cm and an electrolytic solution (0.01 S / cm) used in a conventional electrolytic capacitor. cm), and the use of this TCNQ complex as a solid electrolyte has attracted attention because of its excellent characteristics such as impedance frequency characteristics, leakage current characteristics, and temperature characteristics.
【0006】しかしながら、上記構成になる固体電解コ
ンデンサは、本来このコンデンサが有している静電容量
値よりも、有機半導体を含浸した後の静電容量値が小さ
くなるのが普通である。これは電解箔のエッチングピッ
ト内部に有機半導体が十分に入り込んでいないことを意
味しており、この本来のコンデンサ容量に対する固体化
後のコンデンサ容量の比(以下容量出現率と呼ぶ)は通
常65%程度である。このことは電極箔に対する有機半
導体の密着強度が小さいことを示しており、熱衝撃や高
温中でこれらが剥離しやすく、静電容量の減少を引き起
こす要因となっており、信頼性に欠けるものとなってい
た。However, the solid electrolytic capacitor having the above-described structure usually has a smaller capacitance value after impregnation with an organic semiconductor than the capacitance value originally possessed by the capacitor. This means that the organic semiconductor did not sufficiently enter the inside of the etching pit of the electrolytic foil, and the ratio of the capacitor capacity after solidification to the original capacitor capacity (hereinafter referred to as the capacity appearance rate) is usually 65%. It is about. This indicates that the adhesion strength of the organic semiconductor to the electrode foil is low, and they are easily peeled off during thermal shock or high temperature, causing a decrease in capacitance, and lacking reliability. Had become.
【0007】[0007]
【発明が解決しようとする課題】以上述べたように、上
記構成になるTCNQ錯体からなる有機半導体を用いた
固体電解コンデンサでは、電極箔のエッチングピット内
部に有機半導体が十分に浸透しておらず、電極箔と有機
半導体層の密着強度が小さいため、両者が剥離しコンデ
ンサ特性が経時劣化して信頼性に欠ける欠点をもってい
た。As described above, in the solid electrolytic capacitor using the organic semiconductor comprising the TCNQ complex having the above structure, the organic semiconductor does not sufficiently penetrate into the etching pits of the electrode foil. On the other hand, since the adhesion strength between the electrode foil and the organic semiconductor layer is small, the two are peeled off, the capacitor characteristics deteriorate with time, and the reliability is lacking.
【0008】本発明は、上記の問題を解決するために成
されたものであり、電極箔と有機半導体層の剥離を抑制
し、高信頼性の固体電解コンデンサを提供することを目
的とするものである。The present invention has been made to solve the above problems, and has as its object to provide a highly reliable solid electrolytic capacitor in which peeling of an electrode foil and an organic semiconductor layer is suppressed. It is.
【0009】[0009]
【課題を解決するための手段】本発明になる固体電解コ
ンデンサは、任意な箇所に引出端子を取着した弁作用金
属からなる陽極箔と陰極箔間にスペーサを介して巻回し
たコンデンサ素子と、このコンデンサ素子を収納する金
属ケースと、この金属ケース内で溶融液化し前記コンデ
ンサ素子に含浸してなる有機半導体と、前記金属ケース
開口部を密閉する封口樹脂からなる固体電解コンデンサ
において、コンデンサ素子の液測静電容量値を定格静電
容量値に対して1.3倍以下に設定することを特徴とす
るものである。According to the present invention, there is provided a solid electrolytic capacitor comprising a capacitor element wound between a positive electrode foil made of a valve action metal and a negative electrode foil with a lead terminal attached at an arbitrary position via a spacer. A metal case for housing the capacitor element, an organic semiconductor melted and liquefied in the metal case and impregnated in the capacitor element, and a solid electrolytic capacitor comprising a sealing resin for sealing the opening of the metal case. Is set to be 1.3 times or less of the rated capacitance value.
【0010】[0010]
【発明の実施の形態】以下、本発明の一実施例について
図面を参照して説明する。すなわち、アルミニウム箔を
エッチング液で粗面化し表面積を拡大した後、誘電体酸
化皮膜を生成して陽極箔を得、同様にアルミニウム箔を
エッチング液で粗面化し表面積を拡大して陰極箔を得
た。この陽極箔と陰極箔との間にクラフト紙からなるス
ペーサを介在させ、前記陽極箔と陰極箔の任意な箇所に
それぞれ陽極引出端子及び陰極引出端子を取着して巻回
しコンデンサ素子を形成した。このコンデンサ素子をア
ジピン酸アンモニウム水溶液を用いて再化成して、前記
の巻回工程で生じた誘電体酸化皮膜の損傷を修復し、次
いでコンデンサ素子を加熱して予熱状態に維持する。一
方、アルミニウムケースにTCNQ錯体を一定量入れて
加熱溶融し、このアルミニウムケース内に前記予熱状態
に維持してあるコンデンサ素子を収納して溶融している
TCNQ錯体を含浸し、しかる後、冷却固化した。含浸
されない残余のTCNQ錯体溶融液は、コンデンサ素子
底面とアルミニウムケースの内底面との間に固化する。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. That is, after the aluminum foil is roughened with an etchant to increase the surface area, a dielectric oxide film is formed to obtain an anode foil. Similarly, the aluminum foil is roughened with an etchant to increase the surface area to obtain a cathode foil. Was. A spacer made of kraft paper was interposed between the anode foil and the cathode foil, and an anode extraction terminal and a cathode extraction terminal were attached to arbitrary portions of the anode foil and the cathode foil, respectively, and wound to form a capacitor element. . The capacitor element is reformed using an aqueous solution of ammonium adipate to repair the damage of the dielectric oxide film caused in the above-mentioned winding step, and then the capacitor element is heated and maintained in a preheated state. On the other hand, a predetermined amount of the TCNQ complex is put into an aluminum case and heated and melted. The capacitor element which is maintained in the preheated state is housed in the aluminum case and impregnated with the molten TCNQ complex, and then cooled and solidified. did. The remaining TCNQ complex melt that is not impregnated solidifies between the bottom surface of the capacitor element and the inner bottom surface of the aluminum case.
【0011】次に前記アルミニウムケースの開口部に、
エポキシ樹脂を注入して硬化させ、封口した。しかる
後、高温雰囲気中で陽極端子及び陰極端子間に定格電圧
を印加してエージング処理を行い、外装スリーブを被覆
して固体電解コンデンサを完成した。Next, at the opening of the aluminum case,
An epoxy resin was injected, cured, and sealed. Thereafter, an aging treatment was performed by applying a rated voltage between the anode terminal and the cathode terminal in a high-temperature atmosphere, and the outer sleeve was covered to complete a solid electrolytic capacitor.
【0012】以上の固体電解コンデンサを構成する際、
電極箔のエッチング条件及び化成条件を制御して、定格
静電容量の1.3倍以下の液測静電容量を有する電極箔
を使用する。In constructing the above solid electrolytic capacitor,
An electrode foil having a liquid measurement capacitance of 1.3 times or less of the rated capacitance is used by controlling the etching condition and the formation condition of the electrode foil.
【0013】以上のような構成になる固体電解コンデン
サによれば、電極箔のエッチング条件及び化成条件を制
御して、定格静電容量の1.3倍以下の液測静電容量を
有する電極箔を使用したため、エッチングピットの内部
に十分に充填されたTCNQ錯体のため、TCNQ錯体
と電極箔との密着強度が高まり、熱衝撃や高温中でTC
NQ錯体が電極箔から剥離する現象を抑制することがで
き、結果的に信頼性の高いコンデンサを提供することが
できる。According to the solid electrolytic capacitor having the above-described structure, the electrode foil having a liquid measuring capacitance of 1.3 times or less of the rated capacitance is controlled by controlling the etching condition and the formation condition of the electrode foil. Is used, the adhesion strength between the TCNQ complex and the electrode foil increases due to the TCNQ complex sufficiently filled inside the etching pit, and the TC
The phenomenon that the NQ complex peels off from the electrode foil can be suppressed, and as a result, a highly reliable capacitor can be provided.
【0014】次に、上記構成において、液測静電容量を
定格静電容量の1.3倍以下に設定する理由について説
明する。Next, the reason why the liquid measurement capacitance is set to be 1.3 times or less of the rated capacitance in the above configuration will be described.
【0015】前記のような構成の固体電解コンデンサに
おいて、液測静電容量を定格静電容量の1.7倍、1.
5倍、1.3倍に設定した陽極箔及び陰極箔を使用して
コンデンサ素子を作製し、105℃の高温雰囲気中に放
置したときの容量減少を調査した。その結果、図1に示
すとおり液測静電容量を定格静電容量の1.7倍及び
1.5倍とした場合には静電容量の減少が大きく、1.
3倍の場合はほとんど変化がなかった。In the solid electrolytic capacitor having the above-described configuration, the capacitance measured by the liquid is 1.7 times the rated capacitance.
A capacitor element was manufactured using the anode foil and the cathode foil set to 5 times and 1.3 times, and the decrease in capacity when left in a 105 ° C. high temperature atmosphere was investigated. As a result, as shown in FIG. 1, when the liquid measurement capacitance is set to 1.7 times and 1.5 times the rated capacitance, the capacitance decreases greatly.
In the case of 3 times, there was almost no change.
【0016】次に、定格10V−220μFのコンデン
サ各100個を試作した本発明による実施例と従来技術
による従来例A及び従来例Bの特性比較について述べ
る。Next, a description will be given of a comparison of characteristics between the embodiment according to the present invention in which 100 capacitors each having a rated voltage of 10 V-220 μF are prototyped and the conventional examples A and B according to the prior art.
【0017】[0017]
【実施例】アルミニウム箔をエッチング液で粗面化し表
面積を拡大した後、化成処理を行って誘電体酸化皮膜を
生成した陽極箔と、アルミニウム箔を前記同様エッチン
グ液で粗面化し表面積を拡大した陰極箔との間に、クラ
フト紙からなるスペーサを介在させ、任意な箇所にそれ
ぞれ陽極引出端子及び陰極引出端子を取着して巻回して
コンデンサ素子を形成した。このコンデンサ素子の液測
静電容量を定格静電容量に対して1.3倍、すなわち2
86μFとした。EXAMPLE An aluminum foil was roughened with an etchant to increase its surface area, and then a chemical conversion treatment was performed to form a dielectric oxide film on the anode foil and the aluminum foil was roughened with an etchant to increase the surface area. A spacer made of kraft paper was interposed between the anode foil and the cathode foil, and an anode lead-out terminal and a cathode lead-out terminal were attached to arbitrary locations, respectively, and wound to form a capacitor element. The measured capacitance of this capacitor element is 1.3 times the rated capacitance, that is, 2 times.
86 μF.
【0018】このコンデンサ素子を3%アジピン酸アン
モニウム水溶液からなる化成液中に浸漬した状態で電圧
を印加し、巻回により損傷した誘電体皮膜を修復した。
一方、TCNQ錯体を入れた円筒形のアルミニウムケー
スを、310℃に加熱してある平面ヒーター上に載せて
TCNQ錯体を溶融液化させる。次に、300℃に予備
加熱させた前記コンデンサ素子をアルミニウムケース内
収容し、溶融液化しているTCNQ錯体を含浸した。含
浸後直ちにアルミニウムケースを冷却水に浸して、TC
NQ錯体を冷却し固化させた。次に、アルミニウムケー
スの開口部にエポキシ樹脂を必要量注入して高温雰囲気
中で加熱硬化させた後、125℃雰囲気中で両極端子間
に定格電圧を1時間印加してエージングを行った。A voltage was applied while the capacitor element was immersed in a chemical solution consisting of a 3% aqueous ammonium adipate solution, and the dielectric film damaged by winding was repaired.
On the other hand, the cylindrical aluminum case containing the TCNQ complex is placed on a flat heater heated to 310 ° C. to melt and liquefy the TCNQ complex. Next, the capacitor element preheated to 300 ° C. was accommodated in an aluminum case, and was impregnated with the TCNQ complex that had been liquefied. Immediately after impregnation, immerse the aluminum case in cooling water,
The NQ complex was cooled and solidified. Next, a required amount of epoxy resin was injected into the opening of the aluminum case and cured by heating in a high-temperature atmosphere. Then, aging was performed by applying a rated voltage between both electrode terminals for 1 hour in a 125 ° C. atmosphere.
【0019】[0019]
【従来例】従来例は、コンデンサ素子の液測静電容量を
定格静電容量に対して従来例Aは1.5倍従来例Bは
1.7倍とした以外は前記実施例と同様の手段により資
料を作製したものである。The conventional example is the same as the above-mentioned embodiment except that the liquid measurement capacitance of the capacitor element is 1.5 times as large as the rated capacitance in the conventional example A and 1.7 times in the conventional example B. Materials were prepared by means.
【0020】上記のようにして作製した実施例及び従来
例A、従来例Bの試料各100個を105℃中に200
0時間無負荷放置した後の静電容量減少率の平均値とバ
ラツキを比較したところ、表1に示すような結果が得ら
れた。The samples prepared in the above manner and 100 samples of the conventional examples A and B were each placed at 105 ° C. for 200 hours.
When the average value and the variation of the capacitance decrease rate after leaving the apparatus unloaded for 0 hours were compared, the results shown in Table 1 were obtained.
【0021】[0021]
【表1】 [Table 1]
【0022】表1から明らかなように、従来例Aは静電
容量減少率の平均値が大きく、長期的な使用に対する信
頼性に欠けるものであり、従来例Bはこの傾向がさらに
顕著である。これはTCNQ錯体と電極箔の密着強度が
低く、高温雰囲気中でこれらが剥離してしまい、静電容
量が大幅に低下することによるものである。As is clear from Table 1, the conventional example A has a large average value of the capacitance reduction rate and lacks reliability for long-term use, and the conventional example B has this tendency more remarkably. . This is due to the fact that the adhesion strength between the TCNQ complex and the electrode foil is low, and they are separated in a high-temperature atmosphere, so that the capacitance is greatly reduced.
【0023】これに対して実施例の場合は、電極箔のエ
ッチングピット内に十分なTCNQ錯体を充填させるこ
とができるので、TCNQ錯体と電極箔の密着強度が大
幅に向上し、その結果静電容量出現率を従来よりも約1
0%程度引き上げることができた。その結果、高温雰囲
気中でこれらが剥離する現象が減少したので、長期的な
使用においても静電容量減少率が小さく、長寿命で信頼
性の高い固体電解コンデンサを得ることができる効果を
実証した。On the other hand, in the case of the embodiment, since the etching pit of the electrode foil can be sufficiently filled with the TCNQ complex, the adhesion strength between the TCNQ complex and the electrode foil is greatly improved. The capacity appearance rate is about 1
We were able to raise it by about 0%. As a result, the phenomenon that these peeled off in a high-temperature atmosphere was reduced, so that the effect of obtaining a long-life and highly reliable solid electrolytic capacitor with a small capacitance reduction rate even in long-term use was demonstrated. .
【0024】[0024]
【発明の効果】本発明によれば、コンデンサ素子の液測
静電容量を定格静電容量に対して1.3倍以下に設定す
ることにより、長期間の使用においても諸特性劣化のな
い高信頼性の有機半導体を固体電解質として用いた固体
電解コンデンサを得ることができる。According to the present invention, by setting the liquid measuring capacitance of the capacitor element to 1.3 times or less of the rated capacitance, a high performance without deterioration of various characteristics even during long-term use is obtained. A solid electrolytic capacitor using a reliable organic semiconductor as a solid electrolyte can be obtained.
【図1】実施例及び従来例A、従来例Bになるコンデン
サを125℃中に放置したときの静電容量の減少を示す
曲線図である。FIG. 1 is a curve diagram showing a decrease in capacitance when the capacitors according to the embodiment, the conventional example A, and the conventional example B are left at 125 ° C.
Claims (1)
金属からなる陽極箔と陰極箔間にスペーサを介して巻回
したコンデンサ素子と、このコンデンサ素子を収納する
金属ケースと、この金属ケース内で溶融液化し前記コン
デンサ素子に含浸してなる有機半導体と、前記金属ケー
ス開口部を密閉する封口樹脂からなる固体電解コンデン
サにおいて、コンデンサ素子の液測静電容量値を定格静
電容量値に対して1.3倍以下に設定することを特徴と
する固体電解コンデンサ。1. A capacitor element wound via a spacer between an anode foil and a cathode foil made of a valve metal and having a lead terminal attached to an arbitrary position, a metal case for housing the capacitor element, and a metal case. In a solid electrolytic capacitor composed of an organic semiconductor that is melted and liquefied in the case and impregnated in the capacitor element and a sealing resin that seals the metal case opening, the measured capacitance value of the capacitor element is the rated capacitance value. The solid electrolytic capacitor is set to be 1.3 times or less of the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21523496A JPH1050560A (en) | 1996-07-26 | 1996-07-26 | Solid state electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21523496A JPH1050560A (en) | 1996-07-26 | 1996-07-26 | Solid state electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1050560A true JPH1050560A (en) | 1998-02-20 |
Family
ID=16668944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21523496A Pending JPH1050560A (en) | 1996-07-26 | 1996-07-26 | Solid state electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1050560A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6605127B2 (en) | 2001-07-05 | 2003-08-12 | Shoei Co., Ltd | Method of manufacturing an aluminum solid electrolyte capacitor |
-
1996
- 1996-07-26 JP JP21523496A patent/JPH1050560A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6605127B2 (en) | 2001-07-05 | 2003-08-12 | Shoei Co., Ltd | Method of manufacturing an aluminum solid electrolyte capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1822265B (en) | Solid electrolytic capacitor and process for fabricating same | |
JPH11186110A (en) | Electrolytic capacitor and manufacture thereof | |
JP3339511B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH1050560A (en) | Solid state electrolytic capacitor | |
JPH0396210A (en) | Manufacture of solid electrolytic capacitor | |
JP4066473B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2811648B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP3548035B2 (en) | Manufacturing method of electrolytic capacitor | |
JP2006108192A (en) | Solid electrolytic capacitor | |
JP3055199B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP3750476B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2924251B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2003297684A (en) | Solid electrolytic capacitor and its producing method | |
KR970004277B1 (en) | Method of manufacturing solid electrolytic capacitor | |
JP2003100565A (en) | Method of manufacturing solid electrolytic capacitor | |
JP2730345B2 (en) | Manufacturing method of capacitor | |
JPH1174155A (en) | Manufacture of solid electrolytic capacitor | |
JP2775762B2 (en) | Solid electrolytic capacitors | |
JPH09260215A (en) | Manufacture of solid electrolytic capacitor | |
JP2001257131A (en) | Manufacturing method of solid electrolytic capacitor | |
JPH05243096A (en) | Manufacture of organic solid state electrolytic capacitor | |
JP3851015B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JPH0744131B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2570121B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH07115042A (en) | Manufacture of electrolytic capacitor |