JPS63127525A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPS63127525A
JPS63127525A JP27332086A JP27332086A JPS63127525A JP S63127525 A JPS63127525 A JP S63127525A JP 27332086 A JP27332086 A JP 27332086A JP 27332086 A JP27332086 A JP 27332086A JP S63127525 A JPS63127525 A JP S63127525A
Authority
JP
Japan
Prior art keywords
tcnq
solid electrolytic
electrolytic capacitor
electrode
pyrrole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27332086A
Other languages
Japanese (ja)
Inventor
土屋 宗次
吉村 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27332086A priority Critical patent/JPS63127525A/en
Publication of JPS63127525A publication Critical patent/JPS63127525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は7,7,8.8−テトラシアノキノジメタン(
TCNQ)錯塩からなる有機半導体を固体電解質として
用いる固体電解コンデンサの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to 7,7,8,8-tetracyanoquinodimethane (
The present invention relates to a method for manufacturing a solid electrolytic capacitor using an organic semiconductor made of a complex salt (TCNQ) as a solid electrolyte.

従来の技術 TCNQ錯塩を固体電解質として用いる固体電解コンデ
ンサに関しては、特開昭56−58818号公報、特開
昭56−116861号公報に明らかにされている。コ
ンデンサのつくり方としては、電解質として、たとえば
、N位をアルキル基で置換したN−アルキルイソキノリ
ウム(TCNQ )2を加熱溶融することにより、酸化
皮膜を有する第1の電極とそれに対向する第2の電極の
間にセパレータを有する空間に含浸処理を行、う。含浸
後、特開昭58−175819号公報に示されているよ
うに溶媒等を用いて急冷処理する。最後に、アルミ化や
エポキシ樹脂を用いて外装処理を行う。
Background Art Solid electrolytic capacitors using TCNQ complex salt as a solid electrolyte are disclosed in JP-A-56-58818 and JP-A-56-116861. The capacitor is manufactured by heating and melting N-alkylisoquinolium (TCNQ)2, in which the N-position is substituted with an alkyl group, as an electrolyte, thereby forming a first electrode having an oxide film and a second electrode facing it. Impregnation treatment is performed on the space having the separator between the two electrodes. After the impregnation, a rapid cooling treatment is performed using a solvent or the like as disclosed in Japanese Patent Application Laid-Open No. 58-175819. Finally, the exterior is treated using aluminum or epoxy resin.

発明が解決しようとする問題点 しかしながら電解質として水溶液を用いた場合と比較し
て、TCNQ塩の場合は容量達成率が低いという問題が
ある。水溶液が100%とすると、TCNQ塩の場合は
70〜80%程度である。また、高温放置あるいは半田
付けのため一時的に高温にさらされた場合に、漏れ電流
の増大や容量の低下の現象がみられる。
Problems to be Solved by the Invention However, compared to the case where an aqueous solution is used as the electrolyte, the TCNQ salt has a problem in that the capacity achievement rate is lower. If the aqueous solution is 100%, the TCNQ salt is about 70 to 80%. Furthermore, when left at high temperatures or temporarily exposed to high temperatures for soldering, leakage current increases and capacity decreases.

本発明は高温放置などにおける漏れ電流の増大や容量の
低下などのコンデンサ特性の劣化をふせぎ、コンデンサ
信頼性の向上をはかることを目的とするものである。
An object of the present invention is to prevent deterioration of capacitor characteristics such as an increase in leakage current and a decrease in capacitance due to high temperature storage, etc., and to improve capacitor reliability.

問題点を解決するための手段 本発明は上記目的を達成するもので、その技術的手段は
、TCNQ錯塩を熱溶融して、表面に酸化皮膜を有する
第1の電極と、前記第1の電極と対向して設けられた第
2の電極等から構成されるコンデンサユニットへ含浸後
、TCNQ錯塩と熱重合する複素五員環化合物の液体に
浸漬して強制的に冷却する製造方法にある。
Means for Solving the Problems The present invention achieves the above object, and its technical means is to thermally melt a TCNQ complex salt to form a first electrode having an oxide film on its surface, and a first electrode having an oxide film on its surface. The manufacturing method involves impregnating a capacitor unit composed of a second electrode and the like provided facing the capacitor, and then immersing the capacitor unit in a liquid of a five-membered heterocyclic compound that thermally polymerizes with the TCNQ complex salt to forcibly cool it.

作  用 TCNQ塩を熱溶融してコンデンサユニットへ含浸後、
急冷するわけであるが、その時の冷媒として、TCNQ
塩と熱重合する複素五員環化合物の液体を利用して前記
の問題点を解決している。
Function: After melting TCNQ salt and impregnating it into the capacitor unit,
TCNQ is used as a refrigerant for rapid cooling.
The above problems are solved by using a liquid of a five-membered heterocyclic compound that thermally polymerizes with a salt.

複素五員環化合物としてはピロール、チオフェン。Examples of five-membered heterocyclic compounds include pyrrole and thiophene.

フランの誘導体から選ばれる。TCNQ錯塩としてN−
アルキルイソキノリウム(TCNQ)2を用い、冷却す
る複素五員環の液体としてピロール誘電体を用いるのが
好ましい。
Selected from derivatives of furan. N- as TCNQ complex salt
It is preferable to use alkylisoquinolium (TCNQ) 2 and to use a pyrrole dielectric as the liquid of the five-membered heterocyclic ring to be cooled.

TCNQ塩の場合、容量達成率が100%にならないの
は、通常、誘電体膜は表面積をかせぐために微孔状態に
エツチングされているが、TCNQ塩の熱溶融液はその
微孔に、完全には含浸されないためである。水や有機溶
媒分子は微孔の中までよく含浸され、容量が100%達
成される。特開昭58−175819号公報に開示され
ているような溶媒を用いて冷却すると、冷却効果はたし
かにあるが、容量達成率の改善にはならない。たとえハ
、水やメタノール、エタノールのアルコール、アセトン
などを用いて冷却を行うと冷却効果はすぐれている。コ
ンデンサ特性としては冷却直後の冷媒の分子がコンデン
サユニットに残留しているような場合は容量は見かけ上
、容量達成率で90%以上の値を示すが、その冷媒分子
は揮発性が強いため、容量値徐々に低下してきて、80
%程度の容量を示すようになる。そこで、本発明ではT
CNQ塩と、熱重合反応をするようなピロール、チオフ
ェン、フランなどの複素五員環化合物を冷媒として用い
て、誘電体膜の微孔に浸透したこの液体分子を熱処理す
ることにより重合反応を行わせて、高い容量値を保持す
ることを可能にした。また、アルミの酸化皮膜は力学的
なひずみがかかったりするとすぐに欠陥を生じ、漏れ電
流の増大となる。また、高温に(たとえば105〜11
5℃)に長時間放置したり、あるいは半田付けのために
一時的に高温(約200〜230℃)にさらされたりす
ると漏れ電流の増大ばかりでなく、容量の低下現象をし
めす。TCNQ塩と誘電体膜である酸化皮膜との付着性
の劣化によるものと思われる。前記でのべた複素五員環
化合物を浸透させ、熱処理により重合反応を行わせるこ
とによりTCNQ塩と誘電体皮膜との付着性も改善され
て、かつ力学的なひずみに対しても耐性が増して、長時
間の高温放置や半田付は時の熱衝撃による容量特性や漏
れ電流の特性の劣化をなくすことができる。
In the case of TCNQ salt, the capacity achievement rate is not 100% because the dielectric film is usually etched into micropores to increase the surface area, but the hot melt of TCNQ salt completely fills the micropores. This is because it is not impregnated. Water and organic solvent molecules are well impregnated into the micropores, achieving 100% capacity. Cooling using a solvent such as that disclosed in JP-A-58-175819 does have a cooling effect, but it does not improve the capacity achievement rate. However, the cooling effect is excellent if water, methanol, ethanol, acetone, etc. are used for cooling. As for capacitor characteristics, if refrigerant molecules remain in the condenser unit immediately after cooling, the capacity will apparently show a value of 90% or more in terms of capacity achievement rate, but since the refrigerant molecules are highly volatile, The capacitance value gradually decreased to 80
% capacity. Therefore, in the present invention, T
Using CNQ salt and a five-membered heterocyclic compound such as pyrrole, thiophene, or furan, which undergoes a thermal polymerization reaction, as a coolant, the liquid molecules that have penetrated into the micropores of the dielectric film are heat-treated to perform a polymerization reaction. This makes it possible to maintain a high capacitance value. Furthermore, when mechanical strain is applied to the aluminum oxide film, defects readily occur, resulting in an increase in leakage current. Also, at high temperatures (for example, 105 to 11
5° C.) or temporarily exposed to high temperatures (approximately 200 to 230° C.) for soldering, the leakage current not only increases, but also the capacitance decreases. This is thought to be due to deterioration in the adhesion between the TCNQ salt and the oxide film, which is a dielectric film. By infiltrating the five-membered heterocyclic compound mentioned above and performing a polymerization reaction by heat treatment, the adhesion between the TCNQ salt and the dielectric film is improved, and the resistance to mechanical strain is also increased. , long-term exposure to high temperatures and soldering can eliminate deterioration of capacitance and leakage current characteristics due to thermal shock.

実施例 以下に本発明の実施例を詳細に睨明する。Example Examples of the present invention will be discussed in detail below.

TCNQ塩としてはN−イソアミルイソキノリウム(T
CNQ)2を用いた。ここで用いたコンデンサの構成は
陽極酸化により表面に酸化皮膜を有するアルミニウムを
第1の電極とし、第2の電極としてアルミニウムを用い
、この第1と第2の電極にセパレータを配置したもので
、捲回型である。ここで用いたユニットは定格100μ
F116■用である。電解質となるTCNQ塩を粉砕し
て微粉末にした後、アルミニウム缶ケース(直径10H
1高さ11B)に必要量を充てんし、270℃のホット
プレート上で溶融して液状にした。これにアルミニウム
電解コンデンサの巻取りユニットを浸漬して、十分に含
浸をほどこした後、冷媒としてピロールを用いて急冷し
た。また、比較のための冷媒として液体N2を用いた。
The TCNQ salt is N-isoamylisoquinolium (T
CNQ)2 was used. The structure of the capacitor used here is that aluminum, which has an oxide film on its surface through anodization, is used as the first electrode, aluminum is used as the second electrode, and a separator is placed between the first and second electrodes. It is a winding type. The unit used here has a rating of 100μ
It is for F116■. After crushing the TCNQ salt that will become the electrolyte into a fine powder, it is packed in an aluminum can case (10H diameter).
1 height 11B) was filled with the required amount and melted on a hot plate at 270° C. to form a liquid. A winding unit of an aluminum electrolytic capacitor was immersed in this to sufficiently impregnate it, and then rapidly cooled using pyrrole as a refrigerant. In addition, liquid N2 was used as a refrigerant for comparison.

液体N2はコンデンサユニットを冷却後、ユニット内部
ははとんど気化してしまい残留はしていない。これらの
ユニットをアルミ缶ケース(直径8ff、高さ10ff
)に入れて、上部にエポキシ樹脂で封口を行った。エポ
キシ樹脂を硬化するため85℃〜120℃の熱処理を2
時間はど行うが、この処理時にユニットに残留している
ピロールは十分に、熱重合反応をする。液体N2とピロ
ールを冷媒として用いた場合の特性の比較を以下の表に
示す。
After the liquid N2 has cooled the condenser unit, it is mostly vaporized inside the unit and does not remain. These units are housed in an aluminum can case (diameter 8ff, height 10ff)
), and the top was sealed with epoxy resin. Heat treatment at 85℃~120℃ to harden the epoxy resin
Regardless of the time taken, the pyrrole remaining in the unit during this treatment undergoes a sufficient thermal polymerization reaction. The table below shows a comparison of properties when liquid N2 and pyrrole are used as refrigerants.

特性の比較は105℃で10008放置後で行った。特
性数はサンプル数10ケの平均値である。
Comparison of properties was made after 10,008 hours of standing at 105°C. The number of characteristics is the average value of 10 samples.

表 コンデンサ特性 (漏れ電流の初期値は両方の場合とも5μAである。)
230℃の半田槽において15s・C処理をした場合は
、容量の変化はともになかった。漏れ電流の増大は上記
の表と同様な結果を示した。
Table Capacitor characteristics (initial value of leakage current is 5μA in both cases)
When subjected to 15 s C treatment in a solder bath at 230° C., there was no change in capacity. The increase in leakage current showed similar results to the above table.

ピロールのかわりにチオフェン、フランを冷媒として用
いた場合も同様な効果が得られた。
Similar effects were obtained when thiophene or furan was used as a refrigerant instead of pyrrole.

発明の効果 以上要するに本発明はTCNQ塩を用いる固体電解コン
デンサにおいて、熱溶融して含浸後の急冷に用いる冷媒
としてピロール、チオフェン、フランの誘導体などの複
素五員環化合物を用いることにより、高温放置などにお
ける漏れ電流の増大や容量の低下などのコンデンサ特性
の劣化をふせぐことができ、コンデンサ特性の信頼性の
向上がはかれる利点を有する。
Effects of the Invention In short, the present invention provides a solid electrolytic capacitor using TCNQ salt, which uses a five-membered heterocyclic compound such as a derivative of pyrrole, thiophene, or furan as a refrigerant used for rapid cooling after being thermally melted and impregnated. This has the advantage of being able to prevent deterioration of capacitor characteristics such as an increase in leakage current and a decrease in capacitance, and improve the reliability of capacitor characteristics.

Claims (2)

【特許請求の範囲】[Claims] (1)表面に酸化皮膜を有する第1の電極と、前記第1
の電極と対向して設けられた第2の電極との間及び周辺
に、熱溶融された7、7、8、8−テトラシアノキノジ
メタン(TCNQ)錯塩を含浸後、ピロール、チオフェ
ン、フランのいずれかを少なくとも含む複素五員環化合
物の液体に浸漬して強制的に冷却することを特徴とする
固体電解コンデンサの製造方法。
(1) a first electrode having an oxide film on its surface;
After impregnating heat-molten 7,7,8,8-tetracyanoquinodimethane (TCNQ) complex salt between and around the electrode and the second electrode provided oppositely, pyrrole, thiophene, and furan are added. A method for manufacturing a solid electrolytic capacitor, which comprises forcibly cooling it by immersing it in a liquid of a five-membered heterocyclic compound containing at least one of the following.
(2)TCNQ錯塩としてN−アルキルイソキノリウム
(TCNQ)_2を用い、冷却する複素五員環の液体と
してピロール誘導体を用いる特許請求の範囲第1項記載
の固体電解コンデンサの製造方法。
(2) The method for manufacturing a solid electrolytic capacitor according to claim 1, in which N-alkylisoquinolium (TCNQ)_2 is used as the TCNQ complex salt and a pyrrole derivative is used as the cooling five-membered heterocyclic liquid.
JP27332086A 1986-11-17 1986-11-17 Manufacture of solid electrolytic capacitor Pending JPS63127525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27332086A JPS63127525A (en) 1986-11-17 1986-11-17 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27332086A JPS63127525A (en) 1986-11-17 1986-11-17 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS63127525A true JPS63127525A (en) 1988-05-31

Family

ID=17526240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27332086A Pending JPS63127525A (en) 1986-11-17 1986-11-17 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63127525A (en)

Similar Documents

Publication Publication Date Title
JPH04229611A (en) Solid electrolytic capacitor
EP0617442B1 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2733618B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPS63127525A (en) Manufacture of solid electrolytic capacitor
JPS6292424A (en) Solid electrolytic capacitor
JP2840516B2 (en) Solid electrolytic capacitors
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
JP3162738B2 (en) Solid electrolytic capacitors
JPS63100710A (en) Solid electrolyte capacitor and manufacture of the same
JPS63115322A (en) Manufacture of electrolytic capacitor
JP2869131B2 (en) Solid electrolytic capacitors
JP2726009B2 (en) Solid electrolytic capacitors
JPS62152118A (en) Solid electrolytic capacitor
JPS6267810A (en) Manufacturing solid electrolytic condenser
JPS61281513A (en) Electrolytic capacitor
JP2919726B2 (en) Solid electrolytic capacitors
KR940005995B1 (en) Capacitor
JPS61163625A (en) Manufacture of solid electrolytic capacitor
JPH04206922A (en) Solid-state electrolytic capacitor
JPS62204514A (en) Solid electrolytic capacitor
JPH0722074B2 (en) Solid electrolytic capacitor
JPH0260047B2 (en)
JPH07115042A (en) Manufacture of electrolytic capacitor
JPH0374029B2 (en)
JPH0321007A (en) Manufacture of solid electrolytic capacitor