JPH05322239A - Ice heat storage device - Google Patents

Ice heat storage device

Info

Publication number
JPH05322239A
JPH05322239A JP4162042A JP16204292A JPH05322239A JP H05322239 A JPH05322239 A JP H05322239A JP 4162042 A JP4162042 A JP 4162042A JP 16204292 A JP16204292 A JP 16204292A JP H05322239 A JPH05322239 A JP H05322239A
Authority
JP
Japan
Prior art keywords
water
ice
heat storage
storage tank
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4162042A
Other languages
Japanese (ja)
Other versions
JP3042179B2 (en
Inventor
Takashi Yamashita
下 孝 山
Koji Watanabe
辺 幸 次 渡
Toshito Takenami
浪 敏 人 竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP4162042A priority Critical patent/JP3042179B2/en
Publication of JPH05322239A publication Critical patent/JPH05322239A/en
Application granted granted Critical
Publication of JP3042179B2 publication Critical patent/JP3042179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PURPOSE:To provide an ice heat storage device capable of effectually utilizing latent heat of ice by effectually melting ice in a heat storage reservoir and taking out cold water. CONSTITUTION:Water in a heat storage tank 22 is made into ice by a brine which returns from an outlet 26 of a heat exchanger coil 24 provided to be buried in water with which the heat storage tank 22 is filled through a brine pump 28 and cooling means 30 to an inlet 40 of the heat exchanger coil 24. Then, ice 84 made in the heat storage tank 22 is melted as a cold heat source of an air conditioner with the aid of the melted ice water returning from a melted ice water intake port 50 provided in the vicinity of a water bottom inn the heat storage tank 22 through a melted ice water pump 54, and the air conditioner 56 and from a plurality of water sprinkling pipes 68, 70, 72 including valve mechanisms 74, 76, 78 provided on the upper of the heat storage tank 22. Thereupon, the valve mechanisms 74, 76, 78 are opened and closed on the basis of a detection result by one or more detection sensors for detecting the existence and position of the ice in the heat storage tank 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、氷蓄熱装置に係わり、
特に製氷した氷の解氷水を空調用冷熱源として利用する
氷蓄熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device,
In particular, the present invention relates to an ice heat storage device that uses the defrosted water of ice making as a cold heat source for air conditioning.

【0002】[0002]

【従来の技術】電力需要は昼間と夜間で相当の格差があ
り、近年その格差は益々大きくなる傾向にある。この
為、電力負荷の平準化が急務の課題になっていることか
ら、電力会社では夜間の電力料金を引下げて夜間電力の
有効利用を奨励している。このような背景から、夜間に
製氷した氷の解氷水を昼間の空調用冷熱源として利用す
る氷蓄熱装置が脚光を浴びている。現在、各種の氷蓄熱
装置が検討されているが、製氷方法としては、図6に示
すようなスタティック型のアイス−オン−コイル方式が
一般的に採用されている。
2. Description of the Related Art Electric power demand has a considerable difference between daytime and nighttime, and in recent years, the difference tends to increase. For this reason, leveling the electric power load is an urgent issue, and therefore electric power companies are promoting the effective use of night electric power by lowering the night electric power charge. Against this background, an ice heat storage device, which uses the defrosted water of ice made at night as a cold heat source for air conditioning in the daytime, is in the spotlight. At present, various types of ice heat storage devices have been studied, but as an ice making method, a static type ice-on-coil system as shown in FIG. 6 is generally adopted.

【0003】従来のこの種の氷蓄熱装置1を図6で説明
すると、製氷運転は、電力料金の安価な夜間に行われ、
蓄熱槽2に満たされた水に埋没するように設けられた製
氷用熱交換コイル3の出口4から出たブラインは、ブラ
インポンプ5により熱源装置6に配管7Aで送られて冷
却される。前記熱源装置6で冷却されたブラインは、第
1の二方弁8Aを介して前記製氷用熱交換コイル3の入
口9に配管7Bで送られ、製氷用熱交換コイル3を通っ
て前記製氷用熱交換コイル3を冷却し、前記製氷用熱交
換コイル3の出口4に戻る。この時、第1の二方弁8A
は全開とし、後述する第2の二方弁8Bは全閉としてお
く。このブラインの循環により前記製氷用熱交換コイル
3周囲の水が冷やされ、次第に前記蓄熱槽2の水が製氷
される。
A conventional ice heat storage device 1 of this type will be described with reference to FIG. 6. The ice making operation is performed at night when the electricity charge is low,
The brine discharged from the outlet 4 of the ice-making heat exchange coil 3 provided so as to be submerged in the water filled in the heat storage tank 2 is sent to the heat source device 6 by the brine pump 5 through the pipe 7A to be cooled. The brine cooled by the heat source device 6 is sent to the inlet 9 of the ice making heat exchange coil 3 through the pipe 7B via the first two-way valve 8A, and passes through the ice making heat exchange coil 3 to make the ice making. The heat exchange coil 3 is cooled and returned to the outlet 4 of the ice making heat exchange coil 3. At this time, the first two-way valve 8A
Is fully opened, and a second two-way valve 8B described later is fully closed. By circulating this brine, the water around the ice making heat exchange coil 3 is cooled, and the water in the heat storage tank 2 is gradually made.

【0004】解氷運転は日中の空調機11の稼働に伴っ
て行われ、前記蓄熱槽2内の氷12を解氷した解氷水
は、解氷水ポンプ13により解氷水取口14から取水さ
れ三方弁10を介して前記空調機11に配管15で送ら
れ、空調機11で図示していない空調空気と熱交換して
空調空気を冷却する。一方、前記空調空気と熱交換して
昇温した解氷水は、ブライン−水熱交換器16を経由し
て前記蓄熱槽2の水面上方に設置された散水管17に配
管18で送られる。前記散水管17に送られた解氷水
は、散水管17から蓄熱槽2内に散水されて蓄熱槽2の
氷12を解氷した後、前記解氷水取口14から再び取水
される。また、前記散水管17の手前で配管18が分岐
され、一部の解氷水は、蓄熱槽2に戻らずに前記三方弁
10に戻り解氷水取口14から取水された解氷水と混合
される。この時、三方弁10の開度により、散水管17
に戻る解氷水の水量と三方弁10に戻る解氷水の水量を
制御し、空調機11に所定の温度の解氷水を供給できる
ようになっている。
[0004] The deicing operation is performed in association with the operation of the air conditioner 11 during the day, and the deicing water that has defrosted the ice 12 in the heat storage tank 2 is taken from the deicing water intake 14 by the deicing water pump 13. The air is sent to the air conditioner 11 via the three-way valve 10 through a pipe 15, and the air conditioner 11 exchanges heat with air (not shown) to cool the air. On the other hand, the thawed water which has been heated by exchanging heat with the conditioned air is sent to the sprinkler pipe 17 installed above the water surface of the heat storage tank 2 through the pipe 18 via the brine-water heat exchanger 16. The deicing water sent to the water sprinkling pipe 17 is sprinkled from the water sprinkling pipe 17 into the heat storage tank 2 to thaw the ice 12 in the heat storage tank 2, and then is again taken from the thaw water intake port 14. Further, the pipe 18 is branched before the sprinkling pipe 17, and a part of the deicing water is returned to the three-way valve 10 without being returned to the heat storage tank 2 and mixed with the deicing water taken from the defrosting water intake 14. .. At this time, depending on the opening degree of the three-way valve 10, the sprinkler pipe 17
The amount of deicing water that returns to and the amount of deicing water that returns to the three-way valve 10 are controlled, and the deicing water at a predetermined temperature can be supplied to the air conditioner 11.

【0005】この解氷水循環により、日中の空調機11
稼働中は前記熱源装置6を稼働せずに空調機11に空調
用冷熱源を供給することができる。しかし、上記蓄熱槽
2の氷12を解氷する解氷水循環だけでは上記所定の温
度が維持されない場合は、第1の二方弁8Aを全閉し、
第2の二方弁8Bを全開して、前記熱源装置6と前記ブ
ライン−水熱交換器16との間をブラインが循環する配
管径路7A、7B、19を形成する。そして、前記熱源
装置6と前記ブライン−水熱交換器16との間にブライ
ンを循環させて、解氷水を補助冷却する。
By this deicing water circulation, the air conditioner 11 during the day
During operation, the cold source for air conditioning can be supplied to the air conditioner 11 without operating the heat source device 6. However, when the predetermined temperature is not maintained only by the circulation of the deicing water that thaws the ice 12 in the heat storage tank 2, the first two-way valve 8A is fully closed,
The second two-way valve 8B is fully opened to form piping paths 7A, 7B, 19 through which brine circulates between the heat source device 6 and the brine-water heat exchanger 16. Then, the brine is circulated between the heat source device 6 and the brine-water heat exchanger 16 to supplementally cool the defrosting water.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
氷蓄熱装置は、前記散水管17が前記解氷水取口14と
反対側の蓄熱槽2水面上方に設けられている。この為、
前記散水管17から散水された解氷水は散水管17の略
真下近傍の氷に当たってから前記解氷水取口14に向か
って流れる一定の道筋を形成する傾向がある。即ち、解
氷水は通水抵抗の少ない部分の氷を解氷しながら前記解
氷水取口14に向かって流れるので、氷と解氷水との接
触が限定され、蓄熱槽内に氷の解けやすい部分と解け難
い部分とが生じる。この結果、解氷効率が悪くなる為、
蓄熱槽2内に氷が充分あるにも係わらず、解氷水取口1
4の解氷水温度が7〜8°Cを越え空調機11の冷熱源
として不適切になる傾向がある。このような状況になる
と蓄熱槽2からの解氷水だけでは空調機11の空調空気
の温度を所定の温度に維持できない。この為、蓄熱槽2
に氷が残っているにも係わらず前記熱源装置6を稼働し
なくてはならず、電力料金の安価な夜間蓄熱のメリット
を充分生かすことができないという欠点がある。
However, in the conventional ice heat storage device, the water spray pipe 17 is provided above the water surface of the heat storage tank 2 on the side opposite to the defrosted water intake 14. Therefore,
The deicing water sprinkled from the sprinkling pipe 17 has a tendency to form a certain path that flows toward the deicing water intake 14 after hitting the ice in the vicinity of just below the sprinkling pipe 17. That is, since the thawed water flows toward the thawed water intake port 14 while thawing the ice in the portion having a low water flow resistance, the contact between the thawed ice and the thawed water is limited, and the thawed portion in the heat storage tank is easily thawed. And a part that is difficult to dissolve occurs. As a result, the efficiency of deicing becomes poor,
Despite having sufficient ice in the heat storage tank 2, the defrosting water intake 1
The defrosting water temperature of No. 4 exceeds 7 to 8 ° C and tends to be inappropriate as a cold heat source of the air conditioner 11. In such a situation, the temperature of the conditioned air of the air conditioner 11 cannot be maintained at a predetermined temperature only with the deicing water from the heat storage tank 2. Therefore, the heat storage tank 2
However, the heat source device 6 has to be operated despite the fact that ice remains, and there is a drawback in that the advantages of nighttime heat storage, which has a low power charge, cannot be fully utilized.

【0007】また、解氷水取口14から取水される際、
解氷水の密度差等により蓄熱槽2内に温度分布が生じ、
低温冷水を効率よく取り出せないという欠点がある。本
発明はこのような事情に鑑みてなされたもので、蓄熱槽
内の氷を効率よく解氷して冷水を取り出すことができる
ので、氷の潜熱を有効に利用することのできる氷蓄熱装
置を提供することを目的とする。
When water is taken from the deicing water intake port 14,
A temperature distribution occurs in the heat storage tank 2 due to the density difference of the defrosting water,
There is a drawback that low temperature cold water cannot be taken out efficiently. The present invention has been made in view of such circumstances, and since ice in the heat storage tank can be efficiently thawed and cold water can be taken out, an ice heat storage device that can effectively use latent heat of ice is provided. The purpose is to provide.

【0008】[0008]

【課題を解決する為の手段】本発明は、前記目的を達成
する為に、蓄熱槽に満たされた水の中に埋没するように
設けられた熱交換コイル出口からブラインポンプ、冷却
手段を経由して前記熱交換コイル入口に戻るブライン循
環により前記蓄熱槽内の水を製氷する製氷装置と、前記
蓄熱槽内の水底近傍に設けられた解氷水取口から解氷水
ポンプ、空調機、を経由して前記蓄熱槽の上方に設けら
れた散水管から前記蓄熱槽に戻る解氷水循環により前記
蓄熱槽内に製氷された氷の解氷水を前記空調機の冷熱源
とする解氷装置と、から成る氷蓄熱装置に於いて、前記
散水管を前記蓄熱槽水面の上方に複数配設し、前記夫々
の散水管に弁機構を具備すると共に前記蓄熱槽内の所定
位置には前記氷の有無位置を検知する検知センサを1個
以上設け、前記検知センサの検知結果に基づいて前記夫
々の弁機構を開閉することを特徴とする
In order to achieve the above object, the present invention uses a brine pump and a cooling means from a heat exchange coil outlet provided so as to be submerged in water filled in a heat storage tank. Then, an ice-making device for making water in the heat storage tank by brine circulation returning to the heat exchange coil inlet, and an ice-melting water pump and an air conditioner from the ice-melting water inlet provided near the water bottom in the heat storage tank Then, from an ice-melting device that uses the ice-melting water of ice made in the heat-storage tank as a cold heat source of the air conditioner by circulating the ice-melting water from the sprinkler pipe provided above the heat-storage tank to the heat-storage tank. In the ice heat storage device, a plurality of the water spray pipes are arranged above the water surface of the heat storage tank, each of the water spray pipes is provided with a valve mechanism, and the presence / absence position of the ice is provided at a predetermined position in the heat storage tank. One or more detection sensors for detecting Wherein the opening and closing the respective valve mechanism based on the sensor detection results

【0009】[0009]

【作用】第1の発明によれば、蓄熱槽内の所定位置に設
けられた1個以上の検知センサの検知結果に基づいて、
前記蓄熱槽内全体に氷がある場合は、全ての弁機構を開
き全ての散水管から散水することができる。また、蓄熱
槽内に製氷された氷の解氷が進み前記蓄熱槽内に氷の有
る位置と無い位置が生じた場合は、前記検知センサの検
知結果に基づいて前記複数の散水管のうち氷の無い位置
の弁機構が閉じられ,氷の有る位置の散水管のみから散
水することができる。これにより、前記散水管から散水
される解氷水は氷と常に直接接触するので、氷の解氷効
率を高めることができると共に前記氷が略完全に無くな
るまで氷の潜熱を有効に取り出すことができる。
According to the first aspect of the invention, based on the detection result of one or more detection sensors provided at a predetermined position in the heat storage tank,
When there is ice in the entire heat storage tank, all valve mechanisms can be opened and water can be sprayed from all water spray pipes. Further, when the ice made in the heat storage tank is thawed and there are positions with and without ice in the heat storage tank, the ice among the plurality of sprinkler pipes is detected based on the detection result of the detection sensor. The valve mechanism is closed at the position where there is no ice, and water can be sprayed only from the water spray pipe at the position where there is ice. As a result, the deicing water sprinkled from the sprinkler pipe is always in direct contact with the ice, so that the ice defrosting efficiency can be improved and the latent heat of the ice can be effectively taken out until the ice is almost completely consumed. ..

【0010】また、第2の発明によれば、蓄熱槽内の所
定位置に設けられた1個以上の検知センサの検知結果に
基づいて、前記蓄熱槽の氷の有る位置に前記散水管を移
動させて散水することができるので、前記同様の効果を
得ることができる。また、第3の発明によれば、解氷水
取口の移動方向に沿って設けられた検知センサの検知結
果に基づいて前記蓄熱槽に生じる解氷水の上下方向の温
度分布に応じて前記解氷水取口を移動させて取水するこ
とができるので、最も低温の解氷水の層から取水するこ
とができ、低温冷水を効率よく取り出すことができる。
According to the second aspect of the invention, the sprinkler pipe is moved to a position where ice is present in the heat storage tank based on the detection result of one or more detection sensors provided at a predetermined position in the heat storage tank. Since the water can be sprinkled and sprinkled, the same effect as described above can be obtained. According to the third aspect of the invention, the thawed water is generated according to the temperature distribution in the vertical direction of the thawed water generated in the heat storage tank based on the detection result of the detection sensor provided along the moving direction of the thawed water intake. Since water can be taken by moving the intake port, water can be taken from the layer of the defrosting water having the lowest temperature, and low-temperature cold water can be taken out efficiently.

【0011】[0011]

【実施例】以下添付図面に従って本発明に係る氷蓄熱装
置20の好ましい実施例について詳説する。図1に本発
明に係わる氷蓄熱装置20の第1の実施例が示され、先
ず、ブラインの循環系から説明すると、蓄熱槽22内に
満たされた水の中に埋没するように製氷用熱交換コイル
24が設置されている。そして、前記製氷用熱交換コイ
ル24の出口26からブラインポンプ28を介して熱源
装置30入口に配管32で接続されている。また、前記
熱源装置30出口からの配管34が二方に分岐され、一
方の配管36が第1の二方弁38を介して前記製氷用熱
交換コイル入口40に接続され、他方の配管42が第2
の二方弁44を介してブライン−水熱交換器46の入口
に接続されている。また、前記ブライン−水熱交換器4
6の出口から前記ブラインポンプ28入口に配管48で
接続され、前記第1の二方弁38と第2の二方弁44の
弁操作により、前記熱源装置30を出たブラインは前記
製氷用熱交換コイル24若しくは前記ブライン−水熱交
換器46のどちらかを循環するようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the ice heat storage device 20 according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows a first embodiment of an ice heat storage device 20 according to the present invention. First, the brine circulation system will be described. The ice heat storage device 22 is immersed in the water filled in the heat storage tank 22. An exchange coil 24 is installed. A pipe 32 is connected from the outlet 26 of the ice-making heat exchange coil 24 to the inlet of the heat source device 30 via the brine pump 28. The pipe 34 from the heat source device 30 outlet is branched into two, one pipe 36 is connected to the ice-making heat exchange coil inlet 40 via a first two-way valve 38, and the other pipe 42 is connected. Second
Is connected to the inlet of the brine-water heat exchanger 46 via the two-way valve 44. Also, the brine-water heat exchanger 4
6 is connected from the outlet of 6 to the inlet of the brine pump 28 by a pipe 48, and by operating the first two-way valve 38 and the second two-way valve 44, the brine that has left the heat source device 30 is cooled by the ice-making heat. Either the exchange coil 24 or the brine-water heat exchanger 46 is circulated.

【0012】次に、解氷水循環系を説明すると、前記蓄
熱槽22の水底近傍に解氷水取口50が設けられ、前記
解氷水取口50から三方弁52、解氷水ポンプ54を介
して空調機56に配管58で接続されている。また、前
記空調機56から前記ブライン−水熱交換器46に配管
60で接続され、前記ブライン−水熱交換器46出口か
らの配管が二方に分岐し、一方の配管64は蓄熱槽22
水面66の上方面に配設された第1の散水管68、第2
の散水管70、第3の散水管72に夫々第3の二方弁7
4、第4の二方弁76、第5の二方弁78を介して接続
されている。また、前記分岐された他方の配管62は前
記三方弁52に接続されている。これにより、前記三方
弁52の開度により、前記散水管68、70、72に戻
る解氷水の水量と三方弁52に戻る解氷水の水量を制御
し、前記空調機56に所定の温度の解氷水を供給できる
ようになっている。もし、上記蓄熱槽22の氷を解氷す
る解氷水循環だけでは前記所定の温度が維持されない場
合は、第1の二方弁38を全閉し、第2の二方弁44を
全開して、前記熱源装置30と前記ブライン−水熱交換
器46との間をブラインが循環する配管径路32、3
4、42、48を形成する。そして、前記熱源装置30
と前記ブライン−水熱交換器46との間にブラインを循
環させて、解氷水を補助冷却する。
Next, a description will be given of the deicing water circulation system. A deicing water inlet 50 is provided near the water bottom of the heat storage tank 22, and the air-conditioning is performed from the deicing water inlet 50 via a three-way valve 52 and a deicing water pump 54. A pipe 58 is connected to the machine 56. Further, a pipe 60 is connected from the air conditioner 56 to the brine-water heat exchanger 46, a pipe from the outlet of the brine-water heat exchanger 46 is branched into two, and one pipe 64 is a heat storage tank 22.
A first sprinkler pipe 68, which is disposed above the water surface 66,
Of the third two-way valve 7 to the sprinkler pipe 70 and the third sprinkler pipe 72, respectively.
4, a fourth two-way valve 76 and a fifth two-way valve 78 are connected. The other branched pipe 62 is connected to the three-way valve 52. As a result, the opening amount of the three-way valve 52 controls the amount of deicing water returning to the sprinkler pipes 68, 70, 72 and the amount of deicing water returning to the three-way valve 52, and the air conditioner 56 is operated at a predetermined temperature. Ice water can be supplied. If the predetermined temperature is not maintained only by the circulation of the deicing water for defrosting the ice in the heat storage tank 22, the first two-way valve 38 is fully closed and the second two-way valve 44 is fully opened. , Pipe paths 32, 3 through which brine circulates between the heat source device 30 and the brine-water heat exchanger 46.
4, 42, 48 are formed. Then, the heat source device 30
And the brine-water heat exchanger 46, brine is circulated to subcool the deicing water.

【0013】また、前記蓄熱槽22内には3個の温度セ
ンサ79、80、82が所定箇所に設置され、前記温度
センサ79、80、82の温度を測定することにより前
記蓄熱槽22内の氷の有無位置を検知できるようになっ
ている。上記の如く構成された氷蓄熱装置20の製氷運
転は、従来と全く同様な為、省略する。そして、解氷運
転は日中の空調機56の稼働に伴って行われ、前記蓄熱
槽22内の氷84を解氷した解氷水は、解氷水ポンプ5
4により解氷水取口50から取水され三方弁52を介し
て前記空調機56に送られ、空調機56で図示していな
い空調空気と熱交換して空調空気を冷却する。一方、前
記空調空気と熱交換して昇温した解氷水は、ブライン−
水熱交換器46を経由して前記ブライン−水熱交換器4
6の出口の分岐配管で分流され、一部の解氷水は、蓄熱
槽22に戻らずに前記三方弁52に戻り解氷水取口50
から取水された解氷水と混合される。また、他の大部分
の解氷水は前記蓄熱槽22水面の上方面全体に配設され
た3個の散水管68、70、72に送られる。
Further, three temperature sensors 79, 80, 82 are installed at predetermined locations in the heat storage tank 22, and the temperature of the temperature sensors 79, 80, 82 is measured to measure the temperature inside the heat storage tank 22. It is possible to detect the presence / absence of ice. The ice-making operation of the ice heat storage device 20 configured as described above is completely the same as the conventional one, and therefore the description thereof will be omitted. The deicing operation is performed in association with the operation of the air conditioner 56 during the daytime, and the deicing water that has defrosted the ice 84 in the heat storage tank 22 is the deicing water pump 5
4, the water is taken from the deicing water intake 50 and sent to the air conditioner 56 via the three-way valve 52, and the air conditioner 56 exchanges heat with the air-conditioning air (not shown) to cool the air-conditioning air. On the other hand, the deicing water that has been heated by exchanging heat with the conditioned air is
The brine-water heat exchanger 4 is passed through the water heat exchanger 46.
A part of the deicing water is divided by the branch pipe at the outlet of 6 and returns to the three-way valve 52 without returning to the heat storage tank 22 and the deicing water intake 50
It is mixed with the deicing water taken from. Most of the other deicing water is sent to three water sprinkling pipes 68, 70, 72 arranged on the entire upper surface of the water surface of the heat storage tank 22.

【0014】そして、図2に示すように、解氷開始時
は、前記温度センサ79、80、82の測定温度が全て
氷の温度となり、前記蓄熱槽全体に氷84が有ることを
検知する。この検知結果に基づいて、前記第3、第4、
第5の二方弁74、76、78全てが全開になり前記3
個の散水管68、70、72から散水される。これによ
り、前記蓄熱槽22内に製氷された氷84を複数位置か
ら解氷できるので、解氷水86と氷84との接触面積が
大きくなり、冷熱を大量に取り出すことができる。
Then, as shown in FIG. 2, at the start of thawing, the temperatures measured by the temperature sensors 79, 80 and 82 are all ice temperatures, and it is detected that there is ice 84 in the entire heat storage tank. Based on the detection result, the third, fourth,
All of the fifth two-way valves 74, 76, 78 are fully opened, and the above-mentioned 3
Water is sprayed from individual water sprinklers 68, 70, 72. As a result, the ice 84 produced in the heat storage tank 22 can be thawed from a plurality of positions, so that the contact area between the thawed water 86 and the ice 84 becomes large, and a large amount of cold heat can be taken out.

【0015】また、解氷運転が経過して前記氷84の解
氷が進み、例えば図3に示すように解氷水取口50側の
氷84が先に解け切ってしまった場合は、前記蓄熱槽2
2内の所定位置に設けられた3個の温度センサ79、8
0、82のうち解氷水取口近傍に設置された第3の温度
センサ82の測定温度が上昇して氷が無くなったことを
検知する。この検知結果に基づいて、第5の三方弁78
が閉じ、第3の散水管72からの散水が止められる。同
様に、前記蓄熱槽22内の所定位置に設置された3個の
温度センサ79、80、82の測定温度により氷84の
有無位置を検知して、前記3個の散水管68、70、7
2の夫々の二方弁74、76、78の開閉を操作する。
Further, when the ice-melting operation progresses and the ice-melting of the ice 84 progresses, and the ice 84 on the ice-melting water intake 50 side is first melted as shown in FIG. Tank 2
Two temperature sensors 79, 8 provided at predetermined positions in 2
Of the 0 and 82, it is detected that the third temperature sensor 82 installed near the defrosting water intake rises in temperature and ice has run out. Based on this detection result, the fifth three-way valve 78
Is closed, and water spray from the third water spray pipe 72 is stopped. Similarly, the presence or absence of ice 84 is detected by the temperature measured by the three temperature sensors 79, 80, 82 installed at predetermined positions in the heat storage tank 22, and the three sprinkler pipes 68, 70, 7 are detected.
The opening and closing of the respective two-way valves 74, 76 and 78 of 2 are operated.

【0016】これにより、前記蓄熱槽22に氷84の有
る位置と無い位置ができた時は、前記3個の散水管6
8、70、72のうち氷84の有る位置の散水管から散
水することができる。従って、散水される解氷水86は
氷84と常に直接接触することができるので、解氷効率
を高めることができると共に前記氷84が略完全に無く
なるまで氷84の潜熱を有効に取り出すことができる。
As a result, when the heat storage tank 22 has a position with the ice 84 and a position without the ice 84, the three water spray pipes 6 are provided.
Water can be sprinkled from a sprinkler pipe at a position of ice 84 among 8, 70, and 72. Therefore, the sprinkling dewatering water 86 can always come into direct contact with the ice 84, so that the deicing efficiency can be improved and the latent heat of the ice 84 can be effectively taken out until the ice 84 is almost completely lost. ..

【0017】尚、第1の実施例では3個の散水管を用い
たが、この数に限ったことではなく、要は蓄熱槽水面全
体に散水可能なように散水管を配設すればよい。また、
温度センサを3個用いたが、この数に限ったことではな
く、要は蓄熱槽内で氷のある位置と無い位置を検知でき
ればよい。また、前記温度センサの替わりに氷厚センサ
を製氷用熱交換コイルの数カ所に設けてもい。
In the first embodiment, three water sprinkling pipes were used, but the number of sprinkling pipes is not limited to this, and the point is to arrange the water sprinkling pipes so that water can be sprayed over the entire water surface of the heat storage tank. .. Also,
Although three temperature sensors are used, the number of temperature sensors is not limited to this, and the point is that it is only necessary to detect a position with ice and a position without ice in the heat storage tank. Further, instead of the temperature sensor, ice thickness sensors may be provided at several places in the heat exchange coil for ice making.

【0018】また、図4に本発明に係わる氷蓄熱装置の
第2の実施例が示され、第1の実施例で示した部材と同
一若しくは類似の部材については同一の符号を付して説
明する。前記第1の実施例で述べた配管64の途中から
フレキシブルチューブ88が接続され、前記フレキシブ
ルチューブ88の先端部が散水管90に接続されてい
る。また、前記蓄熱槽22上端の対向部から2本のアー
ム92、94が上方に伸び、散水管駆動レール96を前
記蓄熱槽22水面66上方に配設している。そして、前
記散水管90が前記散水管駆動装置98に固定され、前
記散水管駆動装置98が前記散水管駆動レール96上を
移動すると、前記散水管90も移動するようになってい
る。また、前記3個の温度サンサ79、80、82は第
1の実施例と同様に蓄熱槽22の所定の位置に設けられ
ている。
FIG. 4 shows a second embodiment of the ice heat storage device according to the present invention, and the same or similar members as those shown in the first embodiment will be designated by the same reference numerals. To do. The flexible tube 88 is connected from the middle of the pipe 64 described in the first embodiment, and the tip of the flexible tube 88 is connected to the sprinkler pipe 90. Further, two arms 92, 94 extend upward from the facing portion at the upper end of the heat storage tank 22, and a water spray pipe drive rail 96 is arranged above the water surface 66 of the heat storage tank 22. The water spray pipe 90 is fixed to the water spray pipe drive device 98, and when the water spray pipe drive device 98 moves on the water spray pipe drive rail 96, the water spray pipe 90 also moves. Further, the three temperature sensors 79, 80, 82 are provided at predetermined positions in the heat storage tank 22 as in the first embodiment.

【0019】これにより、前記3個の温度センサ79、
80、82の温度測定結果により、前記蓄熱槽22内の
氷84の有無位置を検知し、前記検知結果に基づいて前
記散水管90を氷84の有る位置に移動させて散水する
ことができるので、前記第1の実施例と同様の効果を得
ることができる。次に、図5には本発明に係わる氷蓄熱
装置の第3の実施例が示され、第1の実施例で示した部
材と同一若しくは類似の部材については同一の符号を付
して説明する。
As a result, the three temperature sensors 79,
Since the presence or absence of ice 84 in the heat storage tank 22 can be detected based on the temperature measurement results of 80 and 82, the water spray pipe 90 can be moved to the position where the ice 84 is present and water sprayed based on the detection result. The same effect as the first embodiment can be obtained. Next, FIG. 5 shows a third embodiment of the ice heat storage device according to the present invention, and the same or similar members as those shown in the first embodiment will be designated by the same reference numerals. ..

【0020】前記解氷水取口50から前記蓄熱槽内を上
方に伸びた配管102の先端部にフレキシブルチューブ
104の一方側が接続され前記フレキシブルチューブ1
04の他方側と前記三方弁52が接続されている。ま
た、前記配管102の先端部が駆動装置106に取付け
られ、前記駆動装置106は鉛直に設けられたレール1
08上を上下方向に移動できるようになっている。これ
により、前記解氷水取口50は蓄熱槽の水面と水底との
間を移動できるようになっている。また、前記解氷水取
口50配管102に沿って上下方向4箇所を検知できる
温度センサ100が設けられている。
One side of the flexible tube 104 is connected to the tip of a pipe 102 extending upward from the defrosting water intake port 50 in the heat storage tank.
The other side of 04 and the three-way valve 52 are connected. Further, the tip of the pipe 102 is attached to a driving device 106, and the driving device 106 is a rail 1 installed vertically.
It can move up and down on 08. As a result, the deicing water inlet 50 can be moved between the water surface and the water bottom of the heat storage tank. Further, a temperature sensor 100 capable of detecting four positions in the vertical direction is provided along the pipe 102 for defrosting water intake 50.

【0021】上記の如く構成された氷蓄熱装置の作用を
説明すると、水の密度は4°Cの時が最大である為、4
°Cの密度の大きな解氷水は蓄熱槽の下方に層を形成
し、1〜2°Cの前記4°Cの解氷水よりも密度の小さ
な解氷水は蓄熱槽22の上方に層を形成する傾向があ
る。この為、蓄熱槽22内で解氷水の温度分布層が生じ
ることがある。この場合、前記解氷水取口50を蓄熱槽
22の水面66と水底との間を移動可能にしたので、前
記蓄熱槽22の解氷水温度分布に対し、最も低温の解氷
水の層から取水することができる。これにより、低温冷
水を効率よく回収することができる。
The operation of the ice heat storage device configured as described above will be described. Since the density of water is maximum at 4 ° C., 4
The ice-melting water having a high density of ° C forms a layer below the heat storage tank, and the ice-melting water having a density lower than that of 1 to 2 ° C at 4 ° C forms a layer above the heat storage tank 22. Tend. For this reason, a temperature distribution layer of the deicing water may occur in the heat storage tank 22. In this case, since the deicing water inlet 50 is movable between the water surface 66 and the water bottom of the heat storage tank 22, water is taken from the layer of the defrosting water having the lowest temperature with respect to the temperature distribution of the defrosting water in the heat storage tank 22. be able to. Thereby, the low temperature cold water can be efficiently recovered.

【0022】尚、第3の実施例では解氷水取口を移動さ
せる手段として前記解氷水取口の配管を駆動用モータを
作動してレール上を移動させるようにしたが、複数の解
氷水取口を上下方向に設け、取水する解氷水取口を切り
換えるようにしてもよい。また、温度センサを設ける位
置は解氷水取口近傍に限ったものではなく、蓄熱槽内の
数カ所に設けてもよい。
In the third embodiment, as a means for moving the deicing water intake port, the pipe of the deicing water intake port is moved on the rail by operating the drive motor. The mouth may be provided in the vertical direction to switch the deicing water intake for water intake. Further, the position where the temperature sensor is provided is not limited to the vicinity of the defrosting water intake, and it may be provided at several places in the heat storage tank.

【0023】[0023]

【発明の効果】以上説明したように第1の発明の氷蓄熱
装置によれば、前記蓄熱槽水面の上方に弁機構を具備し
た複数の散水管を配設し、前記蓄熱槽内には氷の有無位
置を検知する検知センサを1個以上設け、前記検知結果
に基づいて前記散水管の弁機構を開閉するようにした。
これにより、前記蓄熱槽全体に氷がある解氷開始時は、
前記全ての散水管から散水して解氷面積を大きくし、前
記解氷が進んで前記蓄熱槽に氷の有る位置と無い位置が
できた時は、前記複数の散水管のうち氷の無い位置の弁
機構を閉じて、氷の有る位置の散水管のみから散水する
ことができる。これにより、前記散水管から散水される
解氷水は氷とを常に直接接触することができるので、解
氷効率を高めることができると共に前記氷が略完全に無
くなるまで氷の潜熱を有効に取り出すことができる。
As described above, according to the ice heat storage device of the first invention, a plurality of water sprinklers having a valve mechanism are arranged above the water surface of the heat storage tank, and ice is stored in the heat storage tank. One or more detection sensors for detecting the presence / absence position are provided, and the valve mechanism of the sprinkler pipe is opened / closed based on the detection result.
As a result, when there is ice in the entire heat storage tank,
When water is sprinkled from all of the water spray pipes to increase the size of the ice, and when the ice storage progresses to positions with and without ice in the heat storage tank, a position without ice among the plurality of water spray pipes It is possible to spray water only from the sprinkler pipe at the position where ice is present by closing the valve mechanism of. As a result, the deicing water sprinkled from the sprinkling pipe can always come into direct contact with the ice, so that the deicing efficiency can be improved and the latent heat of the ice can be effectively taken out until the ice is almost completely consumed. You can

【0024】また、第2の発明の氷蓄熱装置によれば、
散水管を前記蓄熱槽の水面に沿って移動させる移動手段
を設け、更に前記蓄熱槽内には氷の有無位置を検知する
検知センサを1個以上設けた。これにより、前記蓄熱槽
の氷の有る位置に前記散水管を移動させて散水すること
ができるので、前記同様の効果を得ることができる。ま
た、第3の発明によれば、解氷水取口を蓄熱槽水面と水
底との間で移動させる移動手段を設け、更に前記蓄熱槽
内の解氷水温度分布を検知する検知センサを前記解氷水
取口の移動方向に沿って複数配置した。これにより、前
記蓄熱槽に生じる解氷水の上下方向の温度分布に応じて
前記解氷水取口を移動させることができるので、最も低
温の解氷水の層から取水することができ、低温冷水を効
率よく取り出すことができる。
According to the ice heat storage device of the second invention,
A moving means for moving the water sprinkling pipe along the water surface of the heat storage tank was provided, and further one or more detection sensors for detecting the presence / absence of ice were provided in the heat storage tank. Thereby, the water spray pipe can be moved to the position where ice is present in the heat storage tank to spray water, and the same effect as described above can be obtained. Further, according to the third invention, a moving means for moving the deicing water inlet between the water surface of the heat storage tank and the water bottom is provided, and a detection sensor for detecting the temperature distribution of the defrosting water in the heat storage tank is provided as the defrosting water. Plural pieces were arranged along the moving direction of the intake. As a result, the deicing water inlet can be moved according to the temperature distribution in the vertical direction of the deicing water generated in the heat storage tank. I can take it out well.

【0025】従って、以上の発明の氷蓄熱装置は、従来
の氷蓄熱装置のように蓄熱槽に氷が残っているにも係わ
らず、散水された解氷水が氷と接触しにくい為に、氷の
潜熱を有効に取り出すことができないという欠点がなく
なる。
Therefore, in the ice heat storage device of the above invention, the sprinkled deicing water does not easily come into contact with the ice, even though the ice remains in the heat storage tank as in the conventional ice heat storage device. The disadvantage of not being able to effectively extract the latent heat of is eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る氷蓄熱装置の第1の実施例の構成
FIG. 1 is a configuration diagram of a first embodiment of an ice heat storage device according to the present invention.

【図2】本発明に係る氷蓄熱装置の第1の実施例の作用
説明図
FIG. 2 is an operation explanatory view of the first embodiment of the ice heat storage device according to the present invention.

【図3】本発明に係る氷蓄熱装置の第1の実施例の作用
説明図
FIG. 3 is an operation explanatory view of the first embodiment of the ice heat storage device according to the present invention.

【図4】本発明に係る氷蓄熱装置の第2の実施例の構成
FIG. 4 is a configuration diagram of a second embodiment of the ice heat storage device according to the present invention.

【図5】本発明に係る氷蓄熱装置の第3の実施例の構成
FIG. 5 is a configuration diagram of a third embodiment of the ice heat storage device according to the present invention.

【図6】従来の氷蓄熱装置の構成図FIG. 6 is a configuration diagram of a conventional ice heat storage device.

【符号の説明】[Explanation of symbols]

20…氷蓄熱装置 22…蓄熱槽 24…熱交換コイル 28…フラインポンプ 30…熱源装置 50…解氷水取口 54…解氷水ポンプ 56…空調機 68、70、72…散水管 74、76、78…二方弁 79、80、82…温度センサ 98、106…移動手段 20 ... Ice heat storage device 22 ... Heat storage tank 24 ... Heat exchange coil 28 ... Flying pump 30 ... Heat source device 50 ... Thawing water intake 54 ... Thawing water pump 56 ... Air conditioner 68,70,72 ... Sprinkling pipes 74,76,78 ... Two-way valve 79, 80, 82 ... Temperature sensor 98, 106 ... Moving means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】蓄熱槽に満たされた水の中に埋没するよう
に設けられた熱交換コイル出口からブラインポンプ、冷
却手段を経由して前記熱交換コイル入口に戻るブライン
循環により前記蓄熱槽内の水を製氷する製氷装置と、 前記蓄熱槽内の水底近傍に設けられた解氷水取口から解
氷水ポンプ、空調機、を経由して前記蓄熱槽の上方に設
けられた散水管から前記蓄熱槽に戻る解氷水循環により
前記蓄熱槽内に製氷された氷の解氷水を前記空調機の冷
熱源とする解氷装置と、から成る氷蓄熱装置に於いて、 前記散水管を前記蓄熱槽水面の上方に複数配設し、前記
夫々の散水管に弁機構を具備すると共に前記蓄熱槽内の
所定位置には前記氷の有無位置を検知する検知センサを
1個以上設け、前記検知センサの検知結果に基づいて前
記夫々の弁機構を開閉することを特徴とする氷蓄熱装
置。
1. The inside of the heat storage tank by brine circulation returning from the heat exchange coil outlet provided so as to be submerged in water filled in the heat storage tank to the heat exchange coil inlet via a brine pump and cooling means. An ice making device for making water from the water storage device, and a dewatering water pump provided in the vicinity of the bottom of the water in the heat storage tank, an air conditioner, and a heat spraying pipe provided above the heat storage tank to the heat storage tank. In the ice heat storage device, which comprises an ice-melting device that uses the ice-melting water of ice produced in the heat storage tank by the circulation of the ice-melting water to return to the tank as a cold heat source of the air conditioner, the spray pipe is connected to the water surface of the heat storage tank. A plurality of detection sensors for detecting the presence / absence of ice are provided at a predetermined position in the heat storage tank, and a plurality of detection sensors are provided above each of the water spray pipes. Based on the results, Ice thermal storage apparatus, characterized in that closes.
【請求項2】蓄熱槽に満たされた水の中に埋没するよう
に設けられた熱交換コイル出口からブラインポンプ、冷
却手段を経由して前記熱交換コイル入口に戻るブライン
循環により前記蓄熱槽内の水を製氷する製氷装置と、 前記蓄熱槽内の水底近傍に設けられた解氷水取口から解
氷水ポンプ、空調機、を経由して前記蓄熱槽の上方に設
けられた散水管から前記蓄熱槽に戻る解氷水循環により
前記蓄熱槽内に製氷された氷の解氷水を前記空調機の冷
熱源とする解氷装置と、から成る氷蓄熱装置に於いて、 前記散水管を前記蓄熱槽水面に沿って移動させる移動手
段を設けると共に前記蓄熱槽内の所定位置には前記氷の
有無位置を検知する検知センサを1個以上設け、前記検
知センサの検知結果に基づいて前記散水管を移動させて
散水することを特徴とする氷蓄熱装置。
2. The inside of the heat storage tank by brine circulation returning from the heat exchange coil outlet provided so as to be submerged in water filled in the heat storage tank to the heat exchange coil inlet via a brine pump and cooling means. An ice making device for making water from the water storage device, and a dewatering water pump provided in the vicinity of the bottom of the water in the heat storage tank, an air conditioner, and a heat spraying pipe provided above the heat storage tank to the heat storage tank. In the ice heat storage device, which comprises an ice-melting device that uses the ice-melting water of ice produced in the heat storage tank by the circulation of the ice-melting water to return to the tank as a cold heat source of the air conditioner, the spray pipe is connected to the water surface of the heat storage tank. Along with a moving means for moving the sprinkler pipe based on the detection result of the detection sensor. Specially to spray water Ice thermal storage device to.
【請求項3】蓄熱槽に満たされた水の中に埋没するよう
に設けられた熱交換コイル出口からブラインポンプ、冷
却手段を経由して前記熱交換コイル入口に戻るブライン
循環により前記蓄熱槽内の水を製氷する製氷装置と、 前記蓄熱槽内の水底近傍に設けられた解氷水取口から解
氷水ポンプ、空調機、を経由して前記蓄熱槽の上方に設
けられた散水管から前記蓄熱槽に戻る解氷水循環により
前記蓄熱槽内に製氷された氷の解氷水を前記空調機の冷
熱源とする解氷装置と、から成る氷蓄熱装置に於いて、 前記解氷水取口を前記蓄熱槽の水面と水底との間に移動
させる移動手段を設けると共に前記解氷水取口の移動方
向に沿って前記解氷水の温度分布を検知する検知センサ
を複数設け、前記検知センサの検知結果に基づいて前記
解氷水取口の位置を変えて取水することを特徴とする氷
蓄熱装置。
3. The inside of the heat storage tank by brine circulation returning from the heat exchange coil outlet provided so as to be submerged in the water filled in the heat storage tank to the heat exchange coil inlet via a brine pump and cooling means. An ice making device for making water from the water storage device, and a dewatering water pump provided in the vicinity of the bottom of the water in the heat storage tank, an air conditioner, and a heat spraying pipe provided above the heat storage tank to the heat storage tank. In an ice heat storage device comprising an ice-melting device that uses the ice-melting water of the ice made in the heat storage tank by the circulation of the ice-breaking water to return to the tank as a cold heat source of the air conditioner, Provided with a moving means for moving between the water surface and the bottom of the tank and a plurality of detection sensors for detecting the temperature distribution of the deicing water along the moving direction of the deicing water intake, based on the detection result of the detection sensor The position of the defrosting water intake Ice thermal storage device, characterized in that the water intake changed.
JP4162042A 1992-05-28 1992-05-28 Ice storage device Expired - Lifetime JP3042179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4162042A JP3042179B2 (en) 1992-05-28 1992-05-28 Ice storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4162042A JP3042179B2 (en) 1992-05-28 1992-05-28 Ice storage device

Publications (2)

Publication Number Publication Date
JPH05322239A true JPH05322239A (en) 1993-12-07
JP3042179B2 JP3042179B2 (en) 2000-05-15

Family

ID=15746988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4162042A Expired - Lifetime JP3042179B2 (en) 1992-05-28 1992-05-28 Ice storage device

Country Status (1)

Country Link
JP (1) JP3042179B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721236A (en) * 2012-07-09 2012-10-10 河北工业大学 Underground energy storage-ground source heat pump combined building energy supply system
CN115265029A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold machine and have its cold chain system fills
CN115265031A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold accumulation assembly, cold accumulation method and cold accumulation equipment with cold accumulation assembly
CN115265030A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold storage method and cold storage equipment with same
CN115265026A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold accumulation assembly, cold accumulation method and cold accumulation equipment with cold accumulation assembly
CN115265025A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold storage method and cold storage equipment with same
CN115265028A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold accumulation assembly, cold accumulation method and cold accumulation equipment with cold accumulation assembly
CN115265027A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold storage method and cold storage equipment with same
TWI823671B (en) * 2022-11-10 2023-11-21 國立臺北科技大學 Ice melting system using opposite nozzles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721236A (en) * 2012-07-09 2012-10-10 河北工业大学 Underground energy storage-ground source heat pump combined building energy supply system
CN115265029A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold machine and have its cold chain system fills
CN115265031A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold accumulation assembly, cold accumulation method and cold accumulation equipment with cold accumulation assembly
CN115265030A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold storage method and cold storage equipment with same
CN115265026A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold accumulation assembly, cold accumulation method and cold accumulation equipment with cold accumulation assembly
CN115265025A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold storage method and cold storage equipment with same
CN115265028A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold accumulation assembly, cold accumulation method and cold accumulation equipment with cold accumulation assembly
CN115265027A (en) * 2021-04-30 2022-11-01 浙江雪波蓝科技有限公司 Cold storage method and cold storage equipment with same
TWI823671B (en) * 2022-11-10 2023-11-21 國立臺北科技大學 Ice melting system using opposite nozzles

Also Published As

Publication number Publication date
JP3042179B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
CN110118493A (en) Thermal siphon cooler for the cooling system with cooling tower
JPH05322239A (en) Ice heat storage device
CN106091076A (en) A kind of heat source tower heat pump using salt-free formula external auxiliary heating frosting-proof device
CN108332321A (en) A kind of phase-change energy storage device
JPS6231263B2 (en)
JP2011247548A (en) Snow air conditioning system
JP3300928B1 (en) Salt spray test equipment
CN207422975U (en) A kind of open type crossflow cooling tower deicer
JP2679503B2 (en) Ice storage device
JP4024405B2 (en) Automobile test course road
JPH07293945A (en) Heat storage tank for dynamic ice thermal storage system
KR101578635B1 (en) Heat pump system provided with a thermal energy storage tank and heating system using the same
JP3272146B2 (en) Ice storage system
JP2009024989A (en) Electric chiller
JP3464267B2 (en) Gas turbine intake cooling system
JP3290363B2 (en) Cooling device with cold heat transport
JP2000074425A (en) Capsule-type ice heat storage device
JPS6132288Y2 (en)
JP3337017B2 (en) Heat storage device
JP6279906B2 (en) Snow energy supply system
KR200222684Y1 (en) Thawing Device for Ice Storage
SU1317250A1 (en) Milk cooling device
JPH0727456A (en) Dynamic type ice heat accumulation device
JP5474628B2 (en) Cold air supply facility for parked aircraft and cold air supply method for parked aircraft
JPS63201498A (en) Operation of cooling tower in cold district