JP2733618B2 - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof

Info

Publication number
JP2733618B2
JP2733618B2 JP5502689A JP5502689A JP2733618B2 JP 2733618 B2 JP2733618 B2 JP 2733618B2 JP 5502689 A JP5502689 A JP 5502689A JP 5502689 A JP5502689 A JP 5502689A JP 2733618 B2 JP2733618 B2 JP 2733618B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
conductive polymer
polymer compound
solid electrolytic
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5502689A
Other languages
Japanese (ja)
Other versions
JPH02235321A (en
Inventor
剛 森本
栄治 遠藤
聡 竹宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ERUNAA KK
AGC Inc
Original Assignee
ERUNAA KK
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ERUNAA KK, Asahi Glass Co Ltd filed Critical ERUNAA KK
Priority to JP5502689A priority Critical patent/JP2733618B2/en
Publication of JPH02235321A publication Critical patent/JPH02235321A/en
Application granted granted Critical
Publication of JP2733618B2 publication Critical patent/JP2733618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は固体電解コンデンサ、特に、固体電解質とし
て導電性高分子化合物を用いた漏れ電流の少ない固体電
解コンデンサに関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a solid electrolytic capacitor, and more particularly to a solid electrolytic capacitor using a conductive polymer compound as a solid electrolyte and having a small leakage current.

[従来の技術] 近年、電子機器の小型化、軽量化に伴って、高周波数
領域におけるインピーダンスが低く、小型で大容量のコ
ンデンサが要求されるようになってきた。
[Related Art] In recent years, as electronic devices have become smaller and lighter, a capacitor having a low impedance in a high frequency region and having a small size and a large capacity has been required.

このような高周波用のコンデンサとしては従来、マイ
カコンデンサ、フィルムコンデンサ、セラミックコンデ
ンサなどが使用されているが、これらのコンデンサはい
ずれも大容量化に適したものではない。
Conventionally, mica capacitors, film capacitors, ceramic capacitors, and the like have been used as such high-frequency capacitors, but none of these capacitors is suitable for increasing the capacity.

一方、小型で大容量のコンデンサとしては、アルミニ
ウム電解コンデンサやタンタルコンデンサなどがある。
On the other hand, as a small-sized and large-capacity capacitor, there are an aluminum electrolytic capacitor and a tantalum capacitor.

アルミニウム電解コンデンサは低コストで大容量のも
のが得られるという利点はあるが、電解液を用いている
ために経時的に電解液が蒸発することによる容量劣化が
あり、また高周波特性が悪いなど欠点があった。
Aluminum electrolytic capacitors have the advantage that large capacity capacitors can be obtained at low cost.However, the use of an electrolytic solution causes capacity degradation due to evaporation of the electrolytic solution over time, and also has the disadvantage of poor high-frequency characteristics. was there.

一方、タンタル固体電解コンデンサは、電解質として
固体の二酸化マンガンなどを用いることによって容量劣
化などアルミニウム電解コンデンサの欠点を克服してい
る。しかしながら、この固体電解質は硝酸マンガン水溶
液を弁作用金属体に含浸・付着させた後、350℃前後で
硝酸マンガンを熱分解して形成され、二酸化マンガンの
付着量を増加させるために通常数回ないし十数回の含浸
・熱分解の工程を繰り返す必要があるため、熱分解時に
誘電体としての酸化皮膜の損傷が発生したり、あるいは
二酸化マンガン皮膜の補修能力が低いなどの欠点があっ
た。
On the other hand, a tantalum solid electrolytic capacitor overcomes disadvantages of an aluminum electrolytic capacitor such as capacity deterioration by using solid manganese dioxide or the like as an electrolyte. However, this solid electrolyte is formed by impregnating and attaching a manganese nitrate aqueous solution to a valve metal body, and then thermally decomposing manganese nitrate at about 350 ° C. Since it is necessary to repeat the process of impregnation and thermal decomposition ten times or more, there have been disadvantages such as damage of the oxide film as a dielectric during thermal decomposition, and low repairability of the manganese dioxide film.

そこでこれらの欠点を解消するため、特開昭58−1760
9号公報などに、誘電体酸化皮膜の補修性が優れ、かつ
導電性の良好な有機固体電解質として7,7,8,8−テトラ
シアノキノジメタン錯塩(以下、TCNQ錯塩と略称する)
を用いたものが提案されている。ここには、Nの位置を
アルキル基で置換したイソキノリンとTCNQとよりなるTC
NQ錯塩を加熱、溶融してコンデンサ素子に含浸後、冷却
・固化することにより固体電解質層を形成したものが開
示されている。
Therefore, in order to eliminate these disadvantages, Japanese Patent Application Laid-Open No. 58-1760
No. 9,7,8,8-tetracyanoquinodimethane complex salt (hereinafter abbreviated as TCNQ complex salt) as an organic solid electrolyte having excellent repairability of dielectric oxide film and good conductivity
Have been proposed. Here, TC consisting of isoquinoline in which the position of N is substituted with an alkyl group and TCNQ
A solid electrolyte layer is disclosed in which an NQ complex salt is heated and melted, impregnated in a capacitor element, and then cooled and solidified to form a solid electrolyte layer.

またピロール,チオフェン等の複素五員環化合物の重
合体を固体電解質として用いることも提案されている。
(特開昭60−37114号公報参照) [発明の解決しようとする課題] しかしながら、このようなTCNQ錯塩を用いた固体電解
コンデンサにおいては、前記含浸後の冷却・固化の際、
TCNQ錯塩が結晶化して誘導体酸化皮膜に充分密着しない
ため、所期の静電容量が得られないという問題点があっ
た。
It has also been proposed to use a polymer of a five-membered heterocyclic compound such as pyrrole or thiophene as a solid electrolyte.
[Problem to be Solved by the Invention] However, in such a solid electrolytic capacitor using the TCNQ complex salt, when cooling and solidifying after the impregnation,
Since the TCNQ complex salt crystallized and did not adhere sufficiently to the derivative oxide film, there was a problem that the desired capacitance could not be obtained.

また、ポリピロールやポリチオフェン等の導電性高分
子化合物を固体電解質として用いた固体電解コンデンサ
は、耐熱性や高周波特性がTCNQ錯塩よりも優れているも
のの、前記導電性高分子化合物の誘電体酸化皮膜の補修
能力が劣るために漏れ電流が多いという欠点を有してい
た。
In addition, a solid electrolytic capacitor using a conductive polymer compound such as polypyrrole or polythiophene as a solid electrolyte has better heat resistance and high-frequency characteristics than the TCNQ complex salt, but has a dielectric oxide film of the conductive polymer compound. There was a drawback that leakage current was large due to poor repairing ability.

[課題を解決するための手段] 本発明の固体電解コンデンサは、誘電体酸化皮膜上に
導電性高分子化合物よりなる固体電解質層を形成した固
体電解コンデンサにおいて、前記導電性高分子化合物
が、非イオン系界面活性剤が加えられた溶液中で誘電体
酸化皮膜上に形成されたものであることを特徴とする。
また、本発明の固体電解コンデンサの製造方法は、非イ
オン系界面活性剤が加えられた溶液中で化学重合法また
は電解重合法によって導電性高分子化合物よりなる固体
電解質層を誘電体酸化皮膜上に形成することを特徴とす
る。
[Means for Solving the Problems] The solid electrolytic capacitor of the present invention is a solid electrolytic capacitor in which a solid electrolyte layer made of a conductive polymer compound is formed on a dielectric oxide film, wherein the conductive polymer compound is non-conductive. It is characterized in that it is formed on a dielectric oxide film in a solution to which an ionic surfactant is added.
Further, the method for producing a solid electrolytic capacitor of the present invention comprises the steps of: forming a solid electrolyte layer made of a conductive polymer compound on a dielectric oxide film by a chemical polymerization method or an electrolytic polymerization method in a solution to which a nonionic surfactant is added. Is formed.

導電性高分子化合物の誘電体上への形成方法としては
公知の化学重合法や電解重合法が使用できる。化学重合
法では、導電性高分子化合物の単量体を誘電体酸化皮膜
に含浸後、その誘電体酸化皮膜をドーパントとなるアニ
オンと酸化剤と非イオン系界面活性剤を含む溶液に浸漬
することで誘電体酸化皮膜上に導電性高分子化合物が形
成できる。また、あらかじめ誘電体酸化皮膜に酸化剤と
ドーパントとなるアニオンを含む溶液を含浸後、その誘
電体酸化皮膜を導電性高分子化合物の単量体と非イオン
系界面活性剤を含む溶液に浸漬してもよい。電解重合法
では導電性高分子化合物の単量体を溶解した電解液に、
ドーパントとなるアニオンと非イオン系界面活性剤を溶
解し、誘電体酸化皮膜が形成された陽極箔をアノードと
して電解することにより、誘電体酸化皮膜上に導電性高
分子化合物を形成することができる。
As a method for forming the conductive polymer compound on the dielectric, a known chemical polymerization method or electrolytic polymerization method can be used. In the chemical polymerization method, a dielectric polymer oxide film is impregnated with a monomer of a conductive polymer compound, and then the dielectric oxide film is immersed in a solution containing an anion serving as a dopant, an oxidizing agent, and a nonionic surfactant. Thus, a conductive polymer compound can be formed on the dielectric oxide film. Also, after previously impregnating the dielectric oxide film with a solution containing an oxidizing agent and an anion serving as a dopant, the dielectric oxide film is immersed in a solution containing a conductive polymer compound monomer and a nonionic surfactant. You may. In the electrolytic polymerization method, an electrolytic solution in which a monomer of a conductive polymer compound is dissolved,
The conductive polymer compound can be formed on the dielectric oxide film by dissolving the anion serving as a dopant and the nonionic surfactant and electrolyzing the anode foil having the dielectric oxide film formed thereon as an anode. .

本発明に用いられる導電性高分子化合物としては、重
合の容易さ,安定性,電導度からポリピロール,ポリチ
オフェンまたはそれらの誘導体が好ましい。
As the conductive polymer compound used in the present invention, polypyrrole, polythiophene, or a derivative thereof is preferable in terms of easiness of polymerization, stability, and conductivity.

導電性高分子化合物は、誘電体酸化皮膜上に重合によ
り形成するが、誘電体酸化皮膜は数十Å〜数千Åと薄い
ため損傷しやすく、そのため導電性高分子化合物を用い
たコンデンサは漏れ電流が多いという欠点があった。
The conductive polymer compound is formed on the dielectric oxide film by polymerization, but the dielectric oxide film is tens to thousands of square meters and is easily damaged, so capacitors using the conductive polymer compound may leak. There was a drawback that the current was large.

高分子化合物を形成する溶液または電解液(以下、重
合液という)に界面活性剤を添加すると、陽極箔に良く
密着した平滑な導電性高分子が得られる。
When a surfactant is added to a solution for forming a polymer compound or an electrolytic solution (hereinafter, referred to as a polymer solution), a smooth conductive polymer that is well adhered to the anode foil can be obtained.

この作用機構は必ずしも明確ではないが、界面活性剤
は高分子の成長点に吸着し、局部的な異常成長を抑制す
るため、平滑な高分子となると思われる。
Although the mechanism of this action is not always clear, the surfactant is considered to be a smooth polymer because it adsorbs to the growth point of the polymer and suppresses local abnormal growth.

このような平滑な高分子は、誘電体酸化皮膜を損傷す
ることも少なく、陽極箔の微細な凹凸内部にまで成長す
るため、コンデンサとした場合に、漏れ電流が少なく、
容量の高いものが得られるものと思われる。
Such a smooth polymer does not easily damage the dielectric oxide film and grows inside the fine irregularities of the anode foil.
It seems that a high capacity one can be obtained.

界面活性剤としては陰イオン界面活性剤や陽イオン界
面活性剤の対イオンは、導電性高分子化合物にドーパン
トアニオンとして取り込まれ、その電導度に大きな影響
を及ぼす。このため界面活性剤としては導電性高分子化
合物の電導度に影響しにくい非イオン系界面活性剤を用
いる。特に重合に用いる溶媒である水,アセトニトリ
ル,メタノール等への溶解性を示すものが好ましく、具
体的な例としてはポリエチレングリコール,ポリエチレ
ングリコールアルキルエーテル,ポリエチレングリコー
ル脂肪酸エステル,脂肪酸モノグリセリド等が挙げられ
る。
As a surfactant, a counter ion of an anionic surfactant or a cationic surfactant is taken into the conductive polymer compound as a dopant anion, and greatly affects the conductivity. For this reason, a nonionic surfactant which does not easily affect the conductivity of the conductive polymer compound is used as the surfactant. In particular, those which show solubility in water, acetonitrile, methanol, and the like, which are used for the polymerization, are preferable. Specific examples include polyethylene glycol, polyethylene glycol alkyl ether, polyethylene glycol fatty acid ester, and fatty acid monoglyceride.

これら界面活性剤の使用量は、厳密には重合に用いる
溶媒によって決定されるが、一般には0.01〜50重量%,
好ましくは0.1〜30重量%程度を採用するのが適当であ
る。
The amount of these surfactants used is strictly determined by the solvent used for polymerization, but is generally 0.01 to 50% by weight,
Preferably, it is appropriate to employ about 0.1 to 30% by weight.

[実施例] 実施例1 捲回型アルミニウム電解コンデンサ素子(定格2.2μ
F,25V)にピロールモノマーを真空含浸した。次にこの
素子を過硫酸アンモニウム5重量%、ナフタレンスルホ
ン酸5重量%、ナフチルリン酸5重量%、ポリエチレン
グリコール5重量%を含む水溶液に0℃で1時間浸漬し
てピロールをコンデンサ素子の誘電体表面で重合させ
た。反応終了後未反応物を水洗除去し、窒素中で100℃
1時間乾燥した。得られたコンデンサ素子をアルミニウ
ムケースに収容し、樹脂封口して固体電解コンデンサと
した。このコンデンサに105℃で35V,2時間の電圧印加に
よるエージングを行った後の特性を第1表に示す。
[Example] Example 1 Wound aluminum electrolytic capacitor element (Rating 2.2μ)
F, 25V) was vacuum impregnated with a pyrrole monomer. Next, this element was immersed in an aqueous solution containing 5% by weight of ammonium persulfate, 5% by weight of naphthalenesulfonic acid, 5% by weight of naphthylphosphoric acid, and 5% by weight of polyethylene glycol at 0 ° C. for 1 hour, and pyrrole was placed on the dielectric surface of the capacitor element. Polymerized. After the completion of the reaction, unreacted substances are washed off with water, and the temperature is 100 ° C in nitrogen.
Dried for 1 hour. The obtained capacitor element was housed in an aluminum case, and sealed with a resin to obtain a solid electrolytic capacitor. Table 1 shows the characteristics of this capacitor after aging by applying a voltage of 35 V for 2 hours at 105 ° C.

実施例2 実施例1と同じコンデンサ素子にピロールモノマーを
真空含浸した。次にこの素子を過硫酸アンモニウム10重
量%、トルエンスルホン酸5重量%、ナフチルリン酸5
重量%、ポリエチレングリコールモノオレイルエーテル
10重量%を含む水溶液に0℃で1時間浸漬してピロール
をコンデンサ素子の誘電体表面で重合させた。このコン
デンサ素子を実施例1と同様に処理して固体電解コンデ
ンサを作製し、同様にエージングを行った後の特性を第
1表に示す。
Example 2 The same capacitor element as in Example 1 was vacuum impregnated with a pyrrole monomer. Next, this device was treated with 10% by weight of ammonium persulfate, 5% by weight of toluenesulfonic acid, and 5% by weight of naphthyl phosphoric acid.
Wt%, polyethylene glycol monooleyl ether
Pyrrole was immersed in an aqueous solution containing 10% by weight at 0 ° C. for 1 hour to polymerize pyrrole on the dielectric surface of the capacitor element. This capacitor element was treated in the same manner as in Example 1 to produce a solid electrolytic capacitor, and the characteristics after aging were shown in Table 1.

実施例3 実施例1と同じコンデンサ素子を用いピロール7重量
%、ナフタレンスルホン酸8重量%、ポリエチレングリ
コールモノラウリルエーテル10重量%を含む水溶液中に
コンデンサ素子を浸漬し、陽極と陰極の間に0.2mAの電
流を1時間流した。反応終了後コンデンサ素子を水洗
し、アジピン酸化成液で再化成をして固体電解コンデン
サを作製した。得られたコンデンサの特性を第1表に示
す。
Example 3 Using the same capacitor element as in Example 1, the capacitor element was immersed in an aqueous solution containing 7% by weight of pyrrole, 8% by weight of naphthalenesulfonic acid, and 10% by weight of polyethylene glycol monolauryl ether. mA current was applied for 1 hour. After the completion of the reaction, the capacitor element was washed with water and re-formed with an adipine oxidizing solution to produce a solid electrolytic capacitor. Table 1 shows the characteristics of the obtained capacitors.

実施例4 実施例1と同じコンデンサ素子を用いピロール7重量
%、トリエンスルホン酸8重量%、ポリエチレングリコ
ールモノステアレート3重量%を含む水溶液中にコンデ
ンサ素子を浸漬し、陽極と陰極の間に0.1mAの電流を2
時間流した。反応終了後コンデンサ素子を水洗し、アジ
ピン酸化成液で再化成をして固体電解コンデンサを作製
した。得られたコンデンサの特性を第1表に示す。
Example 4 Using the same capacitor element as in Example 1, the capacitor element was immersed in an aqueous solution containing 7% by weight of pyrrole, 8% by weight of trienesulfonic acid, and 3% by weight of polyethylene glycol monostearate. mA current of 2
Flowed for hours. After the completion of the reaction, the capacitor element was washed with water and re-formed with an adipine oxidizing solution to produce a solid electrolytic capacitor. Table 1 shows the characteristics of the obtained capacitors.

比較例1 実施例1と同じコンデンサ素子を用いピロール7重量
%、ベンゼンスルホン酸10重量%を含む水溶液中にコン
デンサ素子を浸漬し、陽極と陰極の間に0.1mAの電流を
2時間流した。反応終了後コンデンサ素子を水洗し、ア
ジピン酸化成液で再化成をして固体電解コンデンサを作
製した。得られたコンデンサの特性を第1表に示す。
Comparative Example 1 Using the same capacitor element as in Example 1, the capacitor element was immersed in an aqueous solution containing 7% by weight of pyrrole and 10% by weight of benzenesulfonic acid, and a current of 0.1 mA was passed between the anode and the cathode for 2 hours. After the completion of the reaction, the capacitor element was washed with water and re-formed with an adipine oxidizing solution to produce a solid electrolytic capacitor. Table 1 shows the characteristics of the obtained capacitors.

[発明の効果] 前述のように導電性高分子化合物を固体電解質として
用いたコンデンサは、耐熱性や高周波特性において優れ
ているものの漏れ電流が高いという欠点があった。
[Effects of the Invention] As described above, a capacitor using a conductive polymer compound as a solid electrolyte has excellent heat resistance and high-frequency characteristics, but has a disadvantage of high leakage current.

本発明のように非イオン界面活性剤の添加された重合
液中で誘電体上に形成せしめた導電性高分子化合物を固
体電解質として用いれば、その導電性高分子は平滑でか
つ誘電体に良好に密着するため、漏れ電流が非常に低く
容量の高いコンデンサを提供することができる。
When a conductive polymer compound formed on a dielectric in a polymerization solution containing a nonionic surfactant as in the present invention is used as a solid electrolyte, the conductive polymer is smooth and has good dielectric properties. Therefore, a capacitor having very low leakage current and high capacity can be provided.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘電体酸化皮膜上に導電性高分子化合物よ
りなる固体電解質層を形成した固体電解コンデンサにお
いて、前記導電性高分子化合物が、非イオン系界面活性
剤が加えられた溶液中で誘電体酸化皮膜上に形成された
ものであることを特徴とする固体電解コンデンサ。
1. A solid electrolytic capacitor having a solid electrolyte layer made of a conductive polymer compound formed on a dielectric oxide film, wherein the conductive polymer compound is dissolved in a solution containing a nonionic surfactant. A solid electrolytic capacitor formed on a dielectric oxide film.
【請求項2】導電性高分子化合物がポリピロール,ポリ
チオフェンまたはそれらの誘導体である請求項1記載の
固体電解コンデンサ。
2. The solid electrolytic capacitor according to claim 1, wherein the conductive polymer compound is polypyrrole, polythiophene or a derivative thereof.
【請求項3】非イオン系界面活性剤が、ポリエチレング
リコール,ポリエチレングリコールアルキルエーテル,
ポリエチレングリコール脂肪酸エステルまたは脂肪酸モ
ノグリセリドである請求項1または2記載の固体電解コ
ンデンサ。
3. A nonionic surfactant comprising polyethylene glycol, polyethylene glycol alkyl ether,
3. The solid electrolytic capacitor according to claim 1, which is a polyethylene glycol fatty acid ester or a fatty acid monoglyceride.
【請求項4】非イオン系界面活性剤が加えられた溶液中
で化学重合法または電解重合法によって導電性高分子化
合物よりなる固体電解質層を誘電体酸化皮膜上に形成す
ることを特徴とする固体電解コンデンサの製造方法。
4. A solid electrolyte layer comprising a conductive polymer compound is formed on a dielectric oxide film by a chemical polymerization method or an electrolytic polymerization method in a solution to which a nonionic surfactant is added. Manufacturing method of solid electrolytic capacitor.
JP5502689A 1989-03-09 1989-03-09 Solid electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP2733618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5502689A JP2733618B2 (en) 1989-03-09 1989-03-09 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5502689A JP2733618B2 (en) 1989-03-09 1989-03-09 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02235321A JPH02235321A (en) 1990-09-18
JP2733618B2 true JP2733618B2 (en) 1998-03-30

Family

ID=12987157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5502689A Expired - Fee Related JP2733618B2 (en) 1989-03-09 1989-03-09 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2733618B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992110B (en) * 2005-12-28 2012-02-08 三洋电机株式会社 Solid electrolytic capacitor element, solid electrolytic capacitor, and manufacturing method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364014A (en) * 1989-08-02 1991-03-19 Marcon Electron Co Ltd Solid electrolytic capacitor and manufacture thereof
JP2001148328A (en) * 1999-11-19 2001-05-29 Nec Corp Manufacturing method for solid electrolytic capacitor
JP4925423B2 (en) * 2006-08-04 2012-04-25 竹本油脂株式会社 Method for producing conductive polymer and conductive polymer
JP2012099868A (en) * 2006-09-27 2012-05-24 Shin Etsu Polymer Co Ltd Capacitor and its manufacturing method
JP4931778B2 (en) 2007-11-21 2012-05-16 三洋電機株式会社 Solid electrolytic capacitor
JP5340708B2 (en) * 2008-11-28 2013-11-13 三洋電機株式会社 Solid electrolytic capacitor
JP2011044730A (en) * 2010-10-28 2011-03-03 Sanyo Electric Co Ltd Solid electrolytic capacitor
DE102012004692A1 (en) * 2012-03-12 2013-09-12 Heraeus Precious Metals Gmbh & Co. Kg Addition of polymers to thiophene monomers in in situ polymerization
CN103578768B (en) * 2012-07-19 2017-10-31 Avx公司 Nonionic surfactant in electrolytic capacitor solid electrolyte
JP6048799B2 (en) 2012-09-05 2016-12-21 日本ケミコン株式会社 Polymerization liquid, conductive polymer film obtained from the polymerization liquid, and solid electrolytic capacitor
CN111892698B (en) * 2020-08-07 2022-12-20 万裕三信电子(东莞)有限公司 Preparation method of oxidizing solution and solid aluminum electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992110B (en) * 2005-12-28 2012-02-08 三洋电机株式会社 Solid electrolytic capacitor element, solid electrolytic capacitor, and manufacturing method thereof

Also Published As

Publication number Publication date
JPH02235321A (en) 1990-09-18

Similar Documents

Publication Publication Date Title
EP1650328B1 (en) Method for forming oxide film on metal surface using ionic liquid, electrolytic capacitor and electrolyte thereof
US4858078A (en) Solid electrolytic capacitor
JP3065286B2 (en) Solid electrolytic capacitor and method of manufacturing the same
EP0617442B1 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2733618B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH04229611A (en) Solid electrolytic capacitor
TW200425190A (en) Solid electrolytic capacitor and method for manufacturing same
JPH0473924A (en) Solid-state electrolytic capacitor and its manufacture
JPH02249221A (en) Solid electrolytic capacitor
JP2725553B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03291909A (en) Solid-state electrolytic capacitor
JPH02207518A (en) Solid electrolytic capacitor
JP2922521B2 (en) Solid electrolytic capacitors
JPH0346214A (en) Manufacture of solid electrolytic capacitor
JP2570979B2 (en) Method for manufacturing solid electrolytic capacitor
EP0803885B1 (en) Process for producing solid electrolytic capacitor
JP2612007B2 (en) Method for manufacturing solid electrolytic capacitor
JP2002128877A (en) Method for using alkyldiphenyl ether sulfonate, method for using alkyldinaphthalene ether sulfonate, conductive polymer material and solid electrolytic capacitor
JPH04315413A (en) Manufacture of solid electrolytic capacitor
JPH0766900B2 (en) Method for manufacturing solid electrolytic capacitor
JP2810100B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0494108A (en) Manufacture of solid electrolytic capacitor
JPH04239712A (en) Manufacture of capacitor
JPH0471328B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees