JPH02249221A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH02249221A
JPH02249221A JP1069198A JP6919889A JPH02249221A JP H02249221 A JPH02249221 A JP H02249221A JP 1069198 A JP1069198 A JP 1069198A JP 6919889 A JP6919889 A JP 6919889A JP H02249221 A JPH02249221 A JP H02249221A
Authority
JP
Japan
Prior art keywords
polymer compound
oxide film
dielectric oxide
conductive polymer
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1069198A
Other languages
Japanese (ja)
Inventor
Takeshi Morimoto
剛 森本
Eiji Endo
栄治 遠藤
Satoshi Takemiya
聡 竹宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Elna Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1069198A priority Critical patent/JPH02249221A/en
Publication of JPH02249221A publication Critical patent/JPH02249221A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Abstract

PURPOSE:To obtain high capacity, low equivalent series resistance and low leakage current by so coating in advance with a dielectric oxide film without loss of conductivity with polymer compound, and forming conductive polymer compound thereon. CONSTITUTION:In a solid electrolytic capacitor having conductive polymer compound on a dielectric oxide film, a dielectric oxide film coats in advance without loss of conductivity with polymer compound, and a conductive polymer compound is formed thereon. For example, an aluminum anode foil in which the dielectric oxide film is formed on the surface by compounding is coated with ethanol solution of copolymer of sulfonic acid-containing p-fluorovinyl ether and tetrafluoroethylene as polymer compound, and then dried. Aqueous solution containing 0.2mol/l of pyrrole and 0.1mol/l of naphthalene sulfonic acid is employed as electrolyte, it is electrolytically decomposed in 0.5mA/cm<2> of current density for 2 hours with a platinum plate as a cathode, and recompounded with adipic acid compounding solution after the reaction is finished.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は固体電解コンデンサ、特に、固体電解質として
導電性高分子化合物を用いた固体電解コンデンサに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solid electrolytic capacitor, and particularly to a solid electrolytic capacitor using a conductive polymer compound as a solid electrolyte.

[従来の技術] 近年、電子機器の小型化、軽量化に伴って、高周波領域
におけるインピーダンスが低く、小型で大容量のコンデ
ンサが要求されるようになってきた。
[Prior Art] In recent years, as electronic devices have become smaller and lighter, there has been a demand for small, large-capacity capacitors with low impedance in a high frequency range.

このような高周波用のコンデンサとしては従来、マイカ
コンデンサ、フィルムコンデンサ、セラミックコンデン
サなどが使用されているが、これらのコンデンサはいず
れも大容量化に適したものではない。
Conventionally, mica capacitors, film capacitors, ceramic capacitors, etc. have been used as such high frequency capacitors, but none of these capacitors are suitable for increasing the capacity.

一方、小型で大容量のコンデンサとしては、アルミニウ
ム電解コンデンサやタンタルコンデンサなどがある。
On the other hand, small-sized, large-capacity capacitors include aluminum electrolytic capacitors and tantalum capacitors.

アルミニウム電解コンデンサは低コストで大容量のもの
が得られるという利点はあるが、電解液を用いているた
めに経時的に電解液が蒸発することによる容量劣化があ
り、また高周波特性が悪いなど欠点があった。
Aluminum electrolytic capacitors have the advantage of being able to provide large capacity at low cost, but because they use an electrolyte, their capacity deteriorates over time as the electrolyte evaporates, and they also have poor high frequency characteristics. was there.

一方、タンタル固体電解コンデンサは、電解質として固
体の二酸化マンガンなどを用いることによって容量劣化
などアルミニウム電解コンデンサの欠点を克服している
。しかしながら。
On the other hand, tantalum solid electrolytic capacitors overcome the drawbacks of aluminum electrolytic capacitors, such as capacity deterioration, by using solid manganese dioxide or the like as an electrolyte. however.

この固体電解質は硝酸マンガン水溶液を弁作用金属体に
含浸・付着させた後、350℃前後で硝酸マンガンを熱
分解して形成され、二酸化マンガンの付着量を増加させ
るために通常数回ないし士数回の含浸・熱分解の工程を
繰り返す必要があるため、熱分解時に誘電体としての酸
化皮膜の損傷が発生したり、あるいは二酸化マンガン皮
膜の補修能力が低いなどの欠点があった。
This solid electrolyte is formed by impregnating and adhering an aqueous solution of manganese nitrate to the valve metal body, and then thermally decomposing the manganese nitrate at around 350°C. Since it is necessary to repeat the impregnation and pyrolysis steps twice, there are drawbacks such as damage to the oxide film as a dielectric during pyrolysis and low repair ability of the manganese dioxide film.

そこでこれらの欠点を解消するため、特開昭58−17
609号公報などに、誘電体酸化皮膜の補修性が優れ、
かつ導電性の良好な有機固体電解質として、7.7.8
.8テトラシアノキノジメタン錯塩(以下、 TCNQ
錯塩と略称する)を用いたものが提案されている。
Therefore, in order to eliminate these drawbacks, Japanese Patent Laid-Open No. 58-17
609, etc., the dielectric oxide film has excellent repairability,
and as an organic solid electrolyte with good conductivity, 7.7.8
.. 8 tetracyanoquinodimethane complex salt (hereinafter referred to as TCNQ)
A method using complex salts (abbreviated as complex salts) has been proposed.

この特開昭58−17609号公報には、Nの位置をア
ルキル基で置換したイソキノリンとTCNQからなるT
CNQ錯塩を加熱・溶融してコンデンサ素子に含浸後、
冷却・固化することにより固体電解質層を形成したもの
が開示されている。またビロール等の複素五員環化合物
の重合体を固体電解質として用いることも提案されてい
る。(特開昭60−371)4号公報参照) [発明が解決しようとする課題] しかしながら、このようなTCNQ錯塩を用いた固体電
解コンデンサにおいては、前記含浸後の冷却・固化の際
、TCNQ錯塩が結晶化して誘電体酸化皮膜に充分密着
しないため、初期の静電容量が得られないという問題点
があった。
JP-A-58-17609 discloses that TCNQ is composed of isoquinoline and TCNQ in which the N position is substituted with an alkyl group.
After heating and melting the CNQ complex salt and impregnating it into the capacitor element,
A solid electrolyte layer formed by cooling and solidifying is disclosed. It has also been proposed to use a polymer of a five-membered heterocyclic compound such as virol as a solid electrolyte. (Refer to Japanese Patent Application Laid-Open No. 60-371) No. 4) [Problems to be Solved by the Invention] However, in a solid electrolytic capacitor using such a TCNQ complex salt, during cooling and solidification after the impregnation, the TCNQ complex salt There was a problem in that the initial capacitance could not be obtained because it crystallized and did not adhere sufficiently to the dielectric oxide film.

また導電性高分子化合物を用いた固体電解コンデンサに
おいては、化学重合法を使用する場合、粉末状の導電性
高分子化合物が得られやすいため誘電体酸化皮膜に対す
る付着が強固な物が得られにくい、−刃型解重合で導電
性高分子化合物を形成する場合、絶縁性の誘電体酸化皮
膜上に電解重合を行うため均一な導電性高分子化合物が
形成されにく(十分な容量が得られないという問題点が
あった。
In addition, for solid electrolytic capacitors using conductive polymer compounds, when chemical polymerization is used, it is easy to obtain a powdered conductive polymer compound, making it difficult to obtain a solid electrolytic capacitor that adheres strongly to the dielectric oxide film. , - When forming a conductive polymer compound by blade-type depolymerization, it is difficult to form a uniform conductive polymer compound because electrolytic polymerization is performed on an insulating dielectric oxide film (sufficient capacity cannot be obtained). The problem was that there was no.

[課題を解決する為の手段] 本発明者は、前述の諸問題点を解決することを目的とし
て種々研究、検討した結果、誘電体酸化皮膜に対する導
電性高分子化合物の接着性を改善せしめることにより前
記目的を達成し得ることを見出した。
[Means for Solving the Problems] As a result of various studies and examinations aimed at solving the above-mentioned problems, the present inventor has found that the adhesiveness of a conductive polymer compound to a dielectric oxide film can be improved. It has been found that the above object can be achieved.

か(して本発明は、導電性高分子化合物を誘電体酸化皮
膜上に設けた固体電解コンデンサにおいて、誘電体酸化
皮膜を予め高分子化合物により導電性を損わない様に被
覆し、更にこの上に導電性高分子化合物を形成せしめた
固体電解コンデンサを提供するにある。
(Thus, the present invention provides a solid electrolytic capacitor in which a conductive polymer compound is provided on a dielectric oxide film, in which the dielectric oxide film is coated in advance with a polymer compound so as not to impair conductivity, and The present invention provides a solid electrolytic capacitor having a conductive polymer compound formed thereon.

本発明に用いられる導電性高分子化合物としては、π電
子共役系を有する高分子化合物のことであり、高い伝導
度と安定性を有する複素五員環化合物、とりわけ重合の
容易さからポリピロール、ポリチオフェン、ポリフラン
及びその誘導体が好ましい。
The conductive polymer compound used in the present invention is a polymer compound having a π-electron conjugated system, and includes five-membered heterocyclic compounds with high conductivity and stability, especially polypyrrole and polythiophene because of their ease of polymerization. , polyfuran and its derivatives are preferred.

又1本発明に用いられる誘電体酸化皮膜を導電性を損わ
ない様に被覆せしめる高分子化合物としては、導電性高
分子化合物に平滑性及び加工性を付与するものとして少
なくとも一柿の溶媒に可溶であるものが望ましい。
In addition, as a polymer compound used in the present invention to coat the dielectric oxide film without impairing conductivity, at least one persimmon solvent is used as a material that imparts smoothness and processability to the conductive polymer compound. Preferably, it is soluble.

具体的には、イオン交換性を有する高分子化合物、とり
わけスルホン酸やカルボン酸等の陽イオン交換基を持ち
、固定ドーパントとして導電性高分子化合物にドープさ
れ得るものとして含弗素陽イオン交換樹脂、ポリスチレ
ンスルホン酸、ポリビニルスルホン酸が挙げられる。
Specifically, polymer compounds having ion exchange properties, particularly fluorine-containing cation exchange resins having cation exchange groups such as sulfonic acid and carboxylic acid, and which can be doped into conductive polymer compounds as fixed dopants, Examples include polystyrene sulfonic acid and polyvinyl sulfonic acid.

又、導電性高分子化合物と化学的結合を生じず、中に混
合するが如くして複合構造を採るものとしてポリ塩化ビ
ニル、ポリカーボネート。
Also, polyvinyl chloride and polycarbonate are compounds that do not form chemical bonds with conductive polymer compounds, but can be mixed into them to form a composite structure.

ポリビニルアルコール、ポリビニルブチラール、ポリビ
ニルカルバゾール、ポリエチレングリコール及びその誘
導体が挙げられる。
Examples include polyvinyl alcohol, polyvinyl butyral, polyvinyl carbazole, polyethylene glycol and derivatives thereof.

これら高分子化合物はイオン交換基を有する高分子化合
物はそれ自体導電性を有するものの、導電性を損わない
ように誘電体酸化皮膜−にに被覆せしめる必要−J:、
、一般に膜厚として0.01〜30μ程度に被覆せしめ
るのが適当である。
Although these polymer compounds have ion exchange groups and are conductive in themselves, they need to be coated with a dielectric oxide film so as not to impair the conductivity.
Generally, it is appropriate to coat the film with a thickness of about 0.01 to 30 μm.

かくしてこの様な高分子化合物が被覆された誘電体酸化
皮膜には、前述の導電性高分子化合物が設けられる。
Thus, the dielectric oxide film coated with such a polymer compound is provided with the above-mentioned conductive polymer compound.

かかる導電性高分子化合物層の形成方法としては、公知
の化学重合法や電解重合法が使用出来る。化学重合法と
しては、導電性高分子化合物の単量体を高分子化合物層
に含浸後、それをドーパントとなるアニオンと、酸化剤
とを含む溶液中に浸漬することで形成出来る。又、予め
高分子層に酸化剤とドーパントとなるアニオンを含む溶
液を含浸後、導電性高分子化合物の単量体含有溶液に浸
漬することも出来る。
As a method for forming such a conductive polymer compound layer, a known chemical polymerization method or electrolytic polymerization method can be used. As a chemical polymerization method, it can be formed by impregnating a polymer compound layer with a monomer of a conductive polymer compound, and then immersing it in a solution containing an anion serving as a dopant and an oxidizing agent. Alternatively, the polymer layer can be impregnated in advance with a solution containing an oxidizing agent and an anion serving as a dopant, and then immersed in a solution containing a monomer of a conductive polymer compound.

電解重合法としては、例えば導電性高分子化合物の単量
体とドーパントとなるアニオンを溶解した電解液に、高
分子化合物で被覆された誘電体酸化皮膜体(陽極アルミ
ニウム箔)をアノードとして電解することにより、電気
化学的にドーピングされた導電性高分子化合物層を形成
せしめることが出来る。
In the electrolytic polymerization method, for example, electrolysis is performed using a dielectric oxide film (anode aluminum foil) coated with a polymer compound as an anode in an electrolytic solution in which a monomer of a conductive polymer compound and an anion as a dopant are dissolved. By this, an electrochemically doped conductive polymer compound layer can be formed.

[実施例] 以下実施例、比較例をあげて本発明をさらに詳細に説明
する。
[Example] The present invention will be explained in more detail with reference to Examples and Comparative Examples below.

実施例1.化成処理により表面に誘電体酸化皮膜を形成
させたアルミニウム陽極箔に高分子化合物としてスルホ
ン酸含有パーフルオロビニルエーテルとテトラフルオロ
エチレンとの共重合体(旭硝子社製商品名フレミオン)
のエタノール溶液を塗布後乾燥した。電解液として0.
2m。
Example 1. Copolymer of sulfonic acid-containing perfluorovinyl ether and tetrafluoroethylene as a polymer compound on aluminum anode foil with dielectric oxide film formed on the surface by chemical conversion treatment (product name: Flemion, manufactured by Asahi Glass Co., Ltd.)
After applying the ethanol solution, it was dried. 0 as electrolyte.
2m.

17氾のビロールと0. l mol / R,のナフ
タレンスルホン酸を含む水溶液を用い、白金板を陰極と
して電流密度0.5mA / cm”で2時間定電流電
解した。反応路r後アジピン酸化成液にて再化成した。
17 Flood Viror and 0. Using an aqueous solution containing 1 mol/R of naphthalene sulfonic acid, constant current electrolysis was carried out for 2 hours at a current density of 0.5 mA/cm'' using a platinum plate as a cathode.After the reaction path r, reconstitution was performed with an adipine oxidation solution.

次に陽極箔上に生成した導電性高分子化合物にカーボン
ペーストと銀ペーストを塗布し対極リードを取り出した
後、エポキシ樹脂により外装して固体電解コンデンサを
作製した。得られたコンデンサの特性を第1表に示す。
Next, carbon paste and silver paste were applied to the conductive polymer compound formed on the anode foil, the counter electrode lead was taken out, and the solid electrolytic capacitor was then packaged with epoxy resin. Table 1 shows the characteristics of the obtained capacitor.

実施例2.実施例1と同じ陽極箔にポリスチレンスルホ
ン酸の水溶液を塗布後乾燥した。電解液として0.2m
ol/ Qのビロールと0.1raol/ Qのトルエ
ンスルホン酸を含むアセトニトリル溶液を用い、白金板
を陰極として電流密度0.51^/cra”で2時間定
電流電解した0次に実施例1と同様の処理をして固体電
解コンデンサを作製した。得られたコンデンサの特性を
第1表に示す。
Example 2. An aqueous solution of polystyrene sulfonic acid was applied to the same anode foil as in Example 1 and then dried. 0.2m as electrolyte
Using an acetonitrile solution containing virol of ol/Q and toluenesulfonic acid of 0.1 raol/Q, constant current electrolysis was carried out for 2 hours at a current density of 0.51^/cra'' using a platinum plate as a cathode.Next, Example 1 and A solid electrolytic capacitor was produced in the same manner.The characteristics of the obtained capacitor are shown in Table 1.

実施例3.実施例1と同じ陽極箔にポリカーボネートの
ジメチルホルムアミド溶液を塗布後乾燥した。電解液と
して0.2mol/βのビロールと0、 la+o1.
/ 12のベンゼンスルホン酸を含む水溶液を用い、白
金板を陰極として電流密度0.5raA /C1)2で
2時間定電流電解した1次に実施例1と同様の処理をし
て固体電解コンデンサを作製した。得られたコンデンサ
の特性を第1表に示す6 実施例4.実施例1と同じ陽極箔にポリビニルアルコー
ルの水溶液を塗布後乾燥した。電解液として0.2wo
l/ffのビロールと0.1mol/ffのトルエンス
ルホン酸を含むメタノール溶液を用い、白金板を陰極と
して電流密度0.5mA / crs”で2時間定電流
電解した1次に実施例1と同様の処理をして固体電解コ
ンデンサを作製した。
Example 3. A dimethylformamide solution of polycarbonate was applied to the same anode foil as in Example 1 and then dried. As an electrolyte, 0.2 mol/β of virol and 0, la+o1.
1. Using an aqueous solution containing benzenesulfonic acid of /12, constant current electrolysis was carried out for 2 hours at a current density of 0.5 raA /C1)2 using a platinum plate as a cathode.Next, the same treatment as in Example 1 was carried out to form a solid electrolytic capacitor. Created. The characteristics of the obtained capacitor are shown in Table 1.6 Example 4. An aqueous solution of polyvinyl alcohol was applied to the same anode foil as in Example 1 and then dried. 0.2wo as electrolyte
A methanol solution containing l/ff of virole and 0.1 mol/ff of toluenesulfonic acid was used to perform constant current electrolysis for 2 hours at a current density of 0.5 mA/crs with a platinum plate as a cathode.The same as in Example 1. A solid electrolytic capacitor was fabricated by the above treatment.

得られたコンデンサの特性を第1表に示す。Table 1 shows the characteristics of the obtained capacitor.

比較例1.実施例1と同じ陽極箔を使用し、電解液とし
て0.2g+ol/12のビロールとO,1mkl/f
fのトルエンスルホン酸を含む水溶液を用い、白金板を
陰極として電流密度0.5 mA/cm”で2時間定電
流電解した0次に実施例1と同様の処理をして固体電解
コンデンサを作製した。得られたコンデンサの特性を第
1表に示す。
Comparative example 1. The same anode foil as in Example 1 was used, and the electrolyte was 0.2 g + ol/12 virol and O, 1 mkl/f.
Using an aqueous solution containing toluenesulfonic acid f, constant current electrolysis was carried out for 2 hours at a current density of 0.5 mA/cm'' using a platinum plate as a cathode.Next, the same treatment as in Example 1 was carried out to produce a solid electrolytic capacitor. Table 1 shows the characteristics of the obtained capacitor.

第  1 表 [発明の効果] 本発明によるコンデンサは、誘電体酸化皮膜への接着性
が良くかつ平滑な導電性高分子化合物を形成することが
可能となる。したがって重合後の再化成処理によっても
導電性高分子化合物が誘電体酸化皮膜より脱落すること
もない。
Table 1 [Effects of the Invention] In the capacitor according to the present invention, it is possible to form a conductive polymer compound that has good adhesion to a dielectric oxide film and is smooth. Therefore, the conductive polymer compound does not fall off from the dielectric oxide film even during reconversion treatment after polymerization.

このように本発明により容量が高く、等価直列抵抗が低
くかつ漏れ電流が低い固体電解コンデンサを提供するこ
とができる。
As described above, the present invention can provide a solid electrolytic capacitor with high capacity, low equivalent series resistance, and low leakage current.

Claims (7)

【特許請求の範囲】[Claims] 1.導電性高分子化合物を誘電体酸化皮膜上に設けた固
体電解コンデンサにおいて、誘電体酸化皮膜を予め高分
子化合物により導電性を損なわない様に被覆し、更にこ
の上に導電性高分子化合物を形成せしめた固体電解コン
デンサ。
1. In solid electrolytic capacitors in which a conductive polymer compound is provided on a dielectric oxide film, the dielectric oxide film is coated with a polymer compound in advance so as not to impair conductivity, and then a conductive polymer compound is formed on top of this. Solid electrolytic capacitor.
2.誘電体酸化皮膜上に導電性を損わない様に設けられ
る高分子化合物が、イオン交換性を有する高分子化合物
である請求項(1)のコンデンサ。
2. 2. The capacitor according to claim 1, wherein the polymer compound provided on the dielectric oxide film so as not to impair conductivity is a polymer compound having ion exchange properties.
3.イオン交換性を有する高分子化合物が、含弗素イオ
ン交換体である請求項(2)のコンデンサ。
3. 3. The capacitor according to claim 2, wherein the polymer compound having ion exchange properties is a fluorine-containing ion exchanger.
4.イオン交換性を有する高分子化合物がポリスチレン
スルホン酸、ポリビニルスルホン酸及びこれらの誘電体
である請求項(2)のコンデンサ。
4. 3. The capacitor according to claim 2, wherein the polymer compound having ion exchange properties is polystyrene sulfonic acid, polyvinyl sulfonic acid, or a dielectric thereof.
5.誘電体酸化皮膜上に導電性を損わない様に設けられ
る高分子化合物が、ポリ塩化ビニ ル、ポリカーボネート、ポリビニルアルコール、ポリビ
ニルブチラール、ポリビニルカルバゾール、ポリエチレ
ングリコールである請求項(1)のコンデンサ。
5. 2. The capacitor according to claim 1, wherein the polymer compound provided on the dielectric oxide film so as not to impair conductivity is polyvinyl chloride, polycarbonate, polyvinyl alcohol, polyvinyl butyral, polyvinyl carbazole, or polyethylene glycol.
6.導電性高分子化合物がポリピロール、ポリチオフェ
ン、ポリフラン及びこれらの誘導体である請求項(1)
のコンデンサ。
6. Claim (1) wherein the conductive polymer compound is polypyrrole, polythiophene, polyfuran, or a derivative thereof.
capacitor.
7.導電性高分子化合物の高分子化合物上への形成手段
が電解重合法である請求項(1)のコンデンサ。
7. 2. The capacitor according to claim 1, wherein the means for forming the conductive polymer compound on the polymer compound is an electrolytic polymerization method.
JP1069198A 1989-03-23 1989-03-23 Solid electrolytic capacitor Pending JPH02249221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069198A JPH02249221A (en) 1989-03-23 1989-03-23 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069198A JPH02249221A (en) 1989-03-23 1989-03-23 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH02249221A true JPH02249221A (en) 1990-10-05

Family

ID=13395794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069198A Pending JPH02249221A (en) 1989-03-23 1989-03-23 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH02249221A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100473A1 (en) * 2004-04-13 2005-10-27 E.I. Dupont De Nemours And Company Conductive polymer composites
JP2006100774A (en) * 2004-08-30 2006-04-13 Shin Etsu Polymer Co Ltd Capacitor and its manufacturing method
WO2006068302A1 (en) * 2004-12-24 2006-06-29 Showa Denko K.K. Solid electrolytic capacitor element, solid electrolytic capacitor and method for manufacturing same
US7423862B2 (en) 2004-12-24 2008-09-09 Showa Denko K.K. Solid electrolytic capacitor element, solid electrolytic capacitor and production method thereof
US8097184B2 (en) 2004-08-30 2012-01-17 Shin-Etsu Polymer Co., Ltd. Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium
US8216680B2 (en) 2006-02-03 2012-07-10 E I Du Pont De Nemours And Company Transparent composite conductors having high work function
US8441776B2 (en) 2010-02-25 2013-05-14 Sanyo Electric Co., Ltd. Solid electrolytic capacitor comprising two protective polymer films
USRE44853E1 (en) 2005-06-28 2014-04-22 E I Du Pont De Nemours And Company Buffer compositions
US8845933B2 (en) 2009-04-21 2014-09-30 E I Du Pont De Nemours And Company Electrically conductive polymer compositions and films made therefrom
US8945427B2 (en) 2009-04-24 2015-02-03 E I Du Pont De Nemours And Company Electrically conductive polymer compositions and films made therefrom
US8945426B2 (en) 2009-03-12 2015-02-03 E I Du Pont De Nemours And Company Electrically conductive polymer compositions for coating applications
US11270847B1 (en) 2019-05-17 2022-03-08 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved leakage current

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532359A (en) * 2004-04-13 2007-11-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Conductive polymer composite
WO2005100473A1 (en) * 2004-04-13 2005-10-27 E.I. Dupont De Nemours And Company Conductive polymer composites
US8147962B2 (en) 2004-04-13 2012-04-03 E. I. Du Pont De Nemours And Company Conductive polymer composites
US8388866B2 (en) 2004-08-30 2013-03-05 Shin-Etsu Polymer Co., Ltd. Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium
JP2006100774A (en) * 2004-08-30 2006-04-13 Shin Etsu Polymer Co Ltd Capacitor and its manufacturing method
US8551366B2 (en) 2004-08-30 2013-10-08 Shin-Etsu Polymer Co., Ltd. Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium
US8097184B2 (en) 2004-08-30 2012-01-17 Shin-Etsu Polymer Co., Ltd. Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium
US7423862B2 (en) 2004-12-24 2008-09-09 Showa Denko K.K. Solid electrolytic capacitor element, solid electrolytic capacitor and production method thereof
WO2006068302A1 (en) * 2004-12-24 2006-06-29 Showa Denko K.K. Solid electrolytic capacitor element, solid electrolytic capacitor and method for manufacturing same
TWI469163B (en) * 2004-12-24 2015-01-11 Showa Denko Kk Solid electrolytic capacitor element, solid electrolytic capacitor and manufacturing method thereof
USRE44853E1 (en) 2005-06-28 2014-04-22 E I Du Pont De Nemours And Company Buffer compositions
US8216680B2 (en) 2006-02-03 2012-07-10 E I Du Pont De Nemours And Company Transparent composite conductors having high work function
US8945426B2 (en) 2009-03-12 2015-02-03 E I Du Pont De Nemours And Company Electrically conductive polymer compositions for coating applications
US8845933B2 (en) 2009-04-21 2014-09-30 E I Du Pont De Nemours And Company Electrically conductive polymer compositions and films made therefrom
US8945427B2 (en) 2009-04-24 2015-02-03 E I Du Pont De Nemours And Company Electrically conductive polymer compositions and films made therefrom
US8441776B2 (en) 2010-02-25 2013-05-14 Sanyo Electric Co., Ltd. Solid electrolytic capacitor comprising two protective polymer films
US11270847B1 (en) 2019-05-17 2022-03-08 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved leakage current

Similar Documents

Publication Publication Date Title
EP0437857B1 (en) A method for producing a solid capacitor and a solid capacitor obtainable by said method
EP0617442B1 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH04307914A (en) Manufacture of solid electrolytic capacitor
JPH02249221A (en) Solid electrolytic capacitor
JP2733618B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0473924A (en) Solid-state electrolytic capacitor and its manufacture
JPH10247612A (en) Solid electrolytic capacitor
JP3846760B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0494110A (en) Manufacture of solid electrolytic capacitor
JPH02130906A (en) Solid electrolytic capacitor and manufacture thereof
JPS62189714A (en) Formation of semiconductor layer of solid electrolytic capacitor
JPH0722068B2 (en) Capacitor manufacturing method
JP3551118B2 (en) Capacitor and manufacturing method thereof
KR970005086B1 (en) Tantalium electrolytic condenser producing method
JPH03280518A (en) Electric double layer capacitor and manufacture thereof
JPH0346214A (en) Manufacture of solid electrolytic capacitor
JP2734652B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH036217A (en) Production of solid electrolytic capacitor
JPH04239712A (en) Manufacture of capacitor
JPH11191518A (en) Organic solid electrolytic capacitor and manufacture thereof
JP2003022937A (en) Solid electrolytic capacitor and method of manufacturing the same
JPH04315413A (en) Manufacture of solid electrolytic capacitor
JPH0494108A (en) Manufacture of solid electrolytic capacitor
JPH0748454B2 (en) Method for manufacturing solid electrolytic capacitor
JP2002128877A (en) Method for using alkyldiphenyl ether sulfonate, method for using alkyldinaphthalene ether sulfonate, conductive polymer material and solid electrolytic capacitor