JP6279906B2 - Snow energy supply system - Google Patents

Snow energy supply system Download PDF

Info

Publication number
JP6279906B2
JP6279906B2 JP2014004082A JP2014004082A JP6279906B2 JP 6279906 B2 JP6279906 B2 JP 6279906B2 JP 2014004082 A JP2014004082 A JP 2014004082A JP 2014004082 A JP2014004082 A JP 2014004082A JP 6279906 B2 JP6279906 B2 JP 6279906B2
Authority
JP
Japan
Prior art keywords
water
snow
snowmelt
cold
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014004082A
Other languages
Japanese (ja)
Other versions
JP2015132423A (en
Inventor
恒生 上平
恒生 上平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2014004082A priority Critical patent/JP6279906B2/en
Publication of JP2015132423A publication Critical patent/JP2015132423A/en
Application granted granted Critical
Publication of JP6279906B2 publication Critical patent/JP6279906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は冬季に貯蔵した雪類を夏季に冷熱として他の系に供給するシステムに関する。   The present invention relates to a system for supplying snow stored in winter to other systems as cold heat in summer.

従来、冬季の積雪を雪室内に貯蔵しておき、当該雪室に貯蔵された雪を冷熱源として冷房などに利用するシステムがある。例えば、雪室内に貯蔵した雪が融解してできた融雪水を貯留する領域を設け、貯留された融雪水と、空調装置を経由して循環する熱媒体とを熱交換することで、空調装置で冷房に利用されて昇温した熱媒体を冷却するシステムが提案されている(例えば特許文献1、2など)。   2. Description of the Related Art Conventionally, there is a system in which winter snow is stored in a snow compartment and the snow stored in the snow compartment is used as a cooling source for cooling or the like. For example, an area for storing snowmelt water obtained by melting snow stored in a snow compartment is provided, and heat exchange is performed between the stored snowmelt water and a heat medium circulating through the air conditioner. Systems have been proposed for cooling a heat medium that has been heated and used for cooling (for example, Patent Documents 1 and 2).

特開2011−247548号公報JP 2011-247548 A 特開2005−299944号公報JP 2005-299944 A

上述したシステムでは、融雪水を貯留する蓄熱槽などの領域内では、融解して間もない低温の融雪水と、貯留されてからある程度の時間が経過したり或いは上述の空調装置などにおいて冷熱として利用されたりして昇温した融雪水(還水)とが混合されるので、雪の冷熱を十分に有効利用できていない。   In the above-described system, in a region such as a heat storage tank for storing snowmelt water, low-temperature snowmelt water that has just been melted and a certain amount of time has passed since being stored, or as cold heat in the above-described air conditioner or the like. Since it is mixed with snowmelt water (returned water) that has been used or heated up, the cold heat of snow cannot be used effectively.

このような状況に鑑み、本発明は、雪の冷熱を他の系において有効利用できるように供給する技術を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a technique for supplying cold snow so that it can be effectively used in other systems.

本発明では、上記課題を解決するために、以下の手段を採用した。すなわち、本発明は、雪類を貯留するための雪室と、該雪室内の雪類が融解してできた融雪水が雪室との間に設けた流入口から流入し貯留される融雪水槽と、前記融雪水槽内の融雪水を冷熱利用系の冷却用熱媒体と熱交換するための熱交換器と、前記融雪水槽内の融雪水を前記熱交換器に送水するための流路である冷水往路と、前記熱交換器を通った後の融雪水を前記雪室内の雪類に供給するために雪室内に送水するための流路である融雪水供給路と、前記熱交換器を通った後の融雪水を前記融雪水槽内に戻すための流路である槽内戻路と、を備え、前記冷水往路は前記融雪水槽内の前記流入口と近接する位置に吸込口を有し当該箇所に貯留されている融雪水を前記熱交換器に送水するための流路であって、前記槽内戻路を通水する融雪水は、前記融雪水槽内における前記冷水往路の吸込口の位置とは離れた位置に流入する、雪類エネルギー供給システムである。なお、雪類とは、雪のみに限らず例えばつらら等も含む、自然気象によって生成する氷点下の生成物をいう。   The present invention employs the following means in order to solve the above-described problems. That is, the present invention relates to a snow melting water tank in which a snow chamber for storing snow and a snow melting water formed by melting the snow in the snow chamber flows in from an inlet provided between the snow chamber and the snow melting water. And a heat exchanger for exchanging heat of the snowmelt water in the snowmelt water tank with a cooling heat medium of a cold heat utilization system, and a flow path for supplying the snowmelt water in the snowmelt water tank to the heat exchanger. A cold water outbound path, a snowmelt water supply path that is a flow path for supplying the snowmelt water that has passed through the heat exchanger to the snow in the snow compartment, and the heat exchanger. A tank return path that is a flow path for returning the melted snow water to the snow melt water tank, and the cold water forward path has a suction port at a position close to the inlet in the snow melt water tank. It is a flow path for sending snow melt water stored in a place to the heat exchanger, and the snow melt water flowing through the return path in the tank is Flowing into the distant position from the position of the cold water forward of the suction opening in the snow melting water tank, a Yukirui energy supply system. Note that snow refers to products below freezing generated by natural weather including not only snow but also icicles, for example.

本発明によれば、融雪水槽内において雪室から融雪水が流入する流入口の近接箇所に貯留された融雪水が冷熱利用系の熱媒体と熱交換するための熱交換器に供給され、冷熱利用系にて冷熱が利用された後の融雪水は戻水領域に戻されるか或いは雪室内の雪類に供給される。これにより、熱交換器には、冷熱が利用されて昇温した後の融雪水は供給されず、低温の融雪水が供給される構成となっているので、より有効な冷熱を優先して冷熱利用系に供給することができる。   According to the present invention, the snowmelt water stored in the vicinity of the inlet into which the snowmelt water flows from the snow chamber in the snowmelt water tank is supplied to the heat exchanger for exchanging heat with the heat medium of the cold energy utilization system, The snowmelt after the cold heat is used in the utilization system is returned to the return water area or supplied to the snow in the snow compartment. As a result, the heat exchanger is configured to be supplied with low-temperature snowmelt water without being supplied with the snowmelt water that has been heated by using the cold heat, so that the cooler heat is given priority over more effective cold heat. It can be supplied to the utilization system.

また、本発明に係る雪類エネルギー供給システムは、前記融雪水槽は内部に隔壁を設けることにより低温水領域と戻水領域とに隔てられ、前記隔壁は隔壁の一端に設けた連通口からのみ前記低温水領域と前記戻水領域との間の通水を可能とし、前記冷水往路は前記低温水領域の前記連通口とは離れた位置に吸込口を有し、前記槽内戻路は前記戻水領域の前記連通口とは離れた位置に吐出口を有してもよい。   Further, in the snow energy supply system according to the present invention, the snow melting water tank is divided into a low-temperature water region and a return water region by providing a partition therein, and the partition is only from the communication port provided at one end of the partition. Water flow between the low-temperature water area and the return water area is enabled, the cold water forward path has a suction port at a position away from the communication port of the low-temperature water area, and the return path in the tank is the return line You may have a discharge port in the position away from the said communication port of the water area | region.

また、本発明に係る雪類エネルギー供給システムは、前記熱交換器を通った後の融雪水を、前記槽内戻路に通水させる槽内戻状態と、前記融雪水供給路に通水させる供給状態とに切り替える融雪水流路切替装置と、前記融雪水槽内に貯留された融雪水の温度を検知する融雪水温度センサと、をさらに備え、前記融雪水流路切替装置は、前記融雪水温度センサによって融雪水の温度が所定温度以上であると検知されると、供給状態となるように制御してもよい。   Further, the snow energy supply system according to the present invention allows the snowmelt water after passing through the heat exchanger to pass through the tank return path and the snowmelt water supply path. A snowmelt water flow path switching device that switches to a supply state; and a snowmelt water temperature sensor that detects a temperature of the snowmelt water stored in the snowmelt water tank, and the snowmelt water flow path switching device includes the snowmelt water temperature sensor. When the temperature of the snowmelt water is detected to be equal to or higher than a predetermined temperature, the supply state may be controlled.

このような本発明によれば、融雪水槽内の水温が所定以上の場合には、熱交換器にて昇温した融雪水を雪室内の雪類に供給して、雪類と接触させることにより降温し同時に雪類を融解してさらに融雪水を生成し融雪水槽に流入するので、融雪水槽内の水温を降温させて、冷熱利用系に対する有効な冷熱の供給に寄与することができる。   According to the present invention as described above, when the water temperature in the snowmelt water tank is equal to or higher than a predetermined value, the snowmelt water heated by the heat exchanger is supplied to the snow in the snow chamber and brought into contact with the snow. At the same time, the snow is melted to further generate snowmelt water and flow into the snowmelt water tank, so that the water temperature in the snowmelt water tank can be lowered to contribute to the supply of effective cold heat to the cold energy utilization system.

また、本発明に係る雪類エネルギー供給システムにおいて、前記冷熱利用系は、空調用冷水を前記冷却用媒体としてそのシステム内を循環し、当該空調用冷水を冷却する熱源機を有する、空調システムであって、空調用冷水が通水する流路を、前記空調用冷水を前記熱交換器に通水して循環させる熱交換器循環状態と、前記空調用の冷水を前記熱源機に通水して循環させる熱源機循環状態と、に切り替える空調用冷水流路切替装置を備え、前記雪類エネルギー供給システムは、前記冷水往路内の融雪水温度を検知する冷水温度センサをさらに備え、前記空調用冷水流路切替手段は、前記冷水往路内の融雪水温度が所定以上であると検知されると、熱源機循環状態となるように制御してもよい。   Further, in the snow energy supply system according to the present invention, the cold energy utilization system is an air conditioning system having a heat source device that circulates in the system using cold water for air conditioning as the cooling medium and cools the cold water for air conditioning. A heat exchanger circulation state in which the air conditioning cold water is circulated by passing the air conditioning cold water through the heat exchanger, and the air conditioning cold water is passed to the heat source device. A cooling water flow path switching device for air conditioning that switches to a circulating state of the heat source machine to be circulated, and the snow energy supply system further includes a cold water temperature sensor that detects a temperature of melted snow water in the cold water outbound path, The cold water flow path switching means may be controlled to enter a heat source machine circulation state when it is detected that the temperature of the snowmelt water in the cold water forward path is equal to or higher than a predetermined value.

このような本発明によれば、雪類エネルギー供給システムによって空調システムに十分な冷熱を供給できる状態であれば、雪類エネルギー供給システムの冷熱、即ち融雪水の冷熱が空調システムに供給され、そうでない場合は熱源機によって冷熱が供給されるように制御されるので、より効率よく空調システムに冷熱を供給することができる。   According to the present invention, if the snow energy supply system can supply sufficient cold heat to the air conditioning system, the cold energy of the snow energy supply system, that is, the cold heat of snowmelt water is supplied to the air conditioning system. If not, the heat source device is controlled so that the cold heat is supplied, so the cold air can be supplied to the air conditioning system more efficiently.

また、本発明は、雪室内の雪類が融解して融雪水槽内に流入して貯留された融雪水を冷熱利用系の冷却用熱媒体との熱交換に利用し、当該熱交換後の融雪水を雪室内の雪類に供給するか、或いは前記融雪水槽内に戻し、前記冷熱利用系の冷却用熱媒体との熱交換後に融雪水槽内に戻された融雪水よりも、前記雪室内で融解して融雪水槽内に流入した融雪水を優先して、前記冷熱利用系の冷却用熱媒体との熱交換に利用し、融雪水槽内に貯留された融雪水の温度が所定温度以上である場合には、熱交換後の融雪水を雪室内の雪類に供給する、雪エネルギー供給方法であってもよい。   Further, the present invention uses snow melt water melted and flowing into the snow melting water tank stored in the snow chamber for heat exchange with the cooling heat medium of the cold heat utilization system, and the snow melting after the heat exchange. Water is supplied to the snow in the snow chamber or returned to the snow melting water tank, and the snow melting water returned to the snow melting water tank after the heat exchange with the cooling heat medium of the cold energy utilization system is performed in the snow chamber. Priority is given to the melted water that has melted and flowed into the snowmelt water tank, and is used for heat exchange with the cooling heat medium of the cold heat utilization system, and the temperature of the snowmelt water stored in the snowmelt water tank is equal to or higher than a predetermined temperature. In this case, a snow energy supply method may be used in which the melted water after heat exchange is supplied to the snow in the snow compartment.

本発明によれば、より低温の融雪水の冷熱を優先して冷熱利用系に供給することができるので、冷熱利用系において冷熱を有効に利用することができる。   According to the present invention, it is possible to preferentially supply the cold heat of the snowmelt water to the cold energy utilization system, so that the cold energy can be effectively utilized in the cold energy utilization system.

図1は、実施の形態に係る雪エネルギー供給システム1を例示する構成図である。FIG. 1 is a configuration diagram illustrating a snow energy supply system 1 according to an embodiment. 図2は、雪室10内部の構成を例示する平面図である。FIG. 2 is a plan view illustrating the internal configuration of the snow chamber 10.

以下、本発明の実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。なお、以下に説明する実施の形態は、本発明を実施する一例を示すものであって、本発明を以下に説明する具体的な構成に限定するものではない。本発明を実施するにあたっては、実施の形態に応じた具体的な構成が適宜採用されることが好ましい。   Hereinafter, embodiments of the present invention (hereinafter also referred to as “present embodiments”) will be described with reference to the drawings. The embodiment described below shows an example for carrying out the present invention, and the present invention is not limited to a specific configuration described below. In practicing the present invention, it is preferable to adopt a specific configuration according to the embodiment as appropriate.

本実施形態に係る雪エネルギー供給システム1は、雪室10内の雪Sが融解してできた融雪水を融雪水槽12に貯留し、融雪水槽12内の融雪水を冷熱利用系の熱媒体と熱交換して当該熱媒体を冷却し、熱交換後の融雪水を融雪水槽12に戻すか或いは雪室10内に供給するシステムとして説明される。また、本実施形態に係る冷熱利用系は、冷水(二次冷水)を冷却用熱媒体として循環させる空調システム3として説明される。なお、冷熱利用系は、冷熱の需要を有する、空調以外の用途の設備等であってもよい。また、雪Sはつらら等の自然気象による氷点下の生成物が含まれていてもよく、発明における「雪類」に相当し、雪エネルギーシステム1は発明における「雪類エネルギーシステム」に相当する。   The snow energy supply system 1 according to the present embodiment stores the snowmelt water formed by melting the snow S in the snow chamber 10 in the snowmelt water tank 12, and the snowmelt water in the snowmelt water tank 12 is used as a heat medium for a cold heat utilization system. The system is described as a system in which heat exchange is performed to cool the heat medium, and the snowmelt water after the heat exchange is returned to the snowmelt water tank 12 or supplied into the snow chamber 10. Moreover, the cold energy utilization system which concerns on this embodiment is demonstrated as the air conditioning system 3 which circulates cold water (secondary cold water) as a cooling heat medium. Note that the cold energy utilization system may be equipment for applications other than air conditioning that has a demand for cold energy. Further, the snow S may contain products below freezing point due to natural weather such as icicles, and corresponds to “snows” in the invention, and the snow energy system 1 corresponds to “snowy energy system” in the invention.

図1は、本実施形態に係る雪エネルギー供給システムを例示する構成図である。図1には、雪エネルギー供給システム1、空調システム3が示されている。雪エネルギー供給システム1と空調システム3との間には、空調システム3の冷却用熱媒体としての二次冷水を空調システム3から雪エネルギー供給システム1へ引き入れて、空調システム3へ戻すための水路(二次冷水往路34、二次冷水還路33)が設けられている。なお、各水路は保温性の高い材質を用いたり、保温材によって被覆したりするなどの構成が採用されることが好ましい。以下、空調システム3、雪エネルギー供給システム1の順に構成の詳細を説明する。   FIG. 1 is a configuration diagram illustrating a snow energy supply system according to this embodiment. FIG. 1 shows a snow energy supply system 1 and an air conditioning system 3. Between the snow energy supply system 1 and the air conditioning system 3, a water channel for drawing secondary cold water as a cooling heat medium for the air conditioning system 3 from the air conditioning system 3 to the snow energy supply system 1 and returning it to the air conditioning system 3. (Secondary cold water outgoing path 34, secondary cold water return path 33) are provided. In addition, it is preferable that each water channel employ | adopts the structure of using a material with high heat retention property, or coat | covering with a heat retention material. Hereinafter, the details of the configuration will be described in the order of the air conditioning system 3 and the snow energy supply system 1.

空調システム3は、水冷方式の空調設備である。空調システム3は、冷熱負荷としての空調機32を有する。空調機はここではエアハンドリングユニットであるが、水熱源ヒートポンプユニットであってもよい。空調システム3には、二次冷水の循環流路としての二次冷水還路33、二次冷水往路34が設けられており、二次冷水還路33には弁V31が、二次冷水往路34には弁V32がそれぞれ設けられている。また、二次冷水還路33の弁V31と空調機32との間には熱源機側還路36が、二次冷水往路34の弁V32と空調機32との間には熱源機往路37がそれぞれ接続されており、何れも不図示の熱源機に繋がっている。熱源機側還路36には弁V33が、熱源機側往路37には弁V34がそれぞれ設けられている。熱源機は、流入する二次冷水を所定の温度に降温する機器であり、例えばターボ冷凍機である。なお、空調機3は二次冷水の水路に複数あり、空調機3側から見れば、二次冷水還路33が往き、二次冷水往路34が還りとなる。   The air conditioning system 3 is a water-cooled air conditioning facility. The air conditioning system 3 includes an air conditioner 32 as a cold load. The air conditioner is here an air handling unit, but may be a water heat source heat pump unit. The air-conditioning system 3 is provided with a secondary chilled water return path 33 and a secondary chilled water return path 34 as secondary chilled water circulation paths. The secondary chilled water return path 33 has a valve V31 and a secondary chilled water return path 34. Each is provided with a valve V32. A heat source side return path 36 is provided between the valve V31 of the secondary chilled water return path 33 and the air conditioner 32, and a heat source machine forward path 37 is provided between the valve V32 of the secondary chilled water outward path 34 and the air conditioner 32. Each is connected, and all are connected to a heat source machine (not shown). The heat source unit side return path 36 is provided with a valve V33, and the heat source unit side outward path 37 is provided with a valve V34. The heat source device is a device that lowers the inflowing secondary cold water to a predetermined temperature, for example, a turbo refrigerator. Note that there are a plurality of air conditioners 3 in the secondary chilled water channel, and when viewed from the air conditioner 3 side, the secondary chilled water return channel 33 travels and the secondary chilled water outbound channel 34 returns.

弁V31、弁V32が開で、弁V33、弁V34が閉状態のときは、二次冷水は二次冷水ポンプP31の稼働により空調機32及び雪エネルギー供給システム1の熱交換器13を通流する。空調機32は、供給される二次冷水と室内の空気との間で熱交換を行い、熱交換後の昇温された二次冷水は、熱交換器13へ還る。一方、弁V31、弁V32が閉で、弁V33、弁V34が開のときは、熱源機側還路36あるいは熱源機側往路37に設けられた不図示のポンプの稼働により、二次冷水は空調機32及び熱源機を通流し、空調機32内の熱交換器において二次冷水と室内の空気との間の熱交換により昇温された二次冷水が熱源機へ還る。   When the valves V31 and V32 are open and the valves V33 and V34 are closed, the secondary cold water flows through the air conditioner 32 and the heat exchanger 13 of the snow energy supply system 1 by the operation of the secondary cold water pump P31. To do. The air conditioner 32 exchanges heat between the supplied secondary chilled water and the indoor air, and the heated secondary chilled water after the heat exchange is returned to the heat exchanger 13. On the other hand, when the valve V31 and the valve V32 are closed and the valve V33 and the valve V34 are open, the secondary cold water is generated by the operation of a pump (not shown) provided in the heat source unit return path 36 or the heat source unit side forward path 37. The air conditioner 32 and the heat source machine are passed through, and the secondary cold water heated by the heat exchange between the secondary cold water and the indoor air in the heat exchanger in the air conditioner 32 is returned to the heat source machine.

二次冷水往路34には二次冷水往路34を流れる冷水の温度を検知する温度センサ56が、二次冷水還路33には二次冷水還路33を流れる冷水の温度を検知する温度センサ55がそれぞれ設置され、各温度の情報は信号線を介して制御部に送信される。   A temperature sensor 56 that detects the temperature of the cold water flowing through the secondary chilled water outbound path 34 is provided in the secondary chilled water outbound path 34, and a temperature sensor 55 that detects the temperature of the chilled water flowing through the secondary chilled water return path 33 in the secondary chilled water return path 33. Are installed, and information on each temperature is transmitted to the control unit via a signal line.

雪エネルギー供給システム1は、雪室10内に堆積された雪Sの融雪水を冷熱として上述の空調システム3、すなわち冷熱利用系等の他の系に供給するシステムである。雪エネルギー供給システム1は雪室10、融雪水槽12、熱交換器13を備える。   The snow energy supply system 1 is a system that supplies the snow melt water of the snow S accumulated in the snow chamber 10 as cold heat to the air conditioning system 3 described above, that is, another system such as a cold heat utilization system. The snow energy supply system 1 includes a snow chamber 10, a snowmelt water tank 12, and a heat exchanger 13.

雪室10は、冬季に積雪した雪をためておき、夏季まで雪の状態で保存しておくことができる室であり、略矩形状に形成されている。雪室10内の一端側の下部には雪室10内の雪Sを融解するための融雪水供給手段としての散水ノズル17bが設置されており、熱交換器13にて空調システム3内を通水する二次冷水と熱交換されて昇温した融雪水が冷水還路16、融雪水供給路17、ヘッダー17aを介して散水ノズル17bから雪室10内に散水(放水)される(冷水還路16は後述の槽内戻路18と融雪水供給路17とに分岐している)。融雪水供給路17は、雪室10の融雪水槽12設置側とは反対側の側壁10aと床面10bとで形成される角部に沿って配設されたヘッダー17aに接続されている。散水ノズル17bは、ヘッダー17aの全長に渡って所定間隔をあけて複数設けられており、散水ノズル17bから散水された水は雪室10に堆積された雪Sを融解しながら床面を融雪水槽12に向かって流れる。また、ヘッダー17aを雪室10内の上部に設置し、堆積した雪Sの上方から散水(放水)する構成としても良い。   The snow chamber 10 is a chamber in which snow accumulated in the winter can be stored and stored in the snow state until the summer, and is formed in a substantially rectangular shape. A water spray nozzle 17b as a melt water supply means for melting the snow S in the snow chamber 10 is installed at a lower portion on one end side in the snow chamber 10 and is passed through the air conditioning system 3 by the heat exchanger 13. The snowmelt water heated and exchanged with the secondary cold water is sprayed (sprayed) into the snow chamber 10 from the water spray nozzle 17b through the cold water return path 16, the snowmelt water supply path 17, and the header 17a. The path 16 is branched into a tank return path 18 and a snowmelt water supply path 17 which will be described later). The snowmelt water supply path 17 is connected to a header 17a disposed along a corner formed by the side wall 10a and the floor surface 10b on the opposite side of the snow chamber 10 from the side where the snowmelt water tank 12 is installed. A plurality of watering nozzles 17b are provided at predetermined intervals over the entire length of the header 17a, and the water sprayed from the watering nozzles 17b melts the snow S accumulated in the snow chamber 10 and melts the floor surface into a snow melting water tank. It flows toward 12. Moreover, it is good also as a structure which installs the header 17a in the upper part in the snow chamber 10, and sprays water from the upper direction of the accumulated snow S (water discharge).

融雪水槽12は雪室10の一側端側の床下に設けられており、融雪水槽12上方の床の一部に設けた流入口11を通して、雪室10内の雪Sが融解してできた融雪水が融雪水槽12に流入し、貯留される。流入口11は、グレーチング板やパンチング板等の多孔板によって形成されてもよく、これは人が融雪水槽12内に落ちることを防止するためと融雪水槽12内にゴミ等が入ることを抑制する目的としている。また、流入口11に金網を張り、その上に雪Sの一部が載るようにして、雪Sが固体状のままでなく融解してから融雪水槽12に流下するように構成してもよい。なお、雪室10の床面には、融雪水が融雪水槽12に流入しやすいように、流入口11に向かって下りの勾配を設けてもよい。さらに、雪Sの堆積位置と融雪水槽12の距離が離れている場合、前者から中間貯留槽を介して後者に送水することが考えられ、その際は当該送水に係る水路の終端の後者への供給口が「流入口」となる。   The snow melting water tank 12 is provided under the floor on one side end side of the snow chamber 10, and the snow S in the snow chamber 10 is melted through the inlet 11 provided in a part of the floor above the snow melting water tank 12. The snowmelt water flows into the snowmelt water tank 12 and is stored. The inflow port 11 may be formed of a perforated plate such as a grating plate or a punching plate. This prevents a person from falling into the snow melting water tank 12 and suppresses entry of dust or the like into the snow melting water tank 12. It is aimed. In addition, a metal mesh may be attached to the inflow port 11 and a part of the snow S may be placed thereon so that the snow S does not remain solid but melts and then flows down to the snow melting water tank 12. . In addition, you may provide the downward slope toward the inflow port 11 in the floor surface of the snow chamber 10 so that snowmelt water may flow into the snowmelt water tank 12 easily. Further, when the accumulation position of the snow S and the snow melting water tank 12 are separated from each other, it is conceivable that water is sent from the former to the latter via the intermediate storage tank. The supply port becomes the “inlet”.

融雪水槽12内は、低温水領域12aおよび戻水領域12bの2つの領域に分けられている。上述の流入口11の下方には低温水領域12aが配置され、雪室10で融解した融雪水が低温水領域12a側に流下する構成となっている。実施の形態では雪室10に近い側を低温水領域12a、遠い側を戻水領域12bとして配置している。ただし、流入口11が低温水領域12aの上方にあれば、低温水領域12aと戻水領域12bの配置は逆であってもよい。低温水領域12aと戻水領域12bとの間には隔壁28が設けられている。隔壁28は、ここでは両領域が等容積となるよう融雪水槽12の中間位置で槽の底面から鉛直に立設されている。そして、隔壁28の流入口11から遠い側の一端に設けた連通路29からのみ両領域間での水の流通が可能になっている。なお、夏季等になって最初に雪エネルギー供給システム1の運転を開始する際には、通常はそれまでに融解してできた融雪水が既に融雪水槽12内に貯留された状態となっているため、すぐに運転を開始できる。ただし、融雪水槽12内に融雪水が貯留されていない場合には、外部からの水を雪室10の雪Sに供給して強制的に融雪水を生成してから運転を開始してもよい。   The snow melting water tank 12 is divided into two regions, a low temperature water region 12a and a return water region 12b. A low-temperature water region 12a is disposed below the above-described inflow port 11, and the snow melt melted in the snow chamber 10 flows down to the low-temperature water region 12a side. In the embodiment, the side closer to the snow chamber 10 is disposed as the low temperature water region 12a, and the side far from the snow chamber 10 is disposed as the return water region 12b. However, if the inlet 11 is above the low temperature water region 12a, the arrangement of the low temperature water region 12a and the return water region 12b may be reversed. A partition wall 28 is provided between the low temperature water region 12a and the return water region 12b. Here, the partition wall 28 is erected vertically from the bottom surface of the tank at a middle position of the snowmelt water tank 12 so that both areas have an equal volume. The water can be circulated between the two regions only from the communication passage 29 provided at one end of the partition wall 28 far from the inlet 11. In addition, when the operation of the snow energy supply system 1 is started for the first time in summer or the like, normally, the snow melt water that has been melted so far is already stored in the snow melt water tank 12. Therefore, driving can be started immediately. However, when the snowmelt water is not stored in the snowmelt water tank 12, the operation may be started after supplying water from the outside to the snow S of the snow chamber 10 to forcibly generate the snowmelt water. .

上述のとおり、流入口11は低温水領域12aの上方に設けられており、低温水領域12aには融解して間もない融雪水が順次流入するので、低温水領域12aのほうが戻水領域12bよりも低温(例えば2℃以下)の融雪水が貯留される。一方、戻水領域12bには融解後に滞留して昇温した融雪水が貯留された状態となる。特に流入口11の下方近傍の水温が最も低く、戻水領域12bで連通口29とは離れる側の端部の水温が最も高くなる。   As described above, the inflow port 11 is provided above the low-temperature water region 12a, and snow melt water that has just been melted flows into the low-temperature water region 12a in sequence, so that the low-temperature water region 12a is in the return water region 12b. Snowmelt water at a lower temperature (for example, 2 ° C. or lower) is stored. On the other hand, the return water region 12b is in a state where the snowmelt water that has accumulated and has been heated after melting has been stored. In particular, the water temperature near the lower part of the inlet 11 is the lowest, and the water temperature at the end of the return water region 12b on the side away from the communication port 29 is the highest.

低温水領域12a内には冷水往路15の吸込口15aが設けられ、低温水領域12a内に一端が浸漬された冷水往路15に設置されている冷水ポンプP11の稼働により、低温水領域12a内の融雪水が汲み上げられ冷水往路15を通って熱交換器に送られる。戻水領域12bには排水路19の吸込口19aが設けられ、後述の水位センサ58で溢水の予兆を検知して排水路19に設置されている排水ポンプP12が稼働することにより、戻水領域12b内の融雪水が汲み上げられ系外に排出される。より詳細には、冷水往路15の吸込口15aは低温水領域12aの連通口29とは離れる側(流入口11に近い側)、排水路19の吸込口19aは戻水領域12bの連通口とは離れる側に設けられている。さらに換言すると、融雪水槽12内を低温水領域12aから連通口29を介して戻水領域12bまでの一連の流路として見ると、当該流路上で吸込口15aと吸込口19aとは最も離れるように配置されていると言える。そして吸込口15aから冷水ポンプP11で吸引され水中の吐出口18aに戻され、融雪水槽12内の水の流れは吐出口18aから吐出口15aへの隔壁を介したU字状を形成する。このようにすることで、冷熱として有効な低温の水は冷水往路15に供給される。また、融雪水槽12内の水を系外に排水する際にこの低温の水を排水することがない。   In the low-temperature water region 12a, a suction port 15a of the cold-water outward route 15 is provided, and the operation of the cold-water pump P11 installed in the cold-water forward route 15 with one end immersed in the low-temperature water region 12a causes Snowmelt water is pumped up and sent to the heat exchanger through the cold water outbound path 15. A suction port 19a of the drainage channel 19 is provided in the return water region 12b, and when the drainage pump P12 installed in the drainage channel 19 is operated by detecting a sign of overflow by a water level sensor 58 described later, the return water region The snowmelt water in 12b is pumped up and discharged out of the system. More specifically, the suction port 15a of the cold water outgoing path 15 is the side away from the communication port 29 of the low temperature water region 12a (the side close to the inlet 11), and the suction port 19a of the drainage channel 19 is the communication port of the return water region 12b. Is provided on the far side. In other words, when the inside of the snowmelt water tank 12 is viewed as a series of channels from the low temperature water region 12a to the return water region 12b through the communication port 29, the suction port 15a and the suction port 19a are most separated on the channel. It can be said that it is arranged. Then, the water is sucked from the suction port 15a by the cold water pump P11 and returned to the underwater discharge port 18a, and the water flow in the snow melting water tank 12 forms a U-shape through a partition wall from the discharge port 18a to the discharge port 15a. By doing so, low-temperature water effective as cold heat is supplied to the cold water forward path 15. Further, when the water in the snowmelt water tank 12 is drained out of the system, this low temperature water is not drained.

融雪水槽12内には温度センサ52が設置されており、融雪水槽12内の融雪水温度が検知され、温度センサ52の情報は、信号線を介して制御部(何れも不図示)に送られる。より詳細には、温度センサ52は融雪水槽12中の連通路29近傍、すなわち低温水領域12aと戻水領域12bとの中間の領域に設置されている。また、融雪水槽12内には、融雪水槽12に貯留された融雪水の水位を検知する水位センサ58が設置されており、信号線を介して水位の情報が制御部に送られる。   A temperature sensor 52 is installed in the snow melting water tank 12, the temperature of the snow melting water in the snow melting water tank 12 is detected, and the information of the temperature sensor 52 is sent to a control unit (all not shown) via a signal line. . More specifically, the temperature sensor 52 is installed in the vicinity of the communication passage 29 in the snowmelt water tank 12, that is, in an intermediate region between the low temperature water region 12a and the return water region 12b. Further, a water level sensor 58 for detecting the water level of the snow melt water stored in the snow melt water tank 12 is installed in the snow melt water tank 12, and information on the water level is sent to the control unit via a signal line.

なお、融雪水槽12底面において、上述の排水路19の吸込口19aや冷水往路15の吸込口15aからの水の吸込みをより確実に行うために、各吸込口19a,15aを配置する位置に釜場と呼ばれる底面をさらに窪ませた形状とし、その部分に吸込口19a,15aを配置してもよい。   In addition, in the bottom surface of the snowmelt water tank 12, in order to more reliably suck water from the suction port 19a of the drainage channel 19 and the suction port 15a of the cold water forward channel 15, the kettle is placed at a position where the suction ports 19a and 15a are disposed. The bottom surface called a field may have a further recessed shape, and the suction ports 19a and 15a may be arranged in that portion.

冷水往路15の、融雪水槽12の他側は熱交換器13に接続されている。また、熱交換器13には、他に二次冷水往路34、二次冷水還路33、冷水還路16が接続されている。冷水往路15からの融雪水と二次冷水還路33からの二次冷水とが熱交換器13により熱交換され、熱交換後の融雪水は冷水還路16に、二次冷水は二次冷水往路34にそれぞれ送水される。また、冷水往路15と冷水還路16の間にはバイパス路20が接続されている。   The other side of the cold water outbound path 15 is connected to a heat exchanger 13. In addition, a secondary chilled water outward path 34, a secondary chilled water return path 33, and a chilled water return path 16 are connected to the heat exchanger 13. The snowmelt water from the cold water outgoing path 15 and the secondary cold water from the secondary cold water return path 33 are heat-exchanged by the heat exchanger 13, and the snowmelt water after the heat exchange is sent to the cold water return path 16, and the secondary cold water is the secondary cold water. Water is sent to the outgoing path 34 respectively. A bypass path 20 is connected between the cold water forward path 15 and the cold water return path 16.

冷水往路15には温度センサ53が設置され、冷水往路15を流れる融雪水の温度が検知される。温度センサ53によって検知された融雪水温度の情報は信号線を介して制御部(何れも不図示)に送られる。また、冷水還路16には温度センサ54が設置され、冷水還路16を流れる融雪水の温度が検知される。温度センサ54によって検知された融雪水温度の情報は信号線を介して制御部に送られる。   A temperature sensor 53 is installed in the cold water outbound path 15 to detect the temperature of the snowmelt water flowing through the cold water outbound path 15. Information on the temperature of the melted water detected by the temperature sensor 53 is sent to a control unit (both not shown) via a signal line. A temperature sensor 54 is installed in the cold water return path 16 to detect the temperature of the snowmelt water flowing through the cold water return path 16. Information on the temperature of the melted snow detected by the temperature sensor 54 is sent to the control unit via a signal line.

冷水還路16は槽内戻路18と前述の融雪水供給路17とに分岐している。槽内戻路18は融雪水槽12内に繋がっており、その吐出口18aは融雪水槽12内の戻水領域12b側の連通口29とは離れる側に配置されている。換言すると、融雪水槽12内を低温水領域12aから連通口29を介して戻水領域12bまでの一連の流路として見たときに、吐出口18aは当該流路上で吸込口15aとは最も離れた位置に配置されている。これにより、熱交換器13を通り昇温した水をそのまま吸込口15aから冷水往路15に送水することがないようにしている。融雪水供給路17は前述のように雪室10内に繋がっており、融雪水供給路17に送水された水はヘッダー17aを介して散水ノズル17bから雪室10内に散水される。融雪水供給路17および槽内戻路18にはそれぞれ弁V11、弁V12が設置されており、何れも制御部からの指令に応じて開度制御される。   The cold water return path 16 is branched into a tank return path 18 and the above-described snowmelt water supply path 17. The tank return path 18 is connected to the snow melting water tank 12, and the discharge port 18 a is disposed on the side away from the communication port 29 on the return water region 12 b side in the snow melting water tank 12. In other words, when the snow melting water tank 12 is viewed as a series of flow paths from the low temperature water area 12a to the return water area 12b through the communication port 29, the discharge port 18a is farthest from the suction port 15a on the flow path. It is arranged at the position. Thereby, the water heated through the heat exchanger 13 is prevented from being sent as it is from the suction port 15a to the cold water forward path 15. The snow melting water supply path 17 is connected to the snow chamber 10 as described above, and the water fed to the snow melting water supply path 17 is sprinkled into the snow chamber 10 from the water spray nozzle 17b via the header 17a. A valve V11 and a valve V12 are provided in the snow melting water supply path 17 and the tank return path 18, respectively, and the opening degree is controlled according to a command from the control unit.

次に、上述したシステムの制御方法について説明する。冷水ポンプP11は、空調システム3において空調機32が冷房運転(冷熱利用運転)している間は稼働し、そうでない場合は停止するように制御される。即ち、空調機32の冷房運転中は、融雪水槽12内の融雪水を熱交換器13に供給し、空調機32において室内空気と熱交換されて昇温した二次冷水を降温させる。   Next, a method for controlling the above-described system will be described. The chilled water pump P11 is controlled to operate while the air conditioner 32 is in the cooling operation (cold heat utilization operation) in the air conditioning system 3, and is stopped otherwise. That is, during the cooling operation of the air conditioner 32, the snow melt water in the snow melt water tank 12 is supplied to the heat exchanger 13, and the secondary chilled water heated by the heat exchange with the indoor air in the air conditioner 32 is lowered.

排水ポンプP12は、融雪水槽12内の水位が上昇して水位センサ58によって高位側の所定以上であると検知されると稼働し、融雪水槽12内の水を排水口19aから排水路19を介して系外に排水する。そして水位が下降して、水位センサ58によって低位側の所定以下の水位であると検知されると、排水ポンプP12は停止する。これにより、融雪水槽12内の水位が所定範囲内に保たれる。また、水位センサ58を設けずに、排水ポンプP12をフロートスイッチを付属したポンプによって構成し、これにより水位を制御してもよい。   The drainage pump P12 is activated when the water level in the snowmelt water tank 12 rises and is detected by the water level sensor 58 to be higher than a predetermined value on the high side, and the water in the snowmelt water tank 12 is discharged from the drain port 19a through the drainage channel 19. To drain outside the system. When the water level falls and the water level sensor 58 detects that the water level is lower than the predetermined level on the lower side, the drainage pump P12 stops. Thereby, the water level in the snowmelt water tank 12 is maintained within a predetermined range. Further, without providing the water level sensor 58, the drainage pump P12 may be constituted by a pump attached with a float switch, thereby controlling the water level.

融雪水槽12内に設置された温度センサ52により検知された温度が、所定温度(例えば5℃)以上である場合には融雪水供給路17の弁V11を開、槽内戻路18の弁V12を閉として、冷水還路16を流れる融雪水を融雪水供給路17へ送水し、散水ノズル17bから雪室10内に散水されるようにする。一方、所定温度未満である場合には、融雪水供給路17の弁V11を閉、槽内戻路18の弁12を開として、冷水還路16を流れる融雪水を槽内戻路18へ送水し、融雪水槽12の戻水領域12b側に戻される。即ち、融雪水槽12内の水温が所定以上になると、熱交換器13において昇温された融雪水を雪と接触させることで降温するとともに、雪室10内の雪Sを融解させ、この降温した融雪水と新たに融解した融雪水を流入口11から融雪水槽12内に流入口11から融雪水槽12内に流入させて、融雪水槽12内の水温を降温させるように制御される。なお、弁V11を開、弁V12を閉とした状態が発明における供給状態に相当し、弁V11を閉、弁V12を開とした状態が発明における槽内戻状態に相当する。   When the temperature detected by the temperature sensor 52 installed in the snowmelt water tank 12 is equal to or higher than a predetermined temperature (for example, 5 ° C.), the valve V11 of the snowmelt water supply path 17 is opened and the valve V12 of the tank return path 18 is opened. Is closed, and the snowmelt water flowing through the cold water return passage 16 is fed to the snowmelt water supply passage 17 so as to be sprinkled into the snow chamber 10 from the watering nozzle 17b. On the other hand, when the temperature is lower than the predetermined temperature, the valve V11 of the snowmelt water supply path 17 is closed, the valve 12 of the tank return path 18 is opened, and the snowmelt water flowing through the cold water return path 16 is sent to the tank return path 18. Then, the water is returned to the water return region 12b side of the snow melting water tank 12. That is, when the water temperature in the snowmelt water tank 12 exceeds a predetermined value, the temperature of the snowmelt water in the heat exchanger 13 is lowered by bringing it into contact with the snow, and the snow S in the snow chamber 10 is melted and the temperature is lowered. Control is performed so that the snowmelt water and the newly melted snowmelt water flow into the snowmelt water tank 12 from the inlet 11 and into the snowmelt water tank 12 from the inlet 11 to lower the water temperature in the snowmelt water tank 12. The state in which the valve V11 is opened and the valve V12 is closed corresponds to the supply state in the invention, and the state in which the valve V11 is closed and the valve V12 is opened corresponds to the tank return state in the invention.

冷水往路15の弁V14、バイパス路20の弁V13は、二次冷水往路34の二次冷水ポンプP31は、二次冷水往路34の温度センサ56、及び二次冷水還路33の温度センサ55で検知される温度がそれぞれ所定温度(例えば12℃、7℃)となるように、それぞれ開度制御、送水量制御され、熱交換器13に通水する融雪水及び二次冷水の量を調節する。   The valve V14 of the chilled water outbound path 15 and the valve V13 of the bypass path 20 are the secondary chilled water pump P31 of the secondary chilled water outbound path 34, the temperature sensor 56 of the secondary chilled water outbound path 34, and the temperature sensor 55 of the secondary chilled water return path 33. The degree of opening is controlled and the amount of water supplied is controlled so that the detected temperatures become predetermined temperatures (for example, 12 ° C. and 7 ° C.), respectively, and the amounts of snowmelt water and secondary cold water passing through the heat exchanger 13 are adjusted. .

弁V31、弁V32、弁V33、弁V34(発明の空調用冷水流路切替装置に相当)は、雪エネルギー供給システム1によって空調システム3に十分な冷熱を供給できる状態であれば、雪エネルギー供給システム1の冷熱を空調システム3に供給され、そうでない場合は熱源機によって冷熱が供給されるように開閉制御される。具体的には、温度センサ53により検知する温度(即ち冷水往路15を流れる融雪水温)が所定温度(例えば5℃)未満であれば、雪エネルギー供給システム1によって空調システム3に十分な冷熱を供給できるとして、弁V31及び弁V32を開、弁V33及び弁V34を閉とし、二次冷水が空調機32と熱交換器13とを循環するようにする。一方、所定温度以上であれば、弁V31及び弁V32を閉、弁V33及び弁V34を開とし、二次冷水空調機32と熱源機とを循環するようにする。なお、上述の、弁V31及び弁V32を開、弁V33及び弁V34を閉とした状態が、発明における熱交換器循環状態に相当し、弁V31及び弁V32を閉、弁V33及び弁V34を開とした状態が、発明における熱源機循環状態に相当する。   If the valve V31, the valve V32, the valve V33, and the valve V34 (corresponding to the cold water flow switching device for air conditioning of the invention) can supply sufficient cold heat to the air conditioning system 3 by the snow energy supply system 1, they supply snow energy. The cold heat of the system 1 is supplied to the air conditioning system 3, and if not, the open / close control is performed so that the cold heat is supplied by the heat source unit. Specifically, if the temperature detected by the temperature sensor 53 (that is, the temperature of melted snow flowing through the chilled water outward path 15) is lower than a predetermined temperature (for example, 5 ° C.), sufficient cold heat is supplied to the air conditioning system 3 by the snow energy supply system 1. If possible, the valve V31 and the valve V32 are opened, the valve V33 and the valve V34 are closed, and the secondary cold water is circulated between the air conditioner 32 and the heat exchanger 13. On the other hand, if the temperature is equal to or higher than the predetermined temperature, the valve V31 and the valve V32 are closed, the valve V33 and the valve V34 are opened, and the secondary chilled water air conditioner 32 and the heat source device are circulated. The state in which the valve V31 and the valve V32 are opened and the valve V33 and the valve V34 are closed corresponds to the heat exchanger circulation state in the invention. The valve V31 and the valve V32 are closed, and the valve V33 and the valve V34 are closed. The opened state corresponds to the heat source machine circulation state in the invention.

以上説明した本実施形態によれば、雪室10内で融解した融雪水が流入する低温水領域12a側の融雪水が冷熱利用系の熱媒体と熱交換するための熱交換器13に供給され、冷熱利用系にて冷熱が利用された後の融雪水は戻水領域12bに戻されるか或いは雪室10内の雪Sに散水される。これにより、熱交換器13には、冷熱が利用されて昇温した後の昇温した融雪水は供給されず、低温の融雪水が供給される構成となっているので、より有効な冷熱が優先して冷熱利用系に供給される。   According to the present embodiment described above, the snowmelt water on the low temperature water region 12a side into which the snowmelt water melted in the snow chamber 10 flows is supplied to the heat exchanger 13 for exchanging heat with the heat medium of the cold energy utilization system. The snowmelt water after the use of the cold heat in the cold heat utilization system is returned to the return water region 12b or sprayed into the snow S in the snow chamber 10. Thus, the heat exchanger 13 is configured to be supplied with low-temperature snowmelt water without being supplied with the temperature-increased snowmelt water after the temperature is raised by using cold heat, so that more effective cold heat is generated. Priority is supplied to the cold energy utilization system.

また、融雪水槽内12内の水温が所定以上の場合には、熱交換器13にて昇温した融雪水を雪室10内の雪Sに散水して、雪Sと接触させることにより降温し同時に雪Sを融解してさらに融雪水を生成して融雪水槽12に流入するので、融雪水槽12内の水温を降温させて、冷熱利用系における有効な冷熱の供給に寄与させることができる。さらにまた、融雪水槽12内の融雪水を系外に排水する際には熱交換器13にて昇温した融雪水を排水するので、冷熱として有効であるより低温の融雪水を排水することを抑制することができる。   Further, when the water temperature in the snowmelt water tank 12 is equal to or higher than a predetermined value, the temperature is lowered by spraying the snowmelt water heated by the heat exchanger 13 onto the snow S in the snow chamber 10 and bringing it into contact with the snow S. At the same time, the snow S is melted to further generate snowmelt water and flow into the snowmelt water tank 12, so that the water temperature in the snowmelt water tank 12 can be lowered to contribute to the supply of effective cold heat in the cold energy utilization system. Furthermore, when the snowmelt water in the snowmelt water tank 12 is drained out of the system, the snowmelt water that has been heated by the heat exchanger 13 is drained, so that the lower temperature snowmelt water that is effective as cold heat is drained. Can be suppressed.

1 雪エネルギー供給システム(雪類エネルギー供給システム)
10 雪室
11 流入口
12 融雪水槽
12a 低温水領域
12b 戻水領域
13 熱交換器
15 冷水往路
P11 冷水ポンプ
16 冷水還路
17 融雪水供給路
17a ヘッダー
17b 散水ノズル
18 槽内戻路
19 排水路
P12 排水ポンプ
20 バイパス路
3 空調システム(冷熱利用系)
32 空調機
33 二次冷水還路
34 二次冷水往路
P31 二次冷水ポンプ
36 熱源機側還路
37 熱源機側往路
V11、V12、V13、V14、V31、V32、V33、V34 弁
1 Snow energy supply system (snow energy supply system)
DESCRIPTION OF SYMBOLS 10 Snow chamber 11 Inlet 12 Snow melting water tank 12a Low temperature water area | region 12b Return water area 13 Heat exchanger 15 Chilled water outward path P11 Chilled water pump 16 Chilled water return path 17 Snowmelt water supply path 17a Header 17b Water spray nozzle 18 Intra tank return path 19 Drainage path P12 Drainage pump 20 Bypass 3 Air-conditioning system (cold heat utilization system)
32 Air conditioner 33 Secondary chilled water return path 34 Secondary chilled water return path P31 Secondary chilled water pump 36 Heat source machine side return path 37 Heat source machine side return path V11, V12, V13, V14, V31, V32, V33, V34 Valve

Claims (5)

雪類を貯留するための雪室と、
該雪室内の雪類が融解してできた融雪水が雪室との間に設けた流入口から流入し貯留される融雪水槽と、
前記融雪水槽内の融雪水を冷熱利用系の冷却用熱媒体と熱交換するための熱交換器と、
前記融雪水槽内の融雪水を前記熱交換器に送水するための流路である冷水往路と、
前記熱交換器を通った後の融雪水を前記雪室内の雪類に供給するために雪室内に送水するための流路である融雪水供給路と、
前記熱交換器を通った後の融雪水を前記融雪水槽内に戻すための流路である槽内戻路と、を備え、
前記冷水往路は前記融雪水槽内に吸込口を有し当該箇所に貯留されている融雪水を前記熱交換器に送水するための流路であって、
前記槽内戻路を通水する融雪水は、前記融雪水槽内に流入し、
前記融雪水槽内に前記流入口を介して融雪水が流入する位置と前記冷水往路の前記吸込口との距離は、前記融雪水槽内に前記流入口を介して融雪水が流入する位置と前記槽内戻路を通水する融雪水が前記融雪水槽内に流入する位置との距離よりも短いことを特徴とする、
雪類エネルギー供給システム。
A snow chamber for storing snow,
A snowmelt water tank in which snowmelt water formed by melting the snow in the snow chamber flows in from an inlet provided between the snow chamber and stored;
A heat exchanger for exchanging heat between the snowmelt water in the snowmelt water tank and a cooling heat medium of a cold energy utilization system;
A cold water forward path which is a flow path for sending the snow melt water in the snow melt water tank to the heat exchanger;
A snowmelt water supply path, which is a flow path for supplying water into the snow compartment in order to supply the snowmelt water after passing through the heat exchanger to the snow in the snow compartment;
A tank return path that is a flow path for returning the snowmelt water after passing through the heat exchanger into the snowmelt water tank;
The cold water outbound path has a suction port in the snow melting water tank and is a flow path for sending snow melting water stored in the location to the heat exchanger,
Meltwater that passed through the tank return passage flows into the snow melting water tank,
The distance between the position where snowmelt water flows into the snowmelt water tank via the inlet and the suction port of the cold water outbound path is the position where the snowmelt water flows into the snowmelt water tank via the inlet and the tank The snowmelt water flowing through the inner return path is shorter than the distance from the position flowing into the snowmelt water tank ,
Snow energy supply system.
前記融雪水槽は内部に隔壁を設けることにより低温水領域と戻水領域とに隔てられ、
前記隔壁は隔壁の一端に設けた連通口からのみ前記低温水領域と前記戻水領域との間の通水を可能とし、
前記冷水往路は前記低温水領域の前記連通口とは離れた位置に吸込口を有し、
前記槽内戻路は前記戻水領域の前記連通口とは離れた位置に吐出口を有する、
請求項1記載の雪類エネルギー供給システム。
The snowmelt water tank is separated into a low temperature water region and a return water region by providing a partition inside.
The partition wall allows water flow between the low-temperature water region and the return water region only from a communication port provided at one end of the partition wall.
The cold water outbound path has a suction port at a position away from the communication port in the low temperature water region,
The return path in the tank has a discharge port at a position away from the communication port in the return water region.
The snow energy supply system according to claim 1.
前記雪類エネルギー供給システムは、
前記熱交換器を通った後の融雪水を、前記槽内戻路に通水させる槽内戻状態と、前記融雪水供給路に通水させる供給状態とに切り替える融雪水流路切替装置と、
前記融雪水槽内に貯留された融雪水の温度を検知する融雪水温度センサと、
をさらに備え、
前記融雪水流路切替装置は、前記融雪水温度センサによって融雪水の温度が所定温度以上であると検知されると、供給状態となるように制御される、
請求項1または2に記載の雪類エネルギー供給システム。
The snow energy supply system includes:
A snowmelt water flow path switching device that switches between a state of returning the melted snow after passing through the heat exchanger to the return state in the tank and a supply state in which the water is supplied to the snowmelt water supply path,
A snowmelt water temperature sensor for detecting the temperature of the snowmelt water stored in the snowmelt water tank;
Further comprising
The snowmelt water flow switching device is controlled to be in a supply state when the snowmelt water temperature sensor detects that the temperature of the snowmelt water is equal to or higher than a predetermined temperature.
The snow energy supply system according to claim 1 or 2.
前記冷熱利用系は、空調用冷水を前記冷却用媒体としてそのシステム内を循環し、当該空調用冷水を冷却する熱源機を有する、空調システムであって、
空調用冷水が通水する流路を、前記空調用冷水を前記熱交換器に通水して循環させる熱交換器循環状態と、前記空調用の冷水を前記熱源機に通水して循環させる熱源機循環状態と、に切り替える空調用冷水流路切替装置を備え、
前記雪類エネルギー供給システムは、前記冷水往路内の融雪水温度を検知する冷水温度センサをさらに備え、
前記空調用冷水流路切替装置は、前記冷水往路内の融雪水温度が所定以上であると検知されると、熱源機循環状態となるように制御される、
請求項1から3の何れか一項に記載の雪類エネルギー供給システム。
The cold energy utilization system is an air conditioning system having a heat source device for circulating air conditioning cold water as the cooling medium and cooling the air conditioning cold water,
A heat exchanger circulation state in which the air conditioning cold water is circulated through the heat exchanger through a flow path through which the air conditioning cold water flows, and the air conditioning cold water is circulated through the heat source device. With a heat source machine circulation state, and equipped with a cold water flow path switching device for air conditioning,
The snow energy supply system further includes a cold water temperature sensor for detecting a temperature of melted snow water in the cold water outbound path,
The air-conditioning cold water flow switching device is controlled to be in a heat source machine circulation state when it is detected that the temperature of the snowmelt water in the cold water outgoing path is equal to or higher than a predetermined value.
The snowy energy supply system according to any one of claims 1 to 3.
雪室内の雪類が融解して融雪水槽内に流入して貯留された融雪水を冷熱利用系の冷却用熱媒体との熱交換に利用し、
当該熱交換後の融雪水を雪室内の雪類に供給するか、或いは前記融雪水槽内に戻し、
前記冷熱利用系の冷却用熱媒体との熱交換後に融雪水槽内に戻された融雪水よりも、前記雪室内で融解して融雪水槽内に流入した融雪水を優先して、前記冷熱利用系の冷却用熱媒体との熱交換に利用し、
融雪水槽内に貯留された融雪水の温度が所定温度以上である場合には、熱交換後の融雪水を雪室内の雪類に供給する、
雪類エネルギー供給方法。
The snow melt in the snow chamber melts and flows into the snow melting water tank and is stored for heat exchange with the cooling heat medium of the cold energy utilization system.
Supply the snowmelt water after the heat exchange to the snow in the snow chamber, or return it to the snowmelt water tank,
Prior to the snowmelt water returned into the snowmelt water tank after the heat exchange with the cooling heat medium of the cold energy utilization system, the snowmelt water that has melted in the snow chamber and flowed into the snowmelt water tank has priority. Used for heat exchange with the cooling heat medium,
When the temperature of the snowmelt water stored in the snowmelt water tank is equal to or higher than a predetermined temperature, the snowmelt water after heat exchange is supplied to the snow in the snow compartment.
Snow energy supply method.
JP2014004082A 2014-01-14 2014-01-14 Snow energy supply system Active JP6279906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014004082A JP6279906B2 (en) 2014-01-14 2014-01-14 Snow energy supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014004082A JP6279906B2 (en) 2014-01-14 2014-01-14 Snow energy supply system

Publications (2)

Publication Number Publication Date
JP2015132423A JP2015132423A (en) 2015-07-23
JP6279906B2 true JP6279906B2 (en) 2018-02-14

Family

ID=53899756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014004082A Active JP6279906B2 (en) 2014-01-14 2014-01-14 Snow energy supply system

Country Status (1)

Country Link
JP (1) JP6279906B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3872225B2 (en) * 1999-02-08 2007-01-24 株式会社竹中工務店 Chilled heat storage device using snow and its method
JP2003056866A (en) * 2001-08-07 2003-02-26 Itogumi Construction Co Ltd Mobile chilled water circulating type cooling equipment utilizing snow and ice

Also Published As

Publication number Publication date
JP2015132423A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
US10295262B2 (en) Thermosyphon coolers for cooling systems with cooling towers
JP4706836B2 (en) Cooling system
JP2013119989A (en) Free cooling chiller
CN216522078U (en) Air conditioner
JP5769684B2 (en) Heat pump equipment
JP5383409B2 (en) Ice storage type heat source device
JP6279906B2 (en) Snow energy supply system
CN109579152A (en) A kind of electric cabinet and air-conditioner set
JP4854399B2 (en) Cold water production system
KR20080046334A (en) Air-conditioning apparatus
JP5070572B2 (en) Subway vehicle air conditioning system
JP6201768B2 (en) Liquid circuit device
JPH05322239A (en) Ice heat storage device
JP5487907B2 (en) Water treatment system
JP2011247548A (en) Snow air conditioning system
KR100779555B1 (en) Heat pump system having curcuit for compensating temperature of heat source or sink
JP2008145003A (en) Heat pump unit
JP6116093B2 (en) Heat source system
KR101665138B1 (en) Water intake apparatus for Water purifier with ice maker
JP2013178022A (en) Air conditioner
KR102164834B1 (en) Water Cooling Heat Exchanger Of Cooling Device
JP3731121B2 (en) Ice heat storage device
JP4922028B2 (en) Ice heat storage equipment
KR200222684Y1 (en) Thawing Device for Ice Storage
KR20210107712A (en) Atmospheric water generator with water cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170111

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180118

R150 Certificate of patent or registration of utility model

Ref document number: 6279906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150