JP2679503B2 - Ice storage device - Google Patents

Ice storage device

Info

Publication number
JP2679503B2
JP2679503B2 JP35762491A JP35762491A JP2679503B2 JP 2679503 B2 JP2679503 B2 JP 2679503B2 JP 35762491 A JP35762491 A JP 35762491A JP 35762491 A JP35762491 A JP 35762491A JP 2679503 B2 JP2679503 B2 JP 2679503B2
Authority
JP
Japan
Prior art keywords
heat
ice
water
heat transfer
transfer coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35762491A
Other languages
Japanese (ja)
Other versions
JPH05180468A (en
Inventor
下 孝 山
田 順 太 平
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP35762491A priority Critical patent/JP2679503B2/en
Publication of JPH05180468A publication Critical patent/JPH05180468A/en
Application granted granted Critical
Publication of JP2679503B2 publication Critical patent/JP2679503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、氷蓄熱装置に係り、製
氷運転時には冷凍機に接続された伝熱管にブラインを流
して蓄熱槽内の水を製氷し、解氷運転時には解氷水を空
調機へ送ると共に、空調機で熱交換した解氷水を蓄熱槽
に戻す氷蓄熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device, in which brine is flowed through a heat transfer pipe connected to a refrigerator during ice making operation to make water in the heat storage tank, and during defrosting operation, air is thawed. The present invention relates to an ice heat storage device that sends ice-melting water that has undergone heat exchange in an air conditioner to a heat storage tank while being sent to a machine.

【0002】[0002]

【従来の技術】電力需要は、昼間と夜間とで相当な開き
があり、電力会社では昼間と夜間との電力使用量の平準
化が大きな課題となっている。この為、夜間電力料金を
引下げ、夜間電力の有効利用を奨励している。このよう
な背景から、夜間に製氷し、昼間の空調用冷熱源に当て
る氷蓄熱装置が脚光を浴び、各種の氷蓄熱装置が検討さ
れた。
2. Description of the Related Art There is a considerable difference in power demand between daytime and nighttime, and it is a major issue for power companies to level the amount of power used during daytime and nighttime. For this reason, the nighttime electricity charges have been reduced to encourage the effective use of nighttime electricity. Against this background, an ice heat storage device that makes ice at night and hits a cold heat source for air conditioning in the daytime has been highlighted, and various ice heat storage devices have been studied.

【0003】その中でも、スタティック型のアイス─オ
ン─コイル方式のものが広く用いられている。従来、こ
の種の氷蓄熱装置は、図2に示すように、蓄熱槽1内に
満たされた水中に埋没するように伝熱コイル2が設置さ
れている。この伝熱コイル2の出口からブラインポンプ
3、配管5を介して冷凍機4の入口に接続され、更に、
冷凍機4の出口から三方弁15Aに接続され、一方は、
配管6を介して前記伝熱コイル2の入口に、他方は、熱
交換器14、配管7を介して、ブラインポンプ3の入口
に、配管5で接続されている。
Among them, the static type ice-on-coil type is widely used. Conventionally, in this type of ice heat storage device, as shown in FIG. 2, a heat transfer coil 2 is installed so as to be submerged in water filled in the heat storage tank 1. The outlet of the heat transfer coil 2 is connected to the inlet of the refrigerator 4 via the brine pump 3 and the pipe 5, and further,
The outlet of the refrigerator 4 is connected to the three-way valve 15A, one of which is
The pipe 5 is connected to the inlet of the heat transfer coil 2 via the pipe 6, and the other is connected to the inlet of the brine pump 3 via the heat exchanger 14 and the pipe 7 by the pipe 5.

【0004】一方、蓄熱槽1の低部から解氷水ポンプ
7、配管9を介して空調機8入口に接続され、空調機8
出口から熱交換器14、配管11を介して三方弁15B
に接続され、一方は、蓄熱槽1上方の散水機10に、他
方は、配管16を介して、解氷水ポンプ7の入口に、配
管9で接続されている。次に、このような構成の氷蓄熱
装置の作用を説明すると、製氷運転は、電力費の安価な
夜間に行われ、伝熱コイル2中のブラインは、ブライン
ポンプ3で冷凍機4に送られ、冷凍機4で冷却され三方
弁15A、配管6を介して伝熱コイル2に戻される。こ
の循環を繰返すことにより、伝熱コイル2表面の水は製
氷され、次第に伝熱コイル2表面に氷12の層が同心円
状に形成される。
On the other hand, the lower part of the heat storage tank 1 is connected to the inlet of the air conditioner 8 via the deicing water pump 7 and the pipe 9, and the air conditioner 8
Three-way valve 15B from the outlet via heat exchanger 14 and piping 11.
One is connected to the sprinkler 10 above the heat storage tank 1, and the other is connected to the inlet of the deicing water pump 7 via the pipe 16 by the pipe 9. Next, the operation of the ice heat storage device having such a configuration will be described. The ice making operation is performed at night when the power cost is low, and the brine in the heat transfer coil 2 is sent to the refrigerator 4 by the brine pump 3. Then, it is cooled in the refrigerator 4 and returned to the heat transfer coil 2 via the three-way valve 15A and the pipe 6. By repeating this circulation, the water on the surface of the heat transfer coil 2 is made into ice, and a layer of ice 12 is gradually formed in a concentric pattern on the surface of the heat transfer coil 2.

【0005】一方、解氷運転は昼間、空調機8の稼働に
伴い行われ、蓄熱槽1の解氷水13は、解氷水ポンプ7
で空調機8に送られ、空調機8で図示していない空調空
気と熱交換され、空調空気を冷却し、解氷水13は昇温
された後、熱交換器14、三方弁15Bを介して、一部
が散水機10から再び蓄熱槽1に戻され、他は配管16
を介して解氷水ポンプ7に戻る。この時、三方弁15B
の開度により、空調機8入口の解氷水温度が設定温度に
合うように制御されている。
On the other hand, the deicing operation is performed during the daytime with the operation of the air conditioner 8, and the deicing water 13 in the heat storage tank 1 is defrosted water pump 7.
Is sent to the air conditioner 8 and is heat-exchanged with the air-conditioning air (not shown) in the air-conditioner 8 to cool the air-conditioning air and the defrosting water 13 is heated, and then, through the heat exchanger 14 and the three-way valve 15B. , Part of which is returned from the sprinkler 10 to the heat storage tank 1 again, and the other part of the pipe 16
Return to the deicing water pump 7 via. At this time, three-way valve 15B
The temperature of the defrosting water at the inlet of the air conditioner 8 is controlled so as to match the set temperature by the opening degree.

【0006】この解氷水循環により設定温度が維持され
るまで冷凍機4を稼働せずに空調機8で空調用冷風を発
生させることができる。また、設定温度が維持されなく
なると、冷凍機4を起動させ、冷凍機4の出口から、三
方弁15A、熱交換器14、配管7を介し、更に、ブラ
インポンプ3、配管5を介して、冷凍機4の入口に戻さ
れる。これにより、解氷水13と上記ブラインが熱交換
器14で熱交換するようになる。
By the circulation of the deicing water, the air conditioner 8 can generate cold air for air conditioning without operating the refrigerator 4 until the set temperature is maintained. When the set temperature is no longer maintained, the refrigerator 4 is started, and the outlet of the refrigerator 4 is passed through the three-way valve 15A, the heat exchanger 14, the pipe 7, and further through the brine pump 3 and the pipe 5. It is returned to the inlet of the refrigerator 4. As a result, the thawed water 13 and the brine are exchanged with each other in the heat exchanger 14.

【0007】上記した従来の氷蓄熱装置は、解氷運転
時、散水機10から蓄熱槽1に戻る解氷水13が、伝熱
コイル2の氷12全体に均一に散布されない為、氷12
の溶けむらが生じ、解氷効率が悪いという欠点がある。
以上の欠点を解消する為に、図には示していないが次の
ような多槽型の従来の氷蓄熱装置が提案されている。
In the conventional ice heat storage device described above, the ice-breaking water 13 returning from the water sprinkler 10 to the heat storage tank 1 during the ice-breaking operation is not uniformly sprayed on the entire ice 12 of the heat transfer coil 2, so that the ice 12
However, there is a problem in that the melting efficiency of the is not good and the deicing efficiency is poor.
In order to solve the above drawbacks, the following multi-tank type ice heat storage device has been proposed, though not shown in the figure.

【0008】即ち、複数の水入り蓄熱槽と1つの空蓄熱
槽が設置され、夜間、冷凍機を運転して複数の水入り蓄
熱槽の水を製氷しておく。そして昼間、空調機の運転に
伴い、複数の蓄熱槽の中の1つの蓄熱槽の解氷水が、空
調機に送られ、空調機で空調空気と熱交換された後、空
の蓄熱槽に送られる。そして、前記使用中の蓄熱槽の水
位が一定のレベルまで下がると、前記使用中の蓄熱槽内
に設置された水位計からの信号により、空調機へ供給さ
れる解氷水がストップし、別の蓄熱槽の解氷水が空調機
に送られる。そして、空調機で熱交換された解氷水は、
最初に使用した蓄熱槽に送られる。この時、氷の層を有
し水面上に曝された状態の伝熱コイルと解氷水が直接接
触するので、解氷効率が良くなる。この操作を複数の蓄
熱槽で順に行うことにより安定した温度の解氷水を空調
機に供給することができる。
That is, a plurality of water storage tanks and one empty heat storage tank are installed, and the refrigerator is operated at night to make water in the plurality of water storage tanks. During the daytime, as the air conditioner is operated, the defrosting water from one heat storage tank among the plurality of heat storage tanks is sent to the air conditioner, heat exchanged with the conditioned air in the air conditioner, and then sent to the empty heat storage tank. To be Then, when the water level of the heat storage tank in use drops to a certain level, a signal from a water level meter installed in the heat storage tank in use stops the deicing water supplied to the air conditioner, and another The defrosting water in the heat storage tank is sent to the air conditioner. And the thawed water that has been heat exchanged by the air conditioner
It is sent to the heat storage tank that was used first. At this time, since the heat transfer coil having an ice layer and exposed on the water surface directly contacts the deicing water, the deicing efficiency is improved. By sequentially performing this operation in a plurality of heat storage tanks, it is possible to supply the defrosting water having a stable temperature to the air conditioner.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、図2に
示した従来の氷蓄熱装置は、前でも触れたように次のよ
うな欠点がある。即ち、散水機10から蓄熱槽1に戻る
解氷水13は、伝熱コイル2の氷12全体に散布されな
いので、解氷水13が再び蓄熱槽1から出るまでの間に
伝熱コイル2表面の氷12に接触せずに通過したり、逆
に解氷水13が停滞し、氷12の溶けやすい部分と溶け
にくい部分が生じたりして、伝熱コイル2表面の氷12
があるにもかかわらず、空調機8に送る解氷水13の温
度が上昇し、安定しない。
However, the conventional ice heat storage device shown in FIG. 2 has the following drawbacks as mentioned above. That is, since the defrosting water 13 returning from the water sprinkler 10 to the heat storage tank 1 is not sprayed on the entire ice 12 of the heat transfer coil 2, the ice on the surface of the heat transfer coil 2 is discharged before the deicing water 13 leaves the heat storage tank 1 again. The ice 12 on the surface of the heat transfer coil 2 passes through without contacting the ice 12, or conversely, the defrosting water 13 is stagnant, and a part of the ice 12 is easily melted and a part of the ice 12 is hard to melt.
However, the temperature of the deicing water 13 sent to the air conditioner 8 rises and is not stable.

【0010】また、急激な空調負荷の増加や短時間で冷
熱を取出したい場合、解氷水13の循環量を上げて対応
しなくてはならずポンプ容量、配管スペースの増大等を
必要とし設備費増の要因となる。一方、複数の蓄熱槽を
備えた従来の氷蓄熱装置は、前記従来の氷蓄熱装置の欠
点を解消しているものの、複数の蓄熱槽を備え、配管も
多くなり設備費の増大を招くと共に、設置スペースがか
なり大きくなることから都市部で要望されている省スペ
ースタイプという点で問題がある。
In addition, when a sudden increase in air conditioning load or a desire to take out cold heat in a short time, it is necessary to increase the circulation amount of the deicing water 13 to cope with the increase in pump capacity, piping space, etc. It will be a factor of increase. On the other hand, the conventional ice heat storage device having a plurality of heat storage tanks, although eliminating the drawbacks of the conventional ice heat storage device, is provided with a plurality of heat storage tanks, the number of pipes is increased and the facility cost is increased, and Since the installation space is considerably large, there is a problem in that it is a space-saving type required in urban areas.

【0011】本発明はこのような事情に鑑みてなされた
もので、空調機に供給する解氷水の温度を安定させるこ
とができると共に、急激な空調負荷の増加にも対応でき
る氷蓄熱装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides an ice heat storage device which can stabilize the temperature of the deicing water supplied to the air conditioner and can cope with a sudden increase in the air conditioning load. The purpose is to do.

【0012】本発明は、前記目的を達成する為に、蓄熱
槽に満たされた水の中に埋没するように設置された伝熱
コイルと、伝熱コイルを循環するブラインを冷却する冷
凍機と、伝熱コイル出口と冷凍機入口及び冷凍機出口と
伝熱コイル入口との間をブラインが循環するように配設
された配管及びブラインポンプと、を備えた製氷装置
と、蓄熱槽の解氷水と熱交換する空調機と、蓄熱槽の解
氷水出口と空調機の解氷水入口及び空調機の解氷水出口
と蓄熱槽の解氷水入口との間を解氷水が循環するように
配設された配管及び解氷水ポンプと、を備えた解氷装置
と、前記解氷水が循環する配管に設けられ、上記ブライ
ンと上記解氷水が熱交換する熱交換器と、から成る氷蓄
熱装置に於いて、解氷運転時に伝熱コイルと熱交換器と
の間をブラインが循環するように配管を配設し、ブライ
ンが解氷用熱媒となることを特徴とする。
In order to achieve the above object, the present invention provides a heat transfer coil installed so as to be immersed in water filled in a heat storage tank, and a refrigerator for cooling brine circulating in the heat transfer coil. An ice making device provided with a pipe and a brine pump arranged so that brine circulates between the heat transfer coil outlet and the refrigerator inlet, and between the refrigerator outlet and the heat transfer coil inlet, and the defrosting water of the heat storage tank It was arranged so that the defrosting water circulates between the air conditioner that exchanges heat with the defrosting water outlet of the heat storage tank, the defrosting water inlet of the air conditioner, and the defrosting water outlet of the air conditioning machine and the defrosting water inlet of the heat storage tank. A pipe and an ice-melting water pump, an ice-melting device provided with a pipe for circulating the ice-melting water, and a heat exchanger for exchanging heat between the brine and the ice-melting water, in an ice heat storage device, Brine circulates between the heat transfer coil and the heat exchanger during the thawing operation. Disposed the piping to, brine, characterized in that the de-ice a heat transfer medium.

【0013】[0013]

【作用】本発明によれば、解氷運転時、伝熱コイルと熱
交換器との間をブラインが循環し、ブラインを解氷用熱
媒とした。この作用を説明すると、解氷運転時、蓄熱槽
の伝熱コイル表面に形成された氷で冷却された伝熱コイ
ル内のブラインは、ブラインポンプで熱交換器に送ら
れ、空調機からの解氷水と熱交換し、解氷水を冷やす一
方、ブラインは昇温して伝熱コイルに戻り、再び伝熱コ
イルに付着した氷と熱交換する。これを繰返すことによ
り、ブラインは、熱交換器で循環解氷水を冷やし、伝熱
コイルでは伝熱コイル内部から氷を溶かすことができ
る。
According to the present invention, during the thawing operation, brine circulates between the heat transfer coil and the heat exchanger, and the brine is used as the heat medium for thawing. To explain this effect, the brine in the heat transfer coil, which is cooled by ice formed on the surface of the heat transfer coil of the heat storage tank, is sent to the heat exchanger by the brine pump during the deicing operation, and the brine from the air conditioner is released. While exchanging heat with the ice water to cool the deicing water, the brine heats up and returns to the heat transfer coil to exchange heat with the ice adhering to the heat transfer coil again. By repeating this, the brine can cool the circulating defrosting water in the heat exchanger, and the heat transfer coil can melt the ice from the inside of the heat transfer coil.

【0014】このことにより、蓄熱槽の解氷水は空調
機、熱交換器を経由して再び蓄熱槽に戻り伝熱コイル周
囲に形成された氷を外表面から溶かす従来の解氷に加
え、伝熱コイル周囲に形成された氷を伝熱コイル内部か
らも溶かすことができるので、解氷効率の向上が図れ、
安定した温度の解氷水を空調機に送ることができると共
に、急激な空調負荷の増加にも対応できる。
As a result, the defrosting water in the heat storage tank returns to the heat storage tank again via the air conditioner and the heat exchanger, and the ice formed around the heat transfer coil is melted from the outer surface. Since the ice formed around the heat coil can be melted from the inside of the heat transfer coil, the efficiency of deicing can be improved,
It is possible to send the defrosting water with a stable temperature to the air conditioner, and to cope with a sudden increase in air conditioning load.

【0015】[0015]

【実施例】以下添付図面に従って本発明に係る氷蓄熱装
置の好ましい実施例について詳説する。先ず、図1に於
いて製氷装置の構成を説明すると、水が満たされた蓄熱
槽20内には伝熱コイル22が埋没されるように設置さ
れ、伝熱コイル22両端は蓄熱槽20外にでている。前
記伝熱コイル22のブライン出口側から三方弁24A、
ブラインポンプ26、三方弁24Bを介してヒートポン
プ28入口に配管30で接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of an ice heat storage device according to the present invention will be described in detail below with reference to the accompanying drawings. First, the structure of the ice making device will be described with reference to FIG. 1. The heat transfer coil 22 is installed so as to be buried in the heat storage tank 20 filled with water, and both ends of the heat transfer coil 22 are outside the heat storage tank 20. Out. From the brine outlet side of the heat transfer coil 22, a three-way valve 24A,
A pipe 30 is connected to the inlet of the heat pump 28 via the brine pump 26 and the three-way valve 24B.

【0016】また、ヒートポンプ28出口から十字ジョ
イント36A、二方弁32A、十字ジョイント36Bを
介して前記伝熱コイル22入印こ配管34で接続されて
いる。即ち、図1の実線矢印で示す製氷時のブライン経
路をブラインが循環するようになっている。次に解氷装
置の構成を説明すると、前記ヒートポンプ28出口配管
は十字ジョイント36Aで二方に分岐し、一方は、ヒー
トポンプ28入口の三方弁24Bに接続され、他方は、
ブラインと解氷水38を熱交換する熱交換器40の入口
に配管43で接続されている。
Further, the heat pump 28 outlet is connected through the cross joint 36A, the two-way valve 32A and the cross joint 36B by the heat transfer coil 22 inlet pipe 34. That is, the brine circulates in the brine path during ice making shown by the solid arrow in FIG. Explaining the structure of the defroster, the heat pump 28 outlet pipe is branched into two by a cross joint 36A, one is connected to the three-way valve 24B at the heat pump 28 inlet, and the other is
A pipe 43 is connected to an inlet of a heat exchanger 40 that exchanges heat between the brine and the deicing water 38.

【0017】更に、前記伝熱コイル22入口配管も十字
ジョイント36Bで二方に分岐し、一方は、伝熱コイル
22出口の三方弁24Aに接続され、他方は、二方弁3
2Bを介して前記熱交換器40の出口に配管44で接続
されている。即ち、図1の破線矢印で示す解氷時のブラ
イン経路をブラインが循環するようになっている。一
方、蓄熱槽20内低部から解氷水ポンプ46を介して空
調器48に配管50で接続され、空調機48出口から前
記熱交換器40の入口に配管52で接続されている。ま
た、熱交換器40の出口配管54は三方弁24Cで二方
に分岐し、一方は、解氷水ポンプ46の入口に配管58
で接続され、他方は蓄熱槽20上方の散水機60に配管
62で接続されている。即ち、図1の一点鎖線矢印で示
す解氷時の解氷水経路を解氷水が循環するようになって
いる。
Further, the inlet pipe of the heat transfer coil 22 is also branched into two by a cross joint 36B, one of which is connected to the three-way valve 24A at the outlet of the heat transfer coil 22 and the other of which is the two-way valve 3.
A pipe 44 is connected to the outlet of the heat exchanger 40 via 2B. That is, the brine circulates in the brine path at the time of thawing shown by the broken line arrow in FIG. On the other hand, a pipe 50 is connected from the lower part of the heat storage tank 20 to the air conditioner 48 via the deicing water pump 46, and a pipe 52 is connected from the outlet of the air conditioner 48 to the inlet of the heat exchanger 40. Further, the outlet pipe 54 of the heat exchanger 40 is branched into two by the three-way valve 24C, and one of them is connected to the inlet of the deicing water pump 46 by a pipe 58.
And the other is connected to the sprinkler 60 above the heat storage tank 20 by a pipe 62. That is, the deicing water circulates through the deicing water path at the time of defrosting shown by the one-dot chain line arrow in FIG.

【0018】次に、このような構成の氷蓄熱装置の作用
を説明すると、製氷運転時、伝熱コイル22出口の三方
弁24Aはブラインが伝熱コイル22出口からブライン
ポンプ26側へ流れるようにし、ヒートポンプ28入口
側の三方弁24Bはブラインポンプ26からヒートポン
プ28に流れるようにする。また、ヒートポンプ28出
口から伝熱コイル22入口への二方弁32Aを開け、熱
交換器40出口から伝熱コイル22入口への二方弁32
Bを閉じておく。
Next, the operation of the ice heat storage device having such a structure will be described. During the ice making operation, the three-way valve 24A at the outlet of the heat transfer coil 22 is designed so that the brine flows from the outlet of the heat transfer coil 22 to the brine pump 26 side. The three-way valve 24B on the inlet side of the heat pump 28 allows the brine pump 26 to flow to the heat pump 28. Further, the two-way valve 32A from the outlet of the heat pump 28 to the inlet of the heat transfer coil 22 is opened, and the two-way valve 32 from the outlet of the heat exchanger 40 to the inlet of the heat transfer coil 22 is opened.
Keep B closed.

【0019】これによりヒートポンプ28で冷却された
ブラインは、伝熱コイル22とヒートポンプ28の間を
循環し伝熱コイル22表面付近の水を冷却し製氷する。
電力費が安価な夜間に製氷運転を行い、伝熱コイル22
表面に氷23の層を形成しておく。次に解氷運転時につ
いて説明すると、解氷運転時前にヒートポンプ28入口
側の三方弁24Bは、ブラインがブラインポンプ26か
ら熱交換器40に流れるようにし、熱交換器40から伝
熱コイル22入口への二方弁32Bを開け、ヒートポン
プ28から伝熱コイル22への二方弁32Aを閉じてお
く。
Thus, the brine cooled by the heat pump 28 circulates between the heat transfer coil 22 and the heat pump 28 to cool the water near the surface of the heat transfer coil 22 to make ice.
The heat transfer coil 22 is operated at night when the electricity cost is low.
A layer of ice 23 is formed on the surface. Next, a description will be given of the operation of thawing ice. Before the operation of thawing ice, the three-way valve 24B on the inlet side of the heat pump 28 allows brine to flow from the brine pump 26 to the heat exchanger 40, and the heat transfer coil 22 from the heat exchanger 40 to The two-way valve 32B to the inlet is opened, and the two-way valve 32A from the heat pump 28 to the heat transfer coil 22 is closed.

【0020】空調機の運転に伴い解氷水ポンプ46が稼
働し、蓄熱槽20の解氷水38は空調機48に送られ図
示していない空調空気との熱交換を行ない、空調空気を
冷却し、解氷水38は昇温する。昇温した解氷水38は
熱交換器40を通り、一部が解氷水ポンプ46入口へ流
れ、他は散水機60から蓄熱槽20に戻る。この時、三
方弁24Cの開度により、空調機48入口の解氷水温度
が設定温度に合うように制御されている。
With the operation of the air conditioner, the deicing water pump 46 operates, and the deicing water 38 in the heat storage tank 20 is sent to the air conditioner 48 to exchange heat with air conditioner air (not shown) to cool the air conditioner air. The thawed water 38 rises in temperature. The temperature of the thawed water 38 passes through the heat exchanger 40, part of which flows to the inlet of the thawed water pump 46, and the other returns from the sprinkler 60 to the heat storage tank 20. At this time, the opening of the three-way valve 24C controls the temperature of the deicing water at the inlet of the air conditioner 48 to match the set temperature.

【0021】以上の作用は、空調機48の負荷が少なく
解氷水13の冷熱量も少なくてよい時のケースで、伝熱
コイル22に付着した氷23を外表面から解氷する従来
の氷蓄熱装置の解氷であるが、急激な空調負荷の増加あ
るいは氷23があるにもかかわらず、空調機48に送る
解氷水38の温度が上昇し、安定しないケースでは、本
発明の氷蓄熱装置の解氷は次のように行う。
The above operation is the case when the load of the air conditioner 48 is small and the amount of cold heat of the defrosting water 13 is small, and the conventional ice heat storage for defrosting the ice 23 adhering to the heat transfer coil 22 from the outer surface is performed. In the case of defrosting of the device, in the case where the temperature of the defrosting water 38 sent to the air conditioner 48 rises and is not stable in spite of a sudden increase in air conditioning load or ice 23, in the case of the ice heat storage device of the present invention, Thawing is performed as follows.

【0022】即ち、従来の解氷運転を行いながら、冷凍
機28を停止したままブラインを伝熱コイル22と熱交
換器40との間を循環させる。これにより伝熱コイル内
のブラインは、伝熱コイル22表面に形成された氷23
で冷却され、ブラインポンプ26で熱交換器40に送ら
れ、熱交換器40で循環解氷水38と熱交換し、解氷水
38を冷やす。一方ブラインは昇温して伝熱コイル22
に戻り、再び伝熱コイル22に形成された氷23と熱交
換する。これを繰返すことにより、ブラインは、熱交換
器40で循環解氷水38を冷やし、伝熱コイル22では
伝熱コイル22内部から氷23を溶かすことができる。
即ち、ブラインを解氷用熱媒として用いるのである。
That is, while the conventional deicing operation is performed, brine is circulated between the heat transfer coil 22 and the heat exchanger 40 while the refrigerator 28 is stopped. As a result, the brine in the heat transfer coil is not covered by the ice 23 formed on the surface of the heat transfer coil 22.
Is cooled by the brine pump 26 and sent to the heat exchanger 40, and the heat exchanger 40 exchanges heat with the circulating defrosting water 38 to cool the defrosting water 38. On the other hand, the temperature of the brine rises and the heat transfer coil 22
Then, heat is exchanged with the ice 23 formed on the heat transfer coil 22 again. By repeating this, the brine can cool the circulating defrosting water 38 in the heat exchanger 40 and can melt the ice 23 from the inside of the heat transfer coil 22 in the heat transfer coil 22.
That is, the brine is used as a heat medium for defrosting.

【0023】これにより、解氷運転時、循環解氷水38
で伝熱コイル22に形成された氷23を外表面から解氷
する従来の解氷に加え、ブラインで伝熱コイル22内部
からも解氷できる為、循環解氷水38温度の安定化及び
急激な空調負荷の増加にも対応できる。
As a result, during the deicing operation, the circulating defrosting water 38
The ice 23 formed on the heat transfer coil 22 can be thawed from inside the heat transfer coil 22 by the brine in addition to the conventional thawing that is performed on the outer surface of the ice 23. It can cope with an increase in air conditioning load.

【0024】[0024]

【発明の効果】以上、説明したように本発明に係る氷蓄
熱装置によれば、解氷運転時、伝熱コイルと熱交換器と
の間をブラインが循環できるように配管し、ブラインが
解氷用熱媒となるので、伝熱コイル表面に形成された氷
を伝熱コイル内部から解氷することができ、伝熱コイル
表面に形成された氷を外表面から解氷する従来の解氷と
併せ循環解氷水温度の安定化及び急激な空調負荷の増加
にも対応できる。
As described above, according to the ice heat storage device of the present invention, piping is provided so that the brine can circulate between the heat transfer coil and the heat exchanger during the defrosting operation, and the brine is unwound. As a heat transfer medium for ice, the ice formed on the surface of the heat transfer coil can be thawed from inside the heat transfer coil, and the ice formed on the surface of the heat transfer coil can be thawed from the outer surface. In addition, it is possible to stabilize the temperature of the circulating defrosting water and respond to a sudden increase in air conditioning load.

【0025】また、ブリッジング防止用の運転とするこ
とができる。
Further, the operation can be carried out to prevent bridging.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る氷蓄熱装置の実施例を示す構成図FIG. 1 is a configuration diagram showing an embodiment of an ice heat storage device according to the present invention.

【図2】従来の氷蓄熱装置の実施例を示す構成図FIG. 2 is a configuration diagram showing an embodiment of a conventional ice heat storage device.

【符号の説明】[Explanation of symbols]

20…蓄熱槽 22…伝熱コイル 26…ブラインポンプ 28…ヒートポンプ 38…解氷水 40…熱交換器 46…解氷水ポンプ 48…空調機 20 ... Heat storage tank 22 ... Heat transfer coil 26 ... Brine pump 28 ... Heat pump 38 ... Thawing water 40 ... Heat exchanger 46 ... Thawing water pump 48 ... Air conditioner

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蓄熱槽に満たされた水の中に埋没するよう
に設置された伝熱コイルと、 伝熱コイルを循環するブラインを冷却する冷凍機と、 伝熱コイル出口と冷凍機入口及び冷凍機出口と伝熱コイ
ル入口との間をブラインが循環するように配設された配
管及びブラインポンプと、を備えた製氷装置と、 蓄熱槽の解氷水と熱交換する空調機と、 蓄熱槽の解氷水出口と空調機の解氷水入口及び空調機の
解氷水出口と蓄熱槽の解氷水入口との間を解氷水が循環
するように配設された配管及び解氷水ポンプと、を備え
た解氷装置と、前記解氷水が循環する配管に設けられ、 上記ブラインと
上記解氷水が熱交換する熱交換器と、から成る氷蓄熱装
置に於いて、 解氷運転時伝熱コイルと熱交換器との間をブラインが
循環するように配管を配設し、ブラインが解氷用熱媒と
なることを特徴とする氷蓄熱装置。
1. A heat transfer coil installed so as to be submerged in water filled in a heat storage tank, a refrigerator for cooling brine circulating in the heat transfer coil, a heat transfer coil outlet and a refrigerator inlet, and An ice making device equipped with a pipe and a brine pump arranged so that brine circulates between the refrigerator outlet and the heat transfer coil inlet, an air conditioner for exchanging heat with the defrosting water of the heat storage tank, and the heat storage tank Of the deicing water, the deicing water inlet of the air conditioner, the deicing water outlet of the air conditioner, and the pipe and the deicing water pump arranged so that the deicing water circulates between the defrosting water inlet of the heat storage tank. In an ice heat storage device comprising an ice-melting device and a heat exchanger provided in a pipe through which the ice- melting water circulates, for exchanging heat between the brine and the ice- melting water , a heat transfer coil and heat Arrange pipes so that brine circulates between the Ice thermal storage apparatus characterized by down is de-ice a heat transfer medium.
JP35762491A 1991-12-26 1991-12-26 Ice storage device Expired - Lifetime JP2679503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35762491A JP2679503B2 (en) 1991-12-26 1991-12-26 Ice storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35762491A JP2679503B2 (en) 1991-12-26 1991-12-26 Ice storage device

Publications (2)

Publication Number Publication Date
JPH05180468A JPH05180468A (en) 1993-07-23
JP2679503B2 true JP2679503B2 (en) 1997-11-19

Family

ID=18455077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35762491A Expired - Lifetime JP2679503B2 (en) 1991-12-26 1991-12-26 Ice storage device

Country Status (1)

Country Link
JP (1) JP2679503B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881510B (en) * 2010-07-26 2012-11-07 雷宜东 Heat pump type hot water tank

Also Published As

Publication number Publication date
JPH05180468A (en) 1993-07-23

Similar Documents

Publication Publication Date Title
JP2679503B2 (en) Ice storage device
JP3042179B2 (en) Ice storage device
JP4964439B2 (en) Operation method of heat storage enhancement system by cooling coil
JPH11101518A (en) Heat source switching type air conditioner and heat source switching type air conditioning method
JP2637510B2 (en) Thermal storage cooling and heating system
JP2768894B2 (en) Heat source system for cooling, heating and hot water supply
JP3272146B2 (en) Ice storage system
JP3233733B2 (en) Ice storage device
JP3282643B2 (en) Ice storage system
JPH08145437A (en) Storage type cooler/heater, and controlling method therefor
JP2003202135A (en) Regenerative air-conditioning device
JPH09126593A (en) Antifreezing structure of heat exchanger for supercooling water
KR20120034837A (en) A cleaning equipment of heat exchanger with heat accumulator
JP2793872B2 (en) Oil-filled electrical equipment waste heat snow melting equipment
JPH0561539B2 (en)
JP4274605B2 (en) Ice heat storage system
JP2508240B2 (en) Ice heat storage device and ice heat storage type air conditioner equipped with the ice heat storage device
JP2649078B2 (en) Heat storage type cooling and heating method
JP3365371B2 (en) Ice storage device
JP2950639B2 (en) Ice storage heat source device and water supply method thereof
JP5474628B2 (en) Cold air supply facility for parked aircraft and cold air supply method for parked aircraft
JPH09159337A (en) Heat exchanger
JPS62294882A (en) Method of controlling latent-heat cold accumulation system
JPH10325572A (en) Heat accumulation type cooling device
JP3266334B2 (en) Heat storage tank for air conditioning