JP4922028B2 - Ice heat storage equipment - Google Patents

Ice heat storage equipment Download PDF

Info

Publication number
JP4922028B2
JP4922028B2 JP2007066713A JP2007066713A JP4922028B2 JP 4922028 B2 JP4922028 B2 JP 4922028B2 JP 2007066713 A JP2007066713 A JP 2007066713A JP 2007066713 A JP2007066713 A JP 2007066713A JP 4922028 B2 JP4922028 B2 JP 4922028B2
Authority
JP
Japan
Prior art keywords
ice
water
heat storage
storage tank
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007066713A
Other languages
Japanese (ja)
Other versions
JP2008224183A (en
Inventor
芳嗣 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2007066713A priority Critical patent/JP4922028B2/en
Publication of JP2008224183A publication Critical patent/JP2008224183A/en
Application granted granted Critical
Publication of JP4922028B2 publication Critical patent/JP4922028B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、水とともに氷を蓄熱槽に貯留して冷熱を顕熱及び潜熱の形で蓄熱し、その蓄熱冷熱を空調用途等に供する氷蓄熱設備に関する。   The present invention relates to an ice heat storage facility that stores ice together with water in a heat storage tank, stores cold heat in the form of sensible heat and latent heat, and uses the heat storage cold energy for air conditioning applications and the like.

従来、氷蓄熱設備においては、蓄熱槽に蓄氷するのに、過冷却解除方式で生成した氷と水とのスラリー(氷水スラリー)を蓄熱槽における貯留水の上方空間から貯留水上へ吐出供給する氷供給口や、氷水スラリーを貯留水の水面近傍で貯留水中へ吐出供給する氷供給口を設ける、また、貯留水に浮遊する氷集積層の形で蓄氷した後、その氷集積層を融解させて氷の保有潜熱(冷熱潜熱)を取り出す解氷を行うのに、蓄熱槽下部からの取出冷水を供給する空調器やファンコイルユニットなどの冷熱消費装置からの戻り水を氷集積層に対して上方から散水する散水ノズルや、戻り水を氷集積層の下面近傍で貯留水中に吐出する水中ノズルを設ける、さらにまた、この解氷に続いて冷熱消費装置からの戻り水を蓄熱槽上部に戻すのに、その戻り水を貯留水の水面近傍で貯留水中へ吐出させる還水口を設けるなどしていた(特許文献1参照)。   Conventionally, in an ice heat storage facility, ice and water slurry (ice water slurry) generated by the supercooling release method is discharged and supplied from above the stored water in the heat storage tank onto the stored water to store ice in the heat storage tank. An ice supply port and an ice supply port that discharges ice water slurry to the stored water near the surface of the stored water are provided, and after accumulating ice in the form of an ice accumulation layer floating in the stored water, the ice accumulation layer is melted. In order to perform ice melting to extract the latent heat of the ice (cold latent heat), the return water from the cooling / consuming devices such as air conditioners and fan coil units that supply the extracted cold water from the lower part of the heat storage tank is supplied to the ice accumulation layer. In addition, a sprinkling nozzle that sprinkles water from above and a submersible nozzle that discharges return water into the stored water near the bottom surface of the ice accumulation layer are provided. To return the water Distilled water was such as provided instead Mizuguchi for discharging water surface near the reservoir water (see Patent Document 1).

特開平6−300327号公報JP-A-6-300347

しかし、従来の氷蓄熱設備では、上記の如き氷供給口、散水ノズル、水中ノズル、還水口などを蓄熱槽に設けるために蓄熱槽の構造が複雑になり、その構造の複雑さの割りに蓄熱槽の機能が低い問題があった。   However, in the conventional ice heat storage equipment, the structure of the heat storage tank becomes complicated because the ice supply port, the watering nozzle, the submersible nozzle, the return water port and the like as described above are provided in the heat storage tank. There was a problem that the function of the tank was low.

この実情に鑑み、本発明の主たる課題は、合理的な設備構成を採ることにより、蓄熱槽の機能を効果的に向上させる点にある。   In view of this situation, the main problem of the present invention is to effectively improve the function of the heat storage tank by adopting a rational equipment configuration.

氷蓄熱設備を構成するのに、参考構成1として、
蓄熱槽に粒状氷を供給して前記蓄熱槽の貯留水に浮遊する氷集積層を形成する蓄氷運転と、この蓄氷運転の後に前記蓄熱槽の下部から冷熱消費装置への供給冷水を取り出しながら前記氷集積層を前記冷熱消費装置からの戻り水により融解させる解氷運転とを実施する氷蓄熱設備において、
前記貯留水の上方空間に吐出口を配置し、前記蓄氷運転では前記吐出口から前記粒状氷を吐出させて吐出口よりも低い位置に前記氷集積層を形成し、かつ、前記解氷運転では前記吐出口から前記戻り水を吐出させて前記氷集積層を融解させる運転制御手段を設けてもよい。
To configure the ice heat storage equipment, as Reference Configuration 1,
An ice storage operation in which granular ice is supplied to the heat storage tank to form an ice accumulation layer floating in the stored water in the heat storage tank, and the cold water supplied to the cold energy consumption device is taken out from the lower part of the heat storage tank after this ice storage operation However, in the ice heat storage facility for performing the ice melting operation to melt the ice accumulation layer with the return water from the cold energy consumption device,
A discharge port is disposed in an upper space of the stored water, and in the ice storage operation, the granular ice is discharged from the discharge port to form the ice accumulation layer at a position lower than the discharge port. Then, operation control means for discharging the return water from the discharge port and melting the ice accumulation layer may be provided.

つまり、この参考構成1によれば、蓄氷運転において貯留水に浮遊する氷集積層を形成するのに、貯留水の上方空間に配置した吐出口から粒状氷を吐出させることで、その吐出口よりも低い位置に氷集積層を形成するから、例えば、粒状氷を貯留水の水面近傍で水中に吐出して氷集積層を形成する方式などに比べ、貯留水や成長する氷集積層自身が氷吐出の障害にならない状態で粒状氷を吐出口から円滑に吐出させることができ、これにより、蓄氷面や次工程の解氷面において良好な氷集積層を能率良く形成することが容易になる。   In other words, according to the reference configuration 1, in order to form an ice accumulation layer floating in the stored water in the ice storage operation, by discharging granular ice from the discharge port arranged in the space above the stored water, the discharge port Since the ice accumulation layer is formed at a lower position, for example, compared to a method in which granular ice is discharged into the water near the surface of the stored water to form the ice accumulation layer, the stored water and the growing ice accumulation layer itself are Granular ice can be smoothly discharged from the discharge port without hindering ice discharge, which makes it easy to efficiently form a good ice accumulation layer on the ice storage surface and the de-icing surface of the next process. Become.

また、蓄氷運転後の解氷運転において氷集積層を融解させるのに、粒状氷に代え冷熱消費装置からの戻り水を上記吐出口から吐出させることで、その戻り水を上記氷集積層(すなわち、吐出口よりも低い位置に形成された氷集積層)に対し散水して氷集積層を融解させることができ、これにより、例えば、戻り水を貯留水の水中に吐出して氷集積層を融解させる方式などに比べ、蓄熱槽下部からの冷水取出に対し氷集積層の融解を平面視で全体的にムラなく進めて氷の保有潜熱を円滑に取り出すなど良好に氷集積層を融解させることが容易になる。   Further, in order to melt the ice accumulation layer in the ice-breaking operation after the ice storage operation, the return water is discharged from the discharge port instead of the granular ice, and the return water is discharged from the ice accumulation layer ( That is, it is possible to melt the ice accumulation layer by spraying water on the ice accumulation layer formed at a position lower than the discharge port, and thereby, for example, the return water is discharged into the water of the stored water. Compared to the method that melts the ice, the ice accumulation layer is melted well, for example, the melting of the ice accumulation layer is progressed evenly in plan view to remove cold water from the lower part of the heat storage tank, and the latent heat of ice is taken out smoothly. It becomes easy.

そして、このように蓄氷運転及びその後の解氷運転の夫々において蓄熱槽の機能を高く確保しながらも、吐出口を蓄氷運転における粒状氷の吐出と解氷運転における戻り水の吐出とに兼用する構成であるから、その兼用化により蓄熱槽の槽構造を簡素にすることもでき、これにより、設備コストを安価にするとともに、運転上や保守上の管理も容易にすることができる。   And while ensuring the function of the heat storage tank high in each of the ice storage operation and the subsequent ice melting operation in this way, the discharge port is used for discharging granular ice in the ice storage operation and discharging return water in the ice melting operation. Since the structure is shared, the shared structure can also simplify the structure of the heat storage tank, thereby reducing the equipment cost and facilitating operational and maintenance management.

また、氷蓄熱設備を構成するのに、参考構成2として、
蓄熱槽の下部から冷熱消費装置への供給冷水を取り出しながら前記蓄熱槽の貯留水に浮遊する氷集積層を前記冷熱消費装置からの戻り水により融解させる解氷運転と、この解氷運転に続いて前記蓄熱槽の下部から前記冷熱消費装置への供給冷水を取り出しながら前記冷熱消費装置からの戻り水を前記蓄熱槽の上部に戻す水放熱運転とを実施する氷蓄熱設備において、
前記蓄熱槽の上部に上下移動可能な吐出口を配置し、前記解氷運転では前記吐出口を前記貯留水の上方空間で前記氷集積層よりも高く位置させて、その吐出口から前記戻り水を吐出させることで前記氷集積層を融解させ、かつ、前記水放熱運転では前記吐出口を前記貯留水の水面近傍で水中に位置させて、その吐出口から前記戻り水を吐出させることで戻り水を蓄熱槽上部に戻す運転制御手段を設けてもよい。
In addition, as a reference configuration 2,
Following ice melting operation, the ice accumulation layer floating in the stored water of the heat storage tank is melted by the return water from the cold energy consumption apparatus while taking out the cold water supplied to the cold energy consumption apparatus from the lower part of the heat storage tank. In the ice heat storage facility for carrying out the water heat radiation operation for returning the return water from the cold energy consumption device to the upper portion of the heat accumulation tank while taking out the cold water supplied to the cold energy consumption device from the lower portion of the heat accumulation tank,
A discharge port that can be moved up and down is disposed at the top of the heat storage tank, and in the ice melting operation, the discharge port is positioned higher than the ice accumulation layer in the space above the stored water, and the return water is discharged from the discharge port. The ice accumulation layer is melted by discharging the water, and in the water heat radiation operation, the discharge port is positioned in the vicinity of the water surface of the stored water, and the return water is discharged from the discharge port. Operation control means for returning water to the upper part of the heat storage tank may be provided.

つまり、この参考構成2によれば、解氷運転において氷集積層を融解させるのに、上下移動可能な吐出口を貯留水の上方空間で氷集積層よりも高く位置させて、その吐出口から冷熱消費装置よりの戻り水を吐出させるから、その戻り水を氷集積層(すなわち、吐出口よりも低い位置に形成された氷集積層)に対し散水して氷集積層を融解させることができ、これにより、例えば、戻り水を貯留水の水中に吐出して氷集積層を融解させる方式などに比べ、蓄熱槽下部からの冷水取出に対し氷集積層の融解を平面視で全体的にムラなく進めて氷の保有潜熱(冷潜熱)を円滑に取り出すなど良好に氷集積層を融解させることが容易になる。   That is, according to the reference configuration 2, in order to melt the ice accumulation layer in the ice-breaking operation, the discharge port that can move up and down is positioned higher than the ice accumulation layer in the upper space of the stored water, Since the return water from the chiller is discharged, the return water can be sprinkled over the ice accumulation layer (that is, the ice accumulation layer formed at a position lower than the discharge port) to melt the ice accumulation layer. Thus, for example, compared to a method in which the return water is discharged into the stored water and the ice accumulation layer is melted, the melting of the ice accumulation layer is generally uneven in a plan view when the cold water is taken out from the lower part of the heat storage tank. It is easy to melt the ice accumulation layer satisfactorily, for example, by smoothly removing the retained latent heat of ice (cold latent heat).

また、解氷運転に続く水放熱運転において冷熱消費装置からの戻り水を蓄熱槽上部に戻すのに、上下移動可能な吐出口を貯留水の上方空間から下降させて貯留水の水面近傍で水中に位置させた状態で、その吐出口から戻り水を吐出させるから、例えば、氷集積層の無い状態で戻り水を貯留水の上方空間に吐出させて蓄熱槽上部に戻すなどに比べ、蓄熱槽下部からの冷水取出に対し戻り水による貯留水の乱れを抑止して貯留水を温度成層状態に保つなど良好に戻り水を蓄熱槽に戻すことが容易になる。   In order to return the return water from the cold energy consuming device to the upper part of the heat storage tank in the water heat radiation operation following the ice-melting operation, the discharge port that can be moved up and down is lowered from the upper space of the stored water, and the In this state, the return water is discharged from the discharge port. For example, compared with the case where the return water is discharged to the upper space of the stored water and returned to the upper part of the heat storage tank without the ice accumulation layer. It becomes easy to return the returned water to the heat storage tank well, for example, by keeping the stored water in a temperature stratified state by suppressing disturbance of the stored water due to the return water with respect to the cold water extraction from the lower part.

そして、このように解氷運転及びそれに続く水放熱運転の夫々において蓄熱槽の機能を高く確保しながらも、吐出口を解氷運転における貯留水上方空間での戻り水吐出と水放熱運転における貯留水中での戻り水吐出とに兼用する構成であるから、その兼用化により蓄熱槽の槽構造を簡素にすることもでき、これにより、設備コストを安価にするとともに、運転上や保守上の管理も容易にすることができる。   And while ensuring the function of the heat storage tank high in each of the ice-melting operation and the water-dissipating operation that follows in this manner, the discharge outlet is discharged in the space above the stored water in the ice-breaking operation and stored in the water-dissipating operation. Since it is also used for return water discharge in water, it can also simplify the tank structure of the heat storage tank, thereby reducing the equipment cost and operating and maintenance management. Can also be made easier.

なお、本発明の実施において、上記の参考構成1と参考構成2とを併行実施すれば、蓄熱槽の機能向上及び蓄熱槽構造の簡素化を一層効果的に達成することができる。   In addition, in implementation of this invention, if said reference structure 1 and reference structure 2 are implemented simultaneously, the function improvement of a thermal storage tank and simplification of a thermal storage tank structure can be achieved more effectively.

さらに、氷蓄熱設備を構成するのに、参考構成3として、
蓄熱槽に粒状氷を供給して前記蓄熱槽の貯留水に浮遊する氷集積層を形成する蓄氷運転と、この蓄氷運転の後に前記蓄熱槽の下部から冷熱消費装置への供給冷水を取り出しながら前記氷集積層を前記冷熱消費装置からの戻り水により融解させる解氷運転とを実施する氷蓄熱設備であって、
前記蓄熱槽の上部に上下移動可能な吐出口を配置し、
前記蓄氷運転では、前記蓄熱槽における貯留水の上方空間に前記吐出口を位置させて、この吐出口から前記粒状氷を吐出させることで、前記吐出口よりも低い位置に前記氷集積層を形成するとともに、
この氷集積層の上面と前記吐出口との離間寸法を所定寸法に保つ状態に前記氷集積層の成長に伴い前記吐出口を上昇させ、
前記解氷運転では、前記吐出口を前記蓄熱槽における貯留水の上方空間で前記氷集積層よりも高く位置させて、この吐出口から前記戻り水を吐出させることで、前記氷集積層を融解させる運転制御手段を設けてもよい。
In addition, to configure the ice heat storage equipment, as Reference Configuration 3,
An ice storage operation in which granular ice is supplied to the heat storage tank to form an ice accumulation layer floating in the stored water in the heat storage tank, and the cold water supplied to the cold energy consumption device is taken out from the lower part of the heat storage tank after this ice storage operation An ice heat storage facility that performs an ice-breaking operation in which the ice accumulation layer is melted by return water from the cold energy consumption device,
Disposing a discharge port capable of moving up and down at the top of the heat storage tank,
In the ice storage operation, the discharge port is positioned in a space above the stored water in the heat storage tank, and the granular ice is discharged from the discharge port, whereby the ice accumulation layer is placed at a position lower than the discharge port. With forming
Increasing the discharge port along with the growth of the ice accumulation layer in a state in which the distance between the upper surface of the ice accumulation layer and the discharge port is maintained at a predetermined size,
In the ice melting operation, the discharge port is positioned higher than the ice accumulation layer in the space above the stored water in the heat storage tank, and the return water is discharged from the discharge port, thereby melting the ice accumulation layer. You may provide the operation control means to make .

つまり、この参考構成3によれば、前述した参考構成1と同様、蓄氷運転において貯留水に浮遊する氷集積層を形成するのに、貯留水の上方空間に配置した吐出口から粒状氷を吐出させることで、その吐出口よりも低い位置に氷集積層を形成するから、例えば、粒状氷を貯留水の水面近傍で水中に吐出して氷集積層を形成する方式などに比べ、貯留水や成長する氷集積層自身が氷吐出の障害にならない状態で粒状氷を吐出口から円滑に吐出させることができ、これにより、蓄氷面や次工程の解氷面において良好な氷集積層を能率良く形成することが容易になる。
また、蓄氷運転後の解氷運転において氷集積層を融解させるのに、粒状氷に代え冷熱消費装置からの戻り水を上記吐出口から吐出させることで、その戻り水を上記氷集積層(すなわち、吐出口よりも低い位置に形成された氷集積層)に対し散水して氷集積層を融解させることができ、これにより、例えば、戻り水を貯留水の水中に吐出して氷集積層を融解させる方式などに比べ、蓄熱槽下部からの冷水取出に対し氷集積層の融解を平面視で全体的にムラなく進めて氷の保有潜熱を円滑に取り出すなど良好に氷集積層を融解させることが容易になる。
さらにまた、このように蓄氷運転及びその後の解氷運転の夫々において蓄熱槽の機能を高く確保しながらも、吐出口を蓄氷運転における粒状氷の吐出と解氷運転における戻り水の吐出とに兼用する構成であるから、その兼用化により蓄熱槽の槽構造を簡素にすることもでき、これにより、設備コストを安価にするとともに、運転上や保守上の管理も容易にすることができる。
そして、これらのことに加え、この参考構成3によれば、貯留水の上方空間に配置した吐出口から粒状氷を吐出させて、その吐出口の下方に氷集積層を形成するのに、その氷集積層の成長に伴い吐出口を上昇させて氷集積層上面と吐出口との離間寸法を所定寸法に保つようにするから、例えば、吐出口が固定で氷集積層の成長に伴い氷集積層上面と吐出口との離間寸法が徐々に短くなる(すなわち、氷集積層上面からの吐出口高さが徐々に低くなる)のに比べ、氷集積層の上面に対する吐出粒状氷の供給状態を一定の良好な状態に保って氷集積層を形成することができ、これにより、蓄氷面や次工程の解氷面において良好な氷集積層を能率良く形成することを一層効果的に達成することができる。
That is, according to the reference configuration 3 , in the same manner as the reference configuration 1 described above, in order to form an ice accumulation layer floating in the stored water in the ice storage operation, the granular ice is discharged from the discharge port disposed in the upper space of the stored water. By discharging, an ice accumulation layer is formed at a position lower than the discharge port. For example, compared to a method in which granular ice is discharged into water near the surface of the stored water to form an ice accumulation layer, In addition, the granular ice can be smoothly discharged from the discharge port while the growing ice accumulation layer itself does not become an obstacle to ice discharge, so that a good ice accumulation layer can be formed on the ice storage surface and the de-icing surface of the next process. It becomes easy to form efficiently.
Further, in order to melt the ice accumulation layer in the ice-breaking operation after the ice storage operation, the return water is discharged from the discharge port instead of the granular ice, and the return water is discharged from the ice accumulation layer ( That is, it is possible to melt the ice accumulation layer by spraying water on the ice accumulation layer formed at a position lower than the discharge port, and thereby, for example, the return water is discharged into the water of the stored water. Compared to the method that melts the ice, the ice accumulation layer is melted well, for example, the melting of the ice accumulation layer is progressed evenly in plan view to remove cold water from the lower part of the heat storage tank, and the latent heat of ice is taken out smoothly. It becomes easy.
Furthermore, while ensuring a high function of the heat storage tank in each of the ice storage operation and the subsequent ice melting operation in this way, the discharge port is configured to discharge granular ice in ice storage operation and discharge of return water in ice melting operation. Therefore, it is also possible to simplify the tank structure of the heat storage tank, thereby reducing the equipment cost and facilitating operational and maintenance management. .
And in addition to these, according to this reference structure 3 , the granular ice is discharged from the discharge port disposed in the upper space of the stored water, and an ice accumulation layer is formed below the discharge port. As the ice accumulation layer grows, the discharge port is raised so that the distance between the upper surface of the ice accumulation layer and the discharge port is maintained at a predetermined size. For example, the ice collection layer is fixed and the ice collection layer grows as the ice accumulation layer grows. Compared to the fact that the separation distance between the upper surface of the stack and the discharge port is gradually shortened (that is, the height of the discharge port from the upper surface of the ice accumulation layer is gradually decreased), the supply state of the discharged granular ice to the upper surface of the ice accumulation layer is It is possible to form an ice accumulation layer while maintaining a certain good state, thereby more effectively achieving a good ice accumulation layer efficiently on the ice storage surface and the de-icing surface of the next process. be able to.

即ち、この参考構成3によれば、蓄熱槽構造の簡素化も可能にしながら蓄熱槽の機能向上を一層効果的に達成することができる。 That is, according to this reference configuration 3, the improvements of the thermal storage tank while allowing also simplification of the heat storage tank structure can achieve one layer effectively.

また、氷蓄熱設備を構成するのに、参考構成4として、
蓄熱槽に粒状氷を供給して前記蓄熱槽の貯留水に浮遊する氷集積層を形成する蓄氷運転と、この蓄氷運転の後に前記蓄熱槽の下部から冷熱消費装置への供給冷水を取り出しながら前記氷集積層を前記冷熱消費装置からの戻り水により融解させる解氷運転とを実施する氷蓄熱設備であって、
前記蓄熱槽の上部に上下移動可能な吐出口を配置し、
前記蓄氷運転では、前記蓄熱槽における貯留水の上方空間に前記吐出口を位置させて、この吐出口から前記粒状氷を吐出させることで、前記吐出口よりも低い位置に前記氷集積層を形成し、
前記解氷運転では、前記吐出口を前記蓄熱槽における貯留水の上方空間で前記氷集積層よりも高く位置させて、この吐出口から前記戻り水を吐出させることで、前記氷集積層を融解させるとともに、
この氷集積層の上面と前記吐出口との離間寸法を所定寸法に保つ状態に前記氷集積層の融解に伴い前記吐出口を下降させる運転制御手段を設けてもよい。
In addition, to configure the ice heat storage equipment, as Reference Configuration 4,
An ice storage operation in which granular ice is supplied to the heat storage tank to form an ice accumulation layer floating in the stored water in the heat storage tank, and the cold water supplied to the cold energy consumption device is taken out from the lower part of the heat storage tank after this ice storage operation An ice heat storage facility that performs an ice-breaking operation in which the ice accumulation layer is melted by return water from the cold energy consumption device,
Disposing a discharge port capable of moving up and down at the top of the heat storage tank,
In the ice storage operation, the discharge port is positioned in a space above the stored water in the heat storage tank, and the granular ice is discharged from the discharge port, whereby the ice accumulation layer is placed at a position lower than the discharge port. Forming,
In the ice melting operation, the discharge port is positioned higher than the ice accumulation layer in the space above the stored water in the heat storage tank, and the return water is discharged from the discharge port, thereby melting the ice accumulation layer. As well as
Operation control means may be provided for lowering the discharge port as the ice accumulation layer melts in a state in which the distance between the upper surface of the ice accumulation layer and the discharge port is maintained at a predetermined size .

つまり、この参考構成4によれば、前述した参考構成1と同様、蓄氷運転において貯留水に浮遊する氷集積層を形成するのに、貯留水の上方空間に配置した吐出口から粒状氷を吐出させることで、その吐出口よりも低い位置に氷集積層を形成するから、例えば、粒状氷を貯留水の水面近傍で水中に吐出して氷集積層を形成する方式などに比べ、貯留水や成長する氷集積層自身が氷吐出の障害にならない状態で粒状氷を吐出口から円滑に吐出させることができ、これにより、蓄氷面や次工程の解氷面において良好な氷集積層を能率良く形成することが容易になる。
また、蓄氷運転後の解氷運転において氷集積層を融解させるのに、粒状氷に代え冷熱消費装置からの戻り水を上記吐出口から吐出させることで、その戻り水を上記氷集積層(すなわち、吐出口よりも低い位置に形成された氷集積層)に対し散水して氷集積層を融解させることができ、これにより、例えば、戻り水を貯留水の水中に吐出して氷集積層を融解させる方式などに比べ、蓄熱槽下部からの冷水取出に対し氷集積層の融解を平面視で全体的にムラなく進めて氷の保有潜熱を円滑に取り出すなど良好に氷集積層を融解させることが容易になる。
さらにまた、このように蓄氷運転及びその後の解氷運転の夫々において蓄熱槽の機能を高く確保しながらも、吐出口を蓄氷運転における粒状氷の吐出と解氷運転における戻り水の吐出とに兼用する構成であるから、その兼用化により蓄熱槽の槽構造を簡素にすることもでき、これにより、設備コストを安価にするとともに、運転上や保守上の管理も容易にすることができる。
そして、これらのことに加え、この参考構成4によれば、貯留水の上方空間に配置した吐出口から冷熱消費装置よりの戻り水を吐出させて、貯留水に浮遊する氷集積層(すなわち、吐出口よりも低い位置に形成された氷集積層)を融解させるのに、その氷集積層の融解に伴い吐出口を下降させて氷集積層上面と吐出口との離間寸法を保つようにするから、例えば、吐出口が固定で氷集積層の融解に伴い氷集積層上面と吐出口との離間寸法が徐々に長くなる(すなわち、氷集積層上面に対する吐出口の高さが徐々に高くなる)のに比べ、氷集積層の融解を平面視で全体的にムラなく進めて氷の保有潜熱(冷潜熱)を円滑に取り出すなどのことを一層効果的に達成することができる。
That is, according to the reference configuration 4 , like the reference configuration 1 described above, in order to form an ice accumulation layer floating in the stored water in the ice storage operation, the granular ice is discharged from the discharge port disposed in the upper space of the stored water. By discharging, an ice accumulation layer is formed at a position lower than the discharge port. For example, compared to a method in which granular ice is discharged into water near the surface of the stored water to form an ice accumulation layer, In addition, the granular ice can be smoothly discharged from the discharge port while the growing ice accumulation layer itself does not become an obstacle to ice discharge, so that a good ice accumulation layer can be formed on the ice storage surface and the de-icing surface of the next process. It becomes easy to form efficiently.
Further, in order to melt the ice accumulation layer in the ice-breaking operation after the ice storage operation, the return water is discharged from the discharge port instead of the granular ice, and the return water is discharged from the ice accumulation layer ( That is, it is possible to melt the ice accumulation layer by spraying water on the ice accumulation layer formed at a position lower than the discharge port, and thereby, for example, the return water is discharged into the water of the stored water. Compared to the method that melts the ice, the ice accumulation layer is melted well, for example, the melting of the ice accumulation layer is progressed evenly in plan view to remove cold water from the lower part of the heat storage tank, and the latent heat of ice is taken out smoothly. It becomes easy.
Furthermore, while ensuring a high function of the heat storage tank in each of the ice storage operation and the subsequent ice melting operation in this way, the discharge port is configured to discharge granular ice in ice storage operation and discharge of return water in ice melting operation. Therefore, it is also possible to simplify the tank structure of the heat storage tank, thereby reducing the equipment cost and facilitating operational and maintenance management. .
And in addition to these, according to this reference structure 4 , the return water from the cold energy consuming apparatus is discharged from the discharge port arranged in the upper space of the stored water, and the ice accumulation layer floating in the stored water (that is, In order to melt the ice accumulation layer formed at a position lower than the discharge port, the discharge port is lowered along with the melting of the ice accumulation layer so as to keep the distance between the upper surface of the ice accumulation layer and the discharge port. Thus, for example, the discharge port is fixed and the distance between the upper surface of the ice accumulation layer and the discharge port is gradually increased with the melting of the ice accumulation layer (that is, the height of the discharge port with respect to the upper surface of the ice accumulation layer is gradually increased). ), The melting of the ice accumulation layer can be progressed evenly in a plan view, and the latent heat (cold latent heat) of ice can be taken out more effectively.

即ち、この参考構成4によっても、蓄熱槽構造の簡素化も可能にしながら蓄熱槽の機能向上を一層効果的に達成することができる。 That is, this is also the reference structure 4, the improvements of the thermal storage tank while allowing also simplification of the heat storage tank structure can achieve one layer effectively.

ここで、
〔1〕本発明の第1特徴構成は氷蓄熱設備に係り、その特徴は、
蓄熱槽に粒状氷を供給して前記蓄熱槽の貯留水に浮遊する氷集積層を形成する蓄氷運転と、この蓄氷運転の後に前記蓄熱槽の下部から冷熱消費装置への供給冷水を取り出しながら前記氷集積層を前記冷熱消費装置からの戻り水により融解させる解氷運転とを実施する氷蓄熱設備であって、
前記蓄熱槽の上部に配置した吐出口を上下移動させる駆動装置を設け、
前記蓄氷運転では、前記駆動装置により前記蓄熱槽における貯留水の上方空間に前記吐出口を位置させて、この吐出口から前記粒状氷を吐出させることで、前記吐出口よりも低い位置に前記氷集積層を形成するとともに、
この氷集積層の上面と前記吐出口との離間寸法を所定寸法に保つ状態に前記氷集積層の成長に伴い前記吐出口を前記駆動装置により上昇させ、
前記解氷運転では、前記駆動装置により前記吐出口を前記蓄熱槽における貯留水の上方空間で前記氷集積層よりも高く位置させて、この吐出口から前記戻り水を吐出させることで、前記氷集積層を融解させる運転制御手段を設け、
この運転制御手段は、
前記解氷運転に続いて、前記蓄熱槽の下部から前記冷熱消費装置への供給冷水を取り出しながら前記冷熱消費装置からの戻り水を前記蓄熱槽の上部に戻す水放熱運転を実施し、
この水放熱運転では、前記駆動装置により前記吐出口を前記蓄熱槽における貯留水の水面近傍で水中に位置させて、この吐出口から前記戻り水を吐出させることで、前記戻り水を前記蓄熱槽の上部に戻す構成にしてある点にある。
この第1特徴構成によれば、上述の参考構成3による作用効果に加え、解氷運転に続く水放熱運転では、駆動装置により吐出口を貯留水の上方空間から下降させて蓄熱槽における貯留水の水面近傍で水中に位置させた状態で、この吐出口から戻り水を吐出させるから、前述の参考構成2と同様、例えば、氷集積層の無い状態で戻り水を貯留水の上方空間に吐出させて蓄熱槽上部に戻すなどに比べ、蓄熱槽下部からの冷水取出に対し戻り水による貯留水の乱れを抑止して貯留水を温度成層状態に保つなど良好に戻り水を蓄熱槽に戻すことが容易になる。
そしてまた、吐出口を解氷運転における貯留水上方空間での戻り水吐出と水放熱運転における貯留水中での戻り水吐出とに兼用する構成(即ち、全体としては、蓄氷運転における貯留水上方空間での粒状氷の吐出と、解氷運転における貯留水上方空間での戻り水の吐出と、水放熱運転における貯留水中での戻り水の吐出との三者に兼用する構成)であるから、その兼用化により蓄熱槽の槽構造を簡素にすることもでき、これにより、設備コストを安価にするとともに、運転上や保守上の管理も容易にすることができる。
〔2〕本発明の第2特徴構成は、第1特徴構成の実施において、
前記運転制御手段は、
前記解氷運転では、氷集積層の上面と前記吐出口との離間寸法を所定寸法に保つ状態に前記氷集積層の融解に伴い前記吐出口を前記駆動装置により下降させる構成にしてある点にある。
この第2特徴構成によれば、上記第1特徴構成による作用効果に加え、氷集積層の融解に伴い吐出口を下降させて氷集積層上面と吐出口との離間寸法を保つようにするから、前述の参考構成4と同様、例えば、吐出口が固定で氷集積層の融解に伴い氷集積層上面と吐出口との離間寸法が徐々に長くなる(すなわち、氷集積層上面に対する吐出口の高さが徐々に高くなる)のに比べ、氷集積層の融解を平面視で全体的にムラなく進めて氷の保有潜熱(冷潜熱)を円滑に取り出すなどのことを一層効果的に達成することができる。
なお、第1又は2特徴構成のいずれかの実施において、吐出口は、粒状氷や冷熱消費装置からの戻り水を平面視で均等に分散させて水平向きに吐出する構造にするのが望ましい。
here,
[1] A first characteristic configuration of the present invention relates to an ice heat storage facility.
An ice storage operation in which granular ice is supplied to the heat storage tank to form an ice accumulation layer floating in the stored water in the heat storage tank, and the cold water supplied to the cold energy consumption device is taken out from the lower part of the heat storage tank after this ice storage operation An ice heat storage facility that performs an ice-breaking operation in which the ice accumulation layer is melted by return water from the cold energy consumption device,
A drive device is provided to move the discharge port arranged above the heat storage tank up and down,
In the ice storage operation, the discharge device is positioned in the upper space of the stored water in the heat storage tank by the drive device, and the granular ice is discharged from the discharge port, so that the lower position than the discharge port. While forming an ice accumulation layer,
With the growth of the ice accumulation layer, the ejection port is raised by the driving device in a state in which the separation dimension between the upper surface of the ice accumulation layer and the ejection port is maintained at a predetermined dimension.
In the ice-melting operation, the discharge port is positioned higher than the ice accumulation layer in the space above the stored water in the heat storage tank by the driving device, and the return water is discharged from the discharge port, whereby the ice Provide operation control means to melt the accumulation layer,
This operation control means
Following the ice-melting operation, while taking out the cold water supplied to the cold energy consumption device from the lower part of the heat storage tank, the water heat radiation operation to return the return water from the cold energy consumption apparatus to the upper part of the heat storage tank,
In this water heat radiation operation, the drive device positions the discharge port in the vicinity of the water surface of the stored water in the heat storage tank, and discharges the return water from the discharge port, whereby the return water is discharged from the heat storage tank. It is in the point which has the structure which returns to the upper part of.
According to the first characteristic configuration, in addition to the operational effect of the reference configuration 3 described above, in the water heat radiation operation following the ice melting operation, the discharge port is lowered from the upper space of the stored water by the drive device, and the stored water in the heat storage tank is stored. Since the return water is discharged from this discharge port in the state where it is located in the vicinity of the water surface of the water, for example, the return water is discharged into the upper space of the stored water in the absence of an ice accumulation layer as in the above-described Reference Configuration 2. Compared to returning to the upper part of the heat storage tank, the return water is returned to the heat storage tank in a favorable manner, such as keeping the stored water in a temperature stratified state by suppressing the turbulence of the stored water due to the return water for the cold water extraction from the lower part of the heat storage tank. Becomes easier.
In addition, the discharge port is used for both the return water discharge in the space above the stored water in the ice-breaking operation and the return water discharge in the stored water in the water heat radiation operation (that is, as a whole, above the stored water in the ice storage operation). Since it is a combination of the discharge of granular ice in the space, the discharge of return water in the space above the stored water in the ice-breaking operation, and the discharge of return water in the stored water in the water heat radiation operation) The shared use can also simplify the tank structure of the heat storage tank, thereby reducing the equipment cost and facilitating operation and maintenance management.
[2] The second feature configuration of the present invention is the implementation of the first feature configuration,
The operation control means includes
In the ice-breaking operation, the discharge port is lowered by the driving device as the ice accumulation layer melts in a state in which the separation dimension between the upper surface of the ice accumulation layer and the discharge port is maintained at a predetermined size. is there.
According to the second feature configuration, in addition to the operational effect of the first feature configuration, the discharge port is lowered with the melting of the ice accumulation layer so as to maintain the separation dimension between the upper surface of the ice accumulation layer and the discharge port. As in the above-described Reference Configuration 4, for example, the discharge port is fixed and the distance between the upper surface of the ice accumulation layer and the discharge port is gradually increased with the melting of the ice accumulation layer (that is, the discharge port is located on the upper surface of the ice accumulation layer). The ice accumulation layer can be melted evenly in a plan view and the latent heat of ice (cold latent heat) can be taken out more effectively. be able to.
In the implementation of either the first or the second characteristic configuration , it is desirable that the discharge port has a structure in which the granular ice and the return water from the cold energy consuming device are evenly dispersed in a plan view and discharged horizontally.

図1は空調用の氷蓄熱設備を示し、1は水Cとともに氷を貯留する蓄熱槽であり、この蓄熱槽1内の下部には、槽内貯留水Cの取り出し及び戻り水Cの槽内への戻しに用いる下部出入器2を設け、また、蓄熱槽1内の上部で下部出入器2のほぼ直上方には、同じく槽内貯留水Cの取り出し及び戻り水Cの槽内への戻しに用いるとともに、氷供給器として槽内への氷の供給に用いる上部出入器3を設けてある。   FIG. 1 shows an ice heat storage facility for air conditioning, 1 is a heat storage tank for storing ice together with water C, and in the lower part of the heat storage tank 1 is taken out of the stored water C in the tank and inside the tank of return water C The lower intake / exit 2 used for return to the tank is provided, and in the upper part of the heat storage tank 1 and just above the lower input / output 2, the tank stored water C is similarly taken out and the return water C is returned to the tank. And an upper entrance / exit 3 used for supplying ice into the tank is provided.

下部出入器2及び上部出入器3は、図2に示す如く、ほぼ同構造のものであり、平行に配置した上下二枚の円板状部材2a,3aの間の隙部に対して、上部又は下部の出入管4,5を一方の円板状部材2a,3aの中心部で開口させるとともに、それら二枚の円板状部材2a,3aの外周縁どうしにわたる多孔板2b,3bを円板状部材2a,3aの全周にわたらせて張設し、この多孔板2b,3bの張設部(厳密には多孔板2b,3bにおける多数の孔)を槽内に対する出入口2c,3cとする構造にしてある。   As shown in FIG. 2, the lower input / output device 2 and the upper input / output device 3 have substantially the same structure, and the upper input / output device 3 is located above the gap between the upper and lower disk-shaped members 2 a and 3 a arranged in parallel. Alternatively, the lower inlet / outlet pipes 4 and 5 are opened at the center of one of the disk-like members 2a and 3a, and the porous plates 2b and 3b extending between the outer peripheral edges of the two disk-like members 2a and 3a The members 2a and 3a are stretched over the entire circumference, and the stretched portions of the perforated plates 2b and 3b (strictly, a large number of holes in the perforated plates 2b and 3b) serve as the entrances 2c and 3c into the tank. It is.

すなわち、戻り水Cの槽内への戻しについては、出入管4,5を通じて戻る戻り水Cを下部出入器2又は上部出入器3における出入口2c,3cから平面視で放射状に分散させて水平向きに吐出し、一方、槽内貯留水Cの取り出しについては、槽内貯留水Cを下部出入器2又は上部出入器3における出入口2c,3cから平面視で均等に吸入して出入管4,5に導くようにしてある。   That is, when returning the return water C into the tank, the return water C returning through the inlet / outlet pipes 4 and 5 is dispersed horizontally from the inlet / outlet 2c, 3c in the lower inlet / outlet 2 or the upper inlet / outlet 3 in a horizontal direction. On the other hand, with respect to taking out the stored water C in the tank, the stored water C in the tank is sucked evenly in the plan view from the entrances 2c and 3c in the lower entrance / exit 2 or the upper entrance 3 To guide you.

下部出入器2及びそれに接続した下部出入管4は槽内において固設してあり、これに対し、上部出入器3に接続した上部出入管5の縦配管部5aは、その長手方向(すなわち上下方向)に伸縮自在な管にし、この縦配管部5aの伸縮により槽内上部での上部出入器3の上下移動を可能にしてある。   The lower inlet / outlet 2 and the lower inlet / outlet pipe 4 connected thereto are fixed in the tank. On the other hand, the vertical pipe portion 5a of the upper inlet / outlet pipe 5 connected to the upper inlet / outlet 3 has its longitudinal direction (that is, up and down). The pipe can be expanded and contracted in the direction), and the upper pipe 3 can be vertically moved by the expansion and contraction of the vertical pipe portion 5a.

そして、上部出入器3には、蓄熱槽1の上方から垂下した棒状連動部材6の下端を連結し、蓄熱槽1の上方には、この棒状連動部材6をラックピニオン機構などを介して上下移動させる駆動装置7を設けてあり、この駆動装置7により棒状連動部材6を上下に駆動移動させることで上部出入器3を図中実線で示す状態と一点鎖線で示す状態とにわたり槽内上部において上下移動させるようにしてある。   Then, the lower end of a bar-like interlocking member 6 that hangs down from above the heat storage tank 1 is connected to the upper input / output device 3, and the bar-like interlocking member 6 is moved up and down via the rack and pinion mechanism or the like above the heat storage tank 1. A drive device 7 is provided, and the drive device 7 moves the bar-like interlocking member 6 up and down to move the upper entrance / exit 3 up and down in the upper part of the tank over the state indicated by the solid line and the state indicated by the alternate long and short dash line in the figure. It is supposed to be moved.

8は冷凍機9の吸熱部と熱源熱交換器10との間においてブラインBをブラインポンプ11により循環させるブライン循環路、12は冷凍機9の放熱部と冷却塔13との間において冷却水CWを冷却水ポンプ14により循環させる冷却水循環路、15は蓄熱槽1の貯留水Cを蓄熱槽1と熱源熱交換器10との間において熱源側冷水ポンプ16により循環させる熱源側冷水循環路であり、下部出入器2に接続した下部出入管4は熱源側冷水循環路15の往路15aを通じて熱源熱交換器10の水入口10aに接続し、上部出入器3に接続した上部出入管5は熱源側冷水循環路15の復路15bを通じて熱源熱交換器10の水出口10bに接続してある。   A brine circulation path 8 circulates the brine B by the brine pump 11 between the heat absorption part of the refrigerator 9 and the heat source heat exchanger 10, and 12 a cooling water CW between the heat radiation part of the refrigerator 9 and the cooling tower 13. A cooling water circulation path for circulating the water by the cooling water pump, and 15 a heat source side cold water circulation path for circulating the stored water C of the heat storage tank 1 by the heat source side cold water pump 16 between the heat storage tank 1 and the heat source heat exchanger. The lower inlet / outlet pipe 4 connected to the lower inlet / outlet 2 is connected to the water inlet 10a of the heat source heat exchanger 10 through the forward path 15a of the heat source side cold water circulation path 15, and the upper inlet / outlet pipe 5 connected to the upper inlet / outlet 3 is connected to the heat source side. It is connected to the water outlet 10 b of the heat source heat exchanger 10 through the return path 15 b of the cold water circulation path 15.

また、この熱源側冷水循環路15には、下部出入器2に接続した下部出入管4を熱源熱交換器10の水入口10aに代えて水出口10bに連通させ、かつ、上部出入器3に接続した上部出入管5を熱源熱交換器10の水出口10bに代えて水入口10aに連通させた状態で、蓄熱槽1の貯留水Cを蓄熱槽1と熱源熱交換器10との間において同じく熱源側冷水ポンプ16により循環させるための2本の切換用バイパス路15c,15d、及び、切換用開閉弁V1〜V5を装備してある。   Further, in this heat source side cold water circulation path 15, the lower inlet / outlet pipe 4 connected to the lower inlet / outlet 2 is communicated with the water outlet 10 b instead of the water inlet 10 a of the heat source heat exchanger 10, and With the connected upper inlet / outlet pipe 5 communicating with the water inlet 10a instead of the water outlet 10b of the heat source heat exchanger 10, the stored water C of the heat storage tank 1 is placed between the heat storage tank 1 and the heat source heat exchanger 10. Similarly, two switching bypass passages 15c and 15d for circulation by the heat source side cold water pump 16 and switching on-off valves V1 to V5 are provided.

つまり、この熱源側冷水循環路15では、下部出入器2−往路15a−熱源熱交換器10−復路15b−上部出入器3の順に貯留水Cを循環させる正転循環(図4参照)と、上部出入器3−切換用バイパス路15c−熱源熱交換器10−切換用バイパス路15d−下部出入器2の順に貯留水Cを循環させる逆転循環(図3参照)との選択的な実施を切換用開閉弁V1〜V5の開閉操作により可能にしてある。   That is, in the heat source side cold water circulation path 15, forward circulation (see FIG. 4) for circulating the stored water C in the order of the lower inlet / outlet 2, the forward path 15 a, the heat source heat exchanger 10, the return path 15 b, and the upper inlet / outlet 3. Selective implementation of reverse circulation (see FIG. 3) in which the stored water C is circulated in the order of upper inlet / outlet unit 3—switching bypass channel 15c—heat source heat exchanger 10—switching bypass channel 15d—lower input / output unit 2 This is made possible by opening and closing the on-off valves V1 to V5.

一方、熱源側冷水循環路15の往路15aには、2本のバイパス路15c,15dの接続部よりも蓄熱槽1寄りの箇所において空調機やファンコイルユニットなどの負荷装置19(冷熱消費装置)に対する負荷側冷水循環路20の往路20aを接続し、熱源側冷水循環路15の復路15bには、2本のバイパス路15a,15bの接続部よりも蓄熱槽1寄りの箇所において負荷側冷水循環路20の復路20bを接続してあり、これら負荷側冷水循環路20の往路20a及び復路20bには、それらを開閉する切換用開閉弁V6,V7を熱源側冷水循環路15に対する接続部近傍において装備し、また、負荷側冷水循環路20の往路20aには、蓄熱槽1の貯留水Cを負荷側冷水循環路20を通じて負荷装置19と蓄熱槽1との間で循環させる負荷側冷水ポンプ21を装備してある。   On the other hand, in the forward path 15a of the heat source side cold water circulation path 15, a load device 19 (cold energy consuming apparatus) such as an air conditioner or a fan coil unit is located closer to the heat storage tank 1 than the connection part of the two bypass paths 15c and 15d. The forward side 20a of the load side cold water circulation path 20 is connected to the return path 15b of the heat source side cold water circulation path 15 at a location closer to the heat storage tank 1 than the connection part of the two bypass paths 15a, 15b. The return path 20b of the path 20 is connected, and in the forward path 20a and the return path 20b of the load side chilled water circulation path 20, switching on-off valves V6 and V7 for opening and closing them are provided in the vicinity of the connection portion to the heat source side chilled water circulation path 15. In addition, the stored water C of the heat storage tank 1 is circulated between the load device 19 and the heat storage tank 1 through the load side cold water circulation path 20 in the forward path 20a of the load side cold water circulation path 20. It is equipped with a load-side cold water pump 21.

22a〜22cは蓄熱槽1の下部、上下中間部、上部の夫々における貯留水Cの温度ta,tb,tcを検出する第1〜第3温度センサ、23は熱源熱交換器10の水出口10bにおける水温度toを検出する第4温度センサ、24は蓄熱槽1において貯留水Cに浮遊する氷集積層Aの上面位置hを検出する氷センサ、25は棒状連動部材6の下方への延出長Lを検出するストロークセンサ、26はこれらセンサの検出情報に基づき切換用開閉弁V1〜V7の開閉操作や各装置の発停操作などを実行する運転制御器であり、具体的には、この運転制御器26は次の(イ)〜(ヘ)の制御を実行する。   Reference numerals 22a to 22c denote first to third temperature sensors for detecting temperatures ta, tb, and tc of the stored water C in the lower, upper and lower middle parts, and upper part of the heat storage tank 1, respectively, and 23 denotes a water outlet 10b of the heat source heat exchanger 10. 4 is a fourth temperature sensor for detecting the water temperature to, 24 is an ice sensor for detecting the upper surface position h of the ice accumulation layer A floating in the stored water C in the heat storage tank 1, and 25 is a downward extension of the bar-like interlocking member 6. A stroke sensor 26 for detecting the length L is an operation controller for performing an opening / closing operation of the switching on / off valves V1 to V7 and an on / off operation of each device based on the detection information of these sensors. The operation controller 26 executes the following controls (A) to (F).

なお、図3〜図10において、各切換用開閉弁V1〜V7のうち白抜きのものは開弁状態を示し、黒塗りのものは閉弁状態を示す。   3 to 10, among the switching on-off valves V1 to V7, white ones indicate a valve open state, and black ones indicate a valve closed state.

(イ)前段水蓄熱運転
設定蓄熱開始時刻T1になると、先の放熱運転の完了で例えば16℃の貯留水Cが蓄熱槽1内に満たされた図10に示す如き状態から、図3に示す如く、上部出入器3を蓄熱槽1における貯留水Cの水面近傍で水中に位置させた状態で、切換用開閉弁V1〜V7の開閉操作及び熱源側冷水ポンプ16の運転により熱源側冷水循環路15において前記の逆転循環を実施するとともに、冷凍機9、ブラインポンプ11、冷却塔13、冷却水ポンプ14を運転する。
(A) Pre-stage water heat storage operation When the set heat storage start time T1 is reached, the state shown in FIG. 3 is shown in FIG. 3 from the state shown in FIG. As described above, the heat source side cold water circulation path is operated by opening / closing the switching on / off valves V1 to V7 and the operation of the heat source side cold water pump 16 in a state where the upper entrance / exit 3 is located in the vicinity of the surface of the stored water C in the heat storage tank 1. At 15, the reverse circulation is performed, and the refrigerator 9, the brine pump 11, the cooling tower 13, and the cooling water pump 14 are operated.

また、この熱源側冷水循環路15での逆転循環において、熱源熱交換器10の水出口10bにおける水温度toが第1設定温度t1(本例ではt1=4℃)になるように、第4温度センサ23により検出される出口水温度toに基づき冷凍機9の出力を調整する。   Further, in the reverse circulation in the heat source side cold water circulation path 15, the fourth temperature is set so that the water temperature to at the water outlet 10b of the heat source heat exchanger 10 becomes the first set temperature t1 (in this example, t1 = 4 ° C.). The output of the refrigerator 9 is adjusted based on the outlet water temperature to detected by the temperature sensor 23.

つまり、この前段水蓄熱運転では、上部出入器3を貯留水Cの水面近傍で水中に位置させた状態で、その上部出入器3の出入口3cを通じ蓄熱槽1における高温の貯留水C(16℃冷水)を熱源熱交換器10に供給して冷凍機9による冷却ブラインBとの熱交換により第1設定温度t1に冷却し、その冷却した第1設定温度t1の水C(4℃冷水)を下部出入器2の出入口2cから平面視で放射状に分散させて蓄熱槽1における下部の貯留水C中へ水平向きに吐出し、これにより、第3温度センサ22cにより検出される蓄熱槽上部の貯留水温度tcが第1設定温度t1に低下するまでの間(すなわち、熱源熱交換器10で第1設定温度t1に冷却した水C(4℃冷水)により蓄熱槽1が満たされるまでの間)、熱源熱交換器10で第1設定温度t1に冷却した比重の大きな水C(4℃冷水)を槽内の下側に存在させ、かつ、未だ第1設定温度t1に冷却していない比重の小さな水C(16℃冷水)を槽内の上側に存在させる温度成層状態を保って、それら下側貯留水C(4℃冷水)と上側貯留水C(16℃冷水)との境界Kを漸次的に上昇させる槽内流動形態で、熱源熱交換器10により冷却した第1設定温度t1の水C(4℃冷水)が保有する冷熱(顕熱)を蓄熱槽1に蓄熱する。   That is, in this upstream water heat storage operation, the hot water storage C (16 ° C.) in the heat storage tank 1 is passed through the inlet / outlet 3c of the upper inlet / outlet 3 with the upper inlet / outlet 3 positioned in the water near the surface of the stored water C. Cold water) is supplied to the heat source heat exchanger 10 and cooled to the first set temperature t1 by heat exchange with the cooling brine B by the refrigerator 9, and the cooled water C (4 ° C. cold water) at the first set temperature t1 is cooled. From the inlet / outlet 2c of the lower inlet / outlet 2, it is dispersed radially in a plan view and discharged horizontally into the lower stored water C in the heat storage tank 1, thereby storing the upper part of the heat storage tank detected by the third temperature sensor 22c. Until the water temperature tc drops to the first set temperature t1 (that is, until the heat storage tank 1 is filled with water C (4 ° C. cold water) cooled to the first set temperature t1 by the heat source heat exchanger 10) First setting with heat source heat exchanger 10 Water C (4 ° C cold water) having a large specific gravity cooled to a degree t1 is present in the lower side of the tank, and water C (16 ° C cold water) having a low specific gravity that has not yet been cooled to the first set temperature t1 In the flow form in the tank that gradually increases the boundary K between the lower reservoir water C (4 ° C. cold water) and the upper reservoir water C (16 ° C. cold water) while maintaining the temperature stratification state that exists on the upper side of the inside, Cold heat (sensible heat) held in water C (4 ° C. cold water) having a first set temperature t 1 cooled by the heat source heat exchanger 10 is stored in the heat storage tank 1.

(ロ)後段水蓄熱運転
上記の前段水蓄熱運転において第3温度センサ22cにより検出される蓄熱槽上部の貯留水温度tcが第1設定温度t1に低下する(すなわち、熱源熱交換器10で第1設定温度t1に冷却した水C(4℃冷水)により蓄熱槽1が満たされた状態になる)と、図4に示す如く、上部出入器3を引き続き貯留水Cの水面近傍で水中に位置させた状態で、切換用開閉弁V1〜V7の開閉操作及び熱源側冷水ポンプ16の運転により熱源側冷水循環路15において前記の正転循環を実施するとともに、冷凍機9、ブラインポンプ11、冷却塔13、冷却水循環ポンプ14を引き続き運転する。
(B) Rear-stage water heat storage operation The stored water temperature tc at the upper part of the heat storage tank detected by the third temperature sensor 22c in the above-mentioned front-stage water heat storage operation is lowered to the first set temperature t1 (that is, the heat source heat exchanger 10 When the heat storage tank 1 is filled with water C (4 ° C. cold water) cooled to a preset temperature t1), as shown in FIG. 4, the upper entrance / exit 3 is continuously positioned in the vicinity of the water surface of the stored water C. In this state, the forward / reverse circulation is performed in the heat source side cold water circulation path 15 by opening / closing the switching on / off valves V1 to V7 and the operation of the heat source side cold water pump 16, and the refrigerator 9, brine pump 11, cooling The tower 13 and the cooling water circulation pump 14 are continuously operated.

また、この熱源側冷水循環路15での正転循環において、熱源熱交換器10の水出口10bにおける水温度toが第2設定温度t2(本例ではt2=0℃)になるように、第4温度センサ23により検出される出口水温度toに基づき冷凍機9の出力を調整する。   Further, in the forward rotation circulation in the heat source side cold water circulation path 15, the water temperature to at the water outlet 10b of the heat source heat exchanger 10 is set to the second set temperature t2 (in this example, t2 = 0 ° C.). The output of the refrigerator 9 is adjusted based on the outlet water temperature to detected by the four temperature sensor 23.

つまり、この後段水蓄熱運転では、下部出入器2の出入口2cを通じて蓄熱槽1の下部から取り出した貯留水C(4℃冷水)を熱源熱交換器10に供給して冷凍機9による冷却ブラインBとの熱交換により第2設定温度t2に冷却し、その冷却した第2設定温度t2の水C(0℃冷水)を貯留水Cの水面近傍で水中に位置する上部出入器3の出入口3cから平面視で放射状に分散させて蓄熱槽1における上部の貯留水C中へ水平向きに吐出し、これにより、第1温度センサ22aにより検出される蓄熱槽下部の貯留水温度taが第2設定温度t2に低下するまでの間(すなわち、熱源熱交換器10で第2設定温度t2に冷却した水C(0℃冷水)により蓄熱槽1が満たされるまでの間)、熱源熱交換器10で第2設定温度t2に冷却した比重の小さな水C(0℃冷水)を槽内の上側に存在させ、かつ、未だ第2設定温度t2に冷却していない比重の大きな水C(4℃冷水)を槽内の下側に存在させる温度成層状態を保って、それら上側貯留水C(0℃冷水)と下側貯留水C(4℃冷水)との境界Kを漸次的に下降させる槽内流動形態で、熱源熱交換器10により冷却した第2設定温度t2の水C(0℃冷水)が保有する冷熱(顕熱)を蓄熱槽1に蓄熱する。   That is, in this latter stage water heat storage operation, the stored water C (4 ° C. cold water) taken out from the lower part of the heat storage tank 1 through the inlet / outlet 2c of the lower inlet / outlet 2 is supplied to the heat source heat exchanger 10 to cool the cooling brine B by the refrigerator 9 Is cooled to the second set temperature t2 by heat exchange with the water, and the cooled water C at the second set temperature t2 (0 ° C. cold water) is supplied from the inlet / outlet 3c of the upper inlet / outlet 3 located in the water near the water surface of the stored water C. In a plan view, it is dispersed radially and discharged horizontally into the upper stored water C in the heat storage tank 1, whereby the lower water storage temperature ta detected by the first temperature sensor 22a is the second set temperature. until the heat storage tank 1 is filled with the water C (0 ° C. cold water) cooled to the second set temperature t2 by the heat source heat exchanger 10 until the heat storage tank 1 is filled. 2 Specific gravity cooled to set temperature t2 Temperature at which small water C (0 ° C. cold water) is present in the upper side of the tank and water C (4 ° C. cold water) having a large specific gravity that has not yet been cooled to the second set temperature t2 is present in the lower side of the tank. Cooling by the heat source heat exchanger 10 while maintaining the stratified state and in the tank flow form in which the boundary K between the upper reservoir water C (0 ° C. cold water) and the lower reservoir water C (4 ° C. cold water) is gradually lowered. The cold energy (sensible heat) held by the water C (0 ° C. cold water) having the second set temperature t2 is stored in the heat storage tank 1.

(ハ)蓄氷運転
上記の後段水蓄熱運転において第1温度センサ22aにより検出される蓄熱槽下部の貯留水温度taが第2設定温度t2に低下する(すなわち、熱源熱交換器10で第2設定温度t2に冷却した水C(0℃冷水)により蓄熱槽1が満たされた状態になる)と、図5に示す如く、上部出入器3を駆動装置7により上昇させて蓄熱槽1における貯留水Cの上方空間に位置させ、その状態で熱源側冷水循環路15において正転循環を継続するとともに、冷凍機9、ブラインポンプ11、冷却塔13、冷却水ポンプ14を引き続き運転する。
(C) Ice storage operation The stored water temperature ta in the lower part of the heat storage tank detected by the first temperature sensor 22a in the latter-stage water heat storage operation is lowered to the second set temperature t2 (that is, the second heat source heat exchanger 10 When the heat storage tank 1 is filled with water C (0 ° C. cold water) cooled to the set temperature t2, the upper entrance / exit 3 is raised by the drive device 7 as shown in FIG. It is located in the space above the water C, and in that state, the forward rotation circulation is continued in the heat source side cold water circulation path 15, and the refrigerator 9, the brine pump 11, the cooling tower 13, and the cooling water pump 14 are continuously operated.

また、この熱源側冷水循環路15での正転循環において、熱源熱交換器10の水出口10bにおける水温度toが氷点下の第3設定温度t3(本例ではt3=−2℃)になるように、第4温度センサ23により検出される出口水温度toに基づき冷凍機9の出力を調整する。   Further, in the forward circulation in the heat source side cold water circulation path 15, the water temperature to at the water outlet 10b of the heat source heat exchanger 10 is set to the third set temperature t3 below the freezing point (in this example, t3 = −2 ° C.). In addition, the output of the refrigerator 9 is adjusted based on the outlet water temperature to detected by the fourth temperature sensor 23.

つまり、この蓄氷運転では、下部出入器2の出入口2cを通じて蓄熱槽1の下部から取り出した貯留水C(0℃冷水)を熱源熱交換器10に供給して冷凍機9による冷却ブラインBとの熱交換により氷点下の第3設定温度t3に冷却し、その冷却した第3設定温度t3の過冷却水C(−2℃)を貯留冷水Cの上方空間に位置させた上部出入器3の出入口3cから吐出させる。   That is, in this ice storage operation, the stored water C (0 ° C. cold water) taken out from the lower part of the heat storage tank 1 through the inlet / outlet 2c of the lower inlet / outlet 2 is supplied to the heat source heat exchanger 10 and the cooling brine B by the refrigerator 9 Of the upper inlet / outlet 3 in which the cooled subcooled water C (−2 ° C.) at the third set temperature t3 is positioned in the space above the stored cold water C. It discharges from 3c.

そして、この際、上部出入器3に張設した多孔板3bへの過冷却水C(−2℃)の衝突により過冷却を解除して、その過冷却水C(−2℃)を0℃の冷水Cとそれに含まれる多数の粒状氷aとに変化させた状態で上部出入器3の出入口3c(すなわち吐出口)から吐出させ、これにより、貯留水C(0℃冷水)に浮かぶ氷集積層Aを上部出入器3の出入口3c(特許請求の範囲で言う吐出口)よりも低い位置で蓄熱槽1内に形成して、多数の粒状氷aの保有冷熱(主に冷潜熱)を蓄熱槽1に蓄熱する。   At this time, the supercooling water C (−2 ° C.) is released by the collision of the supercooling water C (−2 ° C.) with the perforated plate 3b stretched on the upper accessor 3 and the supercooling water C (−2 ° C.) is reduced to 0 ° C. The ice water floating in the stored water C (0 ° C. cold water) is discharged from the inlet / outlet 3c (that is, the outlet) of the upper inlet / outlet 3 in a state of being changed into the cold water C and a large number of granular ice a contained therein. The stack A is formed in the heat storage tank 1 at a position lower than the inlet / outlet 3c (discharge port in the claims) of the upper inlet / outlet 3, and the stored cold heat (mainly cold latent heat) of the granular ice a is stored. Heat is stored in the tank 1.

また、この蓄氷運転では、氷センサ24により検出される氷集積層Aの上面位置hとストロークセンサ25により検出される棒状連動部材6の下方延出長Lとに基づき、氷集積層Aの上面と上部出入器3の出入口3c(吐出口)との離間寸法を所定寸法に保つように、氷集積層Aの成長に伴い駆動装置7により上部出入器3を貯留水Cの上方空間において漸次的に上昇させ、これにより、氷集積層Aの上面に対する吐出粒状氷Aの供給状態を氷集積層Aの成長にかかわらず良好な状態に保つ。   Further, in this ice storage operation, based on the upper surface position h of the ice accumulating layer A detected by the ice sensor 24 and the downward extension length L of the bar-like interlocking member 6 detected by the stroke sensor 25, the ice accumulating layer A As the ice accumulation layer A grows, the upper entrance / exit 3 is gradually moved in the upper space of the stored water C by the growth of the ice accumulation layer A so that the distance between the upper surface and the entrance / exit 3c (discharge port) of the upper entrance / exit 3 is kept at a predetermined size. Thus, the supply state of the discharged granular ice A to the upper surface of the ice accumulation layer A is maintained in a good state regardless of the growth of the ice accumulation layer A.

そして、この氷集積層Aが成長して、その下面が図6に示す如く蓄熱槽1の下部に達する状態になると蓄氷運転を終了し、前段水蓄熱運転、後段水蓄熱運転、及び、蓄氷運転からなる一連の蓄熱運転を完了する。   Then, when this ice accumulation layer A grows and its lower surface reaches the lower part of the heat storage tank 1 as shown in FIG. 6, the ice storage operation is terminated, and the pre-stage water heat storage operation, the post-stage water heat storage operation, and the Complete a series of heat storage operations consisting of ice operation.

(ニ)解氷運転
設定空調開始時刻T2になると、先の蓄熱運転の完了で低温の貯留水C(0℃冷水)と所要厚さの氷集積層Aとが蓄熱槽1内に存在する図6に示す状態から、図7に示す如く、上部出入器3を引き続き貯留水Cの上方空間に位置させた状態で、切換用開閉弁V1〜V7の開閉操作及び負荷側冷水ポンプ21の運転により、蓄熱槽1の貯留水C(0℃冷水)を下部出入器2−負荷側冷水循環路20の往路20a−負荷装置19−負荷側冷水循環路20の復路20b−上部出入器3の順に循環させる。
(D) Ice-melting operation When the set air-conditioning start time T2 is reached, the low-temperature storage water C (0 ° C. cold water) and the ice accumulation layer A having the required thickness exist in the heat storage tank 1 when the previous heat storage operation is completed. From the state shown in FIG. 6, as shown in FIG. 7, with the upper inlet / outlet 3 being continuously located in the upper space of the stored water C, the switching on / off valves V <b> 1 to V <b> 7 are opened and closed and the load-side chilled water pump 21 is operated. The stored water C (0 ° C. cold water) in the heat storage tank 1 is circulated in the order of the lower input / output unit 2-the forward path 20 a of the load side cold water circulation path 20 -the load device 19 -the return path 20 b of the load side cold water circulation path 20- Let

つまり、この解氷運転では、氷集積層Aとともに存在する蓄熱槽1の貯留水C(0℃冷水)を下部出入器2の出入口2cを通じ負荷装置19に供給し、そして、負荷装置19での冷熱消費により昇温した負荷装置19からの戻り水C(例えば16℃冷水)を上部出入器3の出入口3c(吐出口)から吐出させることにより、その戻り水C(16℃冷水)を先の蓄氷運転で上部出入器3よりも低い位置に形成した氷集積層Aに対し散水して氷集積層Aを効率的に融解させ、これにより、蓄熱槽1における貯留水Cの温度を均一かつ安定的に0℃に保って、負荷装置19に供給する冷水Cの温度を安定的に0℃に保つ。   That is, in this ice-melting operation, the stored water C (0 ° C. cold water) of the heat storage tank 1 existing together with the ice accumulation layer A is supplied to the load device 19 through the inlet / outlet 2c of the lower inlet / outlet 2 and By returning the return water C (for example, 16 ° C. cold water) from the load device 19 whose temperature has been raised by the cold heat consumption from the inlet / outlet 3c (discharge port) of the upper inlet / outlet 3, the return water C (16 ° C. cold water) is discharged earlier. In the ice storage operation, water is sprayed on the ice accumulation layer A formed at a position lower than the upper entrance / exit 3 to efficiently melt the ice accumulation layer A, whereby the temperature of the stored water C in the heat storage tank 1 is made uniform and The temperature of the cold water C supplied to the load device 19 is stably kept at 0 ° C. while being stably kept at 0 ° C.

また、この解氷運転では、氷センサ24により検出される氷集積層Aの上面位置hとストロークセンサ25により検出される棒状連動部材6の下方延出長Lとに基づき、氷集積層Aの上面と上部出入器3の出入口3c(吐出口)との離間寸法を所定寸法に保つように、氷集積層Aの融解に伴い駆動装置7により上部出入器3を貯留水Cの上方空間において漸次的に下降させ、これにより、氷集積層Aに対する戻り水C(16℃冷水)の散水状態を氷集積層Aの融解にかかわらず良好な状態に保つ。   Further, in this ice melting operation, the ice accumulating layer A of the ice accumulating layer A is detected based on the upper surface position h of the ice accumulating layer A detected by the ice sensor 24 and the downward extension length L of the bar-like interlocking member 6 detected by the stroke sensor 25. As the ice accumulation layer A melts, the drive unit 7 gradually moves the upper entrance / exit 3 in the upper space of the stored water C so that the distance between the upper surface and the entrance / exit 3c (discharge port) of the upper entrance / exit 3 is kept at a predetermined size. Accordingly, the sprinkling state of the return water C (16 ° C. cold water) with respect to the ice accumulation layer A is maintained in a good state regardless of the melting of the ice accumulation layer A.

(ホ)前段水放熱運転
上記の解氷運転において融解による氷集積層Aの消滅が氷センサ24により検出されると、図8に示す如く、駆動装置7により上部出入口3を下降させて蓄熱槽1における貯留水Cの水面近傍で水中に位置させ、この状態で、先の解氷運転に引き続き、蓄熱槽1の貯留水Cを下部出入器2−負荷側冷水循環路20の往路20a−負荷装置19−負荷側冷水循環路20の復路20b−上部出入器3の順に循環させる。
(E) Pre-stage water heat radiation operation When the ice sensor 24 detects the disappearance of the ice accumulating layer A due to melting in the above ice melting operation, the upper entrance 3 is lowered by the drive device 7 as shown in FIG. In this state, the stored water C in the heat storage tank 1 is transferred to the lower inlet / outlet 2-load-side cold water circulation path 20a-load in this state. It circulates in order of the apparatus 19-the return path 20b of the load side cold water circulation path 20, and the upper entrance / exit 3.

つまり、先の解氷運転において氷集積層Aが融解により消滅すると、蓄熱槽1の貯留水Cは負荷装置19からの戻り水Cのため水面近傍側から0℃を上回るようになるが、この前段水放熱運転では、氷集積層Aの融解による消滅後、第1〜第3温度センサ22a〜22cにより検出される蓄熱槽下部の貯留水温度ta,蓄熱槽上下中間部の貯留水温度tb,蓄熱槽上部の貯留水温度tcの夫々がほぼ前記の第1設定温度t1(本例ではt1=4℃)に上昇するまでの間、負荷装置19からの戻り水C(16℃冷水)を貯留水Cの水面近傍で水中に位置させた上部出入器3の出入口3c(吐出口)から吐出させて蓄熱槽1の上部に戻すことにより、負荷装置19からの戻り水C(16℃冷水)と蓄熱槽1における貯留水C(0℃冷水)との比重差による混合で、蓄熱槽1における貯留水Cの温度をほぼ0℃からほぼ4℃まで均一かつ漸次的に上昇させ、これにより、負荷装置19に供給する冷水Cの急激かつ大きな温度変化を防止する。   In other words, when the ice accumulation layer A disappears due to melting in the previous ice-melting operation, the stored water C in the heat storage tank 1 becomes higher than 0 ° C. from the water surface side because of the return water C from the load device 19, In the pre-stage water heat radiation operation, after disappearance of the ice accumulation layer A by melting, the stored water temperature ta at the lower part of the heat storage tank detected by the first to third temperature sensors 22a to 22c, the stored water temperature tb at the upper and lower intermediate parts of the heat storage tank, The return water C (16 ° C. cold water) from the load device 19 is stored until each of the stored water temperatures tc in the upper part of the heat storage tank rises to the first set temperature t1 (in this example, t1 = 4 ° C.). Return water C (16 ° C. cold water) from the load device 19 is discharged from the inlet / outlet 3c (discharge port) of the upper inlet / outlet 3 located in the water near the water surface and returned to the upper part of the heat storage tank 1. Specific gravity with stored water C (0 ° C cold water) in heat storage tank 1 The temperature of the stored water C in the heat storage tank 1 is uniformly and gradually increased from approximately 0 ° C. to approximately 4 ° C. by mixing, thereby preventing a rapid and large temperature change of the cold water C supplied to the load device 19. .

(ヘ)後段水放熱運転
上記の前段水放熱運転において第1〜第3温度センサ22a〜22cにより検出される蓄熱槽下部の貯留水温度ta,蓄熱槽上下中間部の貯留水温度tb,蓄熱槽上部の貯留水温度tcの夫々がほぼ前記の第1設定温度t1(本例ではt1=4℃)に上昇した後も、運転形態としては引き続き、図9に示す如く、上部出入器3を引き続き貯留水Cの水面近傍で水中に位置させた状態で、蓄熱槽1の貯留水Cを下部出入器2−負荷側冷水循環路20の往路20a−負荷装置19−負荷側冷水循環路20の復路20b−上部出入器3の順に循環させる。
(F) Rear-stage water heat radiation operation In the above-mentioned front-stage water heat radiation operation, the stored water temperature ta at the lower part of the heat storage tank detected by the first to third temperature sensors 22a to 22c, the stored water temperature tb at the upper and lower intermediate parts of the heat storage tank, and the heat storage tank Even after each of the upper storage water temperatures tc has risen to the first set temperature t1 (in this example, t1 = 4 ° C.), the operation mode continues as shown in FIG. In a state where the stored water C is positioned in the vicinity of the water surface, the stored water C in the heat storage tank 1 is sent to the lower input / output unit 2-the forward path 20 a of the load side cold water circulation path 20-the load device 19-the return path of the load side cold water circulation path 20. 20b—circulate in the order of the upper / lower unit 3.

つまり、この後段水放熱運転では、下部出入器2の出入口2cを通じて蓄熱槽1における下部の貯留水C(4℃冷水)を負荷装置19に供給し、そして、負荷装置19での冷熱消費により昇温した負荷装置19からの戻り水C(16℃冷水)を貯留水Cの水面近傍で水中に位置させた上部出入器3の出入口3c(吐出口)から平面視で放射状に分散させて蓄熱槽上部の貯留冷水C中へ水平向きに吐出することにより、高温で比重の小さな負荷装置19からの戻り水C(16℃冷水)を槽内の上側に存在させ、かつ、比重の大きな4℃の貯留水Cを槽内の下側に存在させる温度成層状態を保って、それら下側貯留水C(4℃冷水)と上側貯留水C(16℃冷水)との境界Kを漸次的に下降させる槽内流動形態で、負荷装置19への供給冷水Cを蓄熱槽1の下部から取り出すようにし、これにより、図10に示す如く蓄熱層1における下側の低温貯留水(4℃冷水)を使い切る(逆言すれば、負荷装置19からの戻り水(16℃冷水)により蓄熱槽1が満たされる)までの間、負荷装置19に供給する冷水Cの温度をほぼ4℃に安定的に保つ。   That is, in the latter stage water heat radiation operation, the lower storage water C (4 ° C. cold water) in the heat storage tank 1 is supplied to the load device 19 through the inlet / outlet 2 c of the lower inlet / outlet 2, and the temperature rises due to the consumption of cold heat in the load device 19. The return water C (16 ° C. cold water) from the warm load device 19 is radially dispersed in a plan view from the inlet / outlet 3c (discharge port) of the upper inlet / outlet 3 positioned in the water near the surface of the stored water C to store the heat. By discharging horizontally into the upper stored cold water C, the return water C (16 ° C. cold water) from the load device 19 having a high specific gravity and a low specific gravity is present on the upper side in the tank, and a high specific gravity of 4 ° C. While maintaining the temperature stratification state in which the stored water C exists on the lower side in the tank, the boundary K between the lower stored water C (4 ° C. cold water) and the upper stored water C (16 ° C. cold water) is gradually lowered. Supplying cold water C to the load device 19 in the flow form in the tank It is made to take out from the lower part of the heat tank 1, and this uses up the low temperature stored water (4 degreeC cold water) of the lower side in the thermal storage layer 1 as shown in FIG. 10 (in other words, the return water (16 The temperature of the cold water C supplied to the load device 19 is stably kept at approximately 4 ° C. until the heat storage tank 1 is filled with the cold water (° C.).

以上要するに、本実施形態において上記(イ)〜(ヘ)の運転制御を実行する運転制御器26は、蓄氷運転の際、吐出口X(上部出入器3の出入口3c)を蓄熱槽1における貯留水Cの上方空間に位置させて、その吐出口Xから粒状氷aを吐出させることで、貯留水Cに浮遊する氷集積層Aを吐出口Xよりも低い位置に形成し、そして、この蓄氷運転の後の解氷運転では、同じく吐出口X(上部出入器3の出入口3c)を蓄熱槽1における貯留水Cの上方空間に位置させて、その吐出口Xから粒状氷aに代え冷熱消費装置19よりの戻り水Cを吐出させることで上記氷集積層Aを融解させ、さらに、この解氷運転に続く水放熱運転では、吐出口X(上部出入器3の出入口3c)を蓄熱槽1における貯留水Cの水面近傍で水中に位置させる状態に下降させて、その吐出口Xから冷熱消費装置19よりの戻し水Cを吐出させることで、その戻し水Cを蓄熱槽1の上部に戻す運転制御手段を構成する。   In short, in the present embodiment, the operation controller 26 that executes the operation controls (A) to (F) described above has the discharge port X (the inlet / outlet 3c of the upper inlet / outlet 3) in the heat storage tank 1 during the ice storage operation. By disposing granular ice a from the discharge port X in the upper space of the stored water C, an ice accumulation layer A floating in the stored water C is formed at a position lower than the discharge port X, and this In the ice-breaking operation after the ice storage operation, the discharge port X (the inlet / outlet 3c of the upper inlet / outlet 3) is similarly positioned in the space above the stored water C in the heat storage tank 1, and the discharge port X is replaced with granular ice a. The ice accumulation layer A is melted by discharging the return water C from the cold energy consuming device 19, and in addition, in the water heat radiation operation following the ice melting operation, the discharge port X (the inlet / outlet 3 c of the upper inlet / outlet unit 3) is stored. A state where the water is located near the surface of the stored water C in the tank 1 Is lowered, by ejecting the return water C than cold consuming device 19 from the discharge port X, it constitutes a driving control means for returning the return water C at the top of the heat storage tank 1.

そしてまた、この運転制御器26は、蓄氷運転の際、氷集積層Aの上面と吐出口X(上部出入器3の出入口3c)との離間寸法を所定寸法に保つように、氷集積層Aの成長に伴い吐出口Xを上昇させ、かつ、解氷運転の際、氷集積層Aの上面と吐出口X(上部出入器3の出入口3c)との離間寸法を所定寸法に保つように、氷集積層Aの融解に伴い吐出口Xを下降させる構成にしてある。   The operation controller 26 also keeps the distance between the upper surface of the ice accumulation layer A and the discharge port X (the inlet / outlet 3c of the upper inlet / outlet 3) at a predetermined size during the ice storage operation. Along with the growth of A, the discharge port X is raised, and the distance between the upper surface of the ice accumulation layer A and the discharge port X (the inlet / outlet 3c of the upper inlet / outlet 3) is kept at a predetermined size during the ice-breaking operation. The discharge port X is lowered as the ice accumulation layer A melts.

〔別の実施形態〕
次に本発明の別実施形態を列記する。
前述の実施形態では、前段水放熱運転及び後段水放熱運転の両方において上部出入器3の出入口3c(吐出口X)を貯留水Cの水面近傍で水中に位置させる例を示したが、これに代え、前段水放熱運転では解氷運転時と同様、貯留水Cの上方空間に位置させた上部出入器3の出入口3c(吐出口X)から戻し水Cを吐出させるようにして、蓄熱槽1における貯留水Cの混合を促進し、そして、その後の後段水放熱運転において上部出入器3の出入口3c(吐出口X)を貯留水Cの水面近傍で水中に位置させるように下降させた状態で戻り水Cを吐出させることにより、貯留水Cの温度成層状態を保つようにしてもよい。
[Another embodiment]
Next, other embodiments of the present invention will be listed.
In the above-described embodiment, the example in which the inlet / outlet 3c (discharge port X) of the upper inlet / outlet 3 is located in the vicinity of the water surface of the stored water C in both the front-stage water heat radiation operation and the rear-stage water heat radiation operation has been described. Instead, in the upstream water heat radiation operation, the return water C is discharged from the inlet / outlet 3c (discharge port X) of the upper inlet / outlet 3 located in the upper space of the stored water C, as in the ice-melting operation. In the state where the mixing of the stored water C is promoted and the outlet 3c (discharge port X) of the upper inlet / outlet 3 is lowered so as to be positioned in the vicinity of the water surface of the stored water C in the subsequent water radiating operation. By discharging the return water C, the temperature stratified state of the stored water C may be maintained.

前述の実施形態では、蓄熱槽1内に1つの吐出口X(上部出入器3の出入口3c)を設ける例を示したが、これに代え、吐出口Xを平面視で分散させて蓄熱槽1に複数設けるようにしてもよい。   In the above-described embodiment, an example in which one discharge port X (the inlet / outlet 3c of the upper inlet / outlet unit 3) is provided in the heat storage tank 1 has been described, but instead, the discharge port X is dispersed in a plan view to store the heat storage tank 1. A plurality of them may be provided.

また、前述の実施形態では、蓄熱槽1を一槽だけ設ける構成を示したが、これに代え、複数の蓄熱槽1を並列的に設け、これら蓄熱槽1の夫々に吐出口Xを装備する構成にしてもよい。   Moreover, in the above-mentioned embodiment, although the structure which provides only one heat storage tank 1 was shown, it replaces with this and provides the some heat storage tank 1 in parallel, and equips each of these heat storage tanks 1 with the discharge port X. It may be configured.

吐出口Xは、粒状氷aや戻り水Cを平面視で放射状に分散させて水平向きに吐出させる構造に限らず、粒状氷aや戻り水Cを水平一方向ないし互いに逆向きの水平二方向に向けて吐出させる構造などであってもよく、その具体的構造は種々の変更が可能である。   The discharge port X is not limited to a structure in which the granular ice a and the return water C are radially dispersed in a plan view and discharged horizontally, but the granular ice a and the return water C are in one horizontal direction or in two horizontal directions opposite to each other. It may be a structure that discharges toward the surface, and the specific structure can be variously changed.

本発明の実施において、粒状氷aの生成は過冷却解除方式に限られるものではなく、例えば、層状の氷を削って粒状氷を生成する方式や、塊状の氷を砕いて粒状氷を生成する方式などであってもよい。   In the practice of the present invention, the generation of the granular ice a is not limited to the supercooling release method. For example, the granular ice is generated by scraping the layered ice or the massive ice is crushed to generate the granular ice. It may be a method.

前述の実施形態では、蓄熱槽1に蓄熱した冷熱を空調に用いる例を示したが、本発明の実施において、蓄熱槽1に蓄熱した冷熱の用途は空調に限られるものではなく、物品の冷却など、どのような用途であってもよい。   In the above-described embodiment, an example in which the cold energy stored in the heat storage tank 1 is used for air conditioning is shown. However, in the implementation of the present invention, the use of the cold heat stored in the heat storage tank 1 is not limited to air conditioning, and cooling of articles. Any application may be used.

氷蓄熱設備の全体構成を示す図Diagram showing the overall configuration of the ice heat storage facility 出入器の斜視図Perspective view 前段水蓄熱運転の運転形態を示す図The figure which shows the driving | running form of pre-stage water heat storage driving 後段水蓄熱運転の運転形態を示す図The figure which shows the mode of operation of latter stage water heat storage operation 蓄氷運転の運転形態を示す図Diagram showing the operation mode of ice storage operation 蓄熱運転の完了状態を示す図The figure which shows the completion state of thermal storage operation 解氷運転の運転形態を示す図Diagram showing the operation mode of ice-free operation 前段水放熱運転の運転形態を示す図The figure which shows the driving | running form of front | former stage water heat radiation driving | operation 後段水放熱運転の運転形態を示す図The figure which shows the mode of operation of latter stage water heat radiation operation 放熱運転の完了状態を示す図Diagram showing the completion of heat dissipation operation

1 蓄熱槽
a 粒状氷
C 水
A 氷集積層
19 冷熱消費装置
X 吐出口
26 運転制御手段
駆動装置
DESCRIPTION OF SYMBOLS 1 Thermal storage tank a Granular ice C Water A Ice accumulation layer 19 Cold-heat consumption apparatus X Discharge port 26 Operation control means
7 drive unit

Claims (2)

蓄熱槽に粒状氷を供給して前記蓄熱槽の貯留水に浮遊する氷集積層を形成する蓄氷運転と、この蓄氷運転の後に前記蓄熱槽の下部から冷熱消費装置への供給冷水を取り出しながら前記氷集積層を前記冷熱消費装置からの戻り水により融解させる解氷運転とを実施する氷蓄熱設備であって、
前記蓄熱槽の上部に配置した吐出口を上下移動させる駆動装置を設け、
前記蓄氷運転では、前記駆動装置により前記蓄熱槽における貯留水の上方空間に前記吐出口を位置させて、この吐出口から前記粒状氷を吐出させることで、前記吐出口よりも低い位置に前記氷集積層を形成するとともに、
この氷集積層の上面と前記吐出口との離間寸法を所定寸法に保つ状態に前記氷集積層の成長に伴い前記吐出口を前記駆動装置により上昇させ、
前記解氷運転では、前記駆動装置により前記吐出口を前記蓄熱槽における貯留水の上方空間で前記氷集積層よりも高く位置させて、この吐出口から前記戻り水を吐出させることで、前記氷集積層を融解させる運転制御手段を設け、
この運転制御手段は、
前記解氷運転に続いて、前記蓄熱槽の下部から前記冷熱消費装置への供給冷水を取り出しながら前記冷熱消費装置からの戻り水を前記蓄熱槽の上部に戻す水放熱運転を実施し、
この水放熱運転では、前記駆動装置により前記吐出口を前記蓄熱槽における貯留水の水面近傍で水中に位置させて、この吐出口から前記戻り水を吐出させることで、前記戻り水を前記蓄熱槽の上部に戻す構成にしてある氷蓄熱設備。
An ice storage operation in which granular ice is supplied to the heat storage tank to form an ice accumulation layer floating in the stored water in the heat storage tank, and the cold water supplied to the cold energy consumption device is taken out from the lower part of the heat storage tank after this ice storage operation An ice heat storage facility that performs an ice-breaking operation in which the ice accumulation layer is melted by return water from the cold energy consumption device,
A drive device is provided to move the discharge port arranged above the heat storage tank up and down,
In the ice storage operation, the discharge device is positioned in the upper space of the stored water in the heat storage tank by the drive device , and the granular ice is discharged from the discharge port, so that the lower position than the discharge port. While forming an ice accumulation layer,
With the growth of the ice accumulation layer, the ejection port is raised by the driving device in a state in which the separation dimension between the upper surface of the ice accumulation layer and the ejection port is maintained at a predetermined dimension.
In the ice-melting operation, the discharge port is positioned higher than the ice accumulation layer in the space above the stored water in the heat storage tank by the driving device , and the return water is discharged from the discharge port, whereby the ice set the operation control means to melt the accumulated layer,
This operation control means
Following the ice-melting operation, while taking out the cold water supplied to the cold energy consumption device from the lower part of the heat storage tank, the water heat radiation operation to return the return water from the cold energy consumption apparatus to the upper part of the heat storage tank,
In this water heat radiation operation, the drive device positions the discharge port in the vicinity of the water surface of the stored water in the heat storage tank, and discharges the return water from the discharge port, whereby the return water is discharged from the heat storage tank. The ice heat storage equipment that is configured to return to the top of the .
前記運転制御手段は、
前記解氷運転では、氷集積層の上面と前記吐出口との離間寸法を所定寸法に保つ状態に前記氷集積層の融解に伴い前記吐出口を前記駆動装置により下降させる構成にしてある請求項1記載の氷蓄熱設備。
The operation control means includes
In the ice-breaking operation, the discharge port is lowered by the driving device as the ice accumulation layer melts in a state in which a distance between the upper surface of the ice accumulation layer and the discharge port is maintained at a predetermined size. The ice heat storage facility according to 1.
JP2007066713A 2007-03-15 2007-03-15 Ice heat storage equipment Expired - Fee Related JP4922028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066713A JP4922028B2 (en) 2007-03-15 2007-03-15 Ice heat storage equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066713A JP4922028B2 (en) 2007-03-15 2007-03-15 Ice heat storage equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011117271A Division JP5281673B2 (en) 2011-05-25 2011-05-25 Ice heat storage equipment

Publications (2)

Publication Number Publication Date
JP2008224183A JP2008224183A (en) 2008-09-25
JP4922028B2 true JP4922028B2 (en) 2012-04-25

Family

ID=39843014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066713A Expired - Fee Related JP4922028B2 (en) 2007-03-15 2007-03-15 Ice heat storage equipment

Country Status (1)

Country Link
JP (1) JP4922028B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554522B2 (en) * 2009-08-03 2014-07-23 学校法人東京電機大学 Ice heat storage device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322396A (en) * 1992-05-28 1993-12-07 Mitsubishi Heavy Ind Ltd Ice heat accumulating device
JP3300714B2 (en) * 1993-04-13 2002-07-08 東京電力株式会社 Operating method of heat storage system
JPH08210671A (en) * 1995-02-02 1996-08-20 Toshiba Corp Ice heat storage device
JP3516314B2 (en) * 1995-02-15 2004-04-05 高砂熱学工業株式会社 Ice heat storage device using supercooled water
JP2001330280A (en) * 2000-05-22 2001-11-30 Matsushita Electric Ind Co Ltd Ice thermal storage unit

Also Published As

Publication number Publication date
JP2008224183A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP2007085629A (en) Operating method of ice thermal storage equipment and ice thermal storage equipment
JP5281673B2 (en) Ice heat storage equipment
KR101287306B1 (en) Ice maker
JP4922028B2 (en) Ice heat storage equipment
JP2007085672A (en) Ice thermal storage equipment and its operating method
TW201712282A (en) Refrigerator
JP5383409B2 (en) Ice storage type heat source device
CN108332321A (en) A kind of phase-change energy storage device
JP4514804B2 (en) Ice making and air conditioning system using supercooled water
JP4854399B2 (en) Cold water production system
JP2018071835A (en) Ice machine
KR19990016784A (en) Defrost structure of home refrigerator
KR101264616B1 (en) A cold thermal storage system
KR100715839B1 (en) Forice-on-coil a device inclusion of thermal stroage package system
KR20140060114A (en) A water-cooled ice machine
CN215983411U (en) Heat energy exchange device
JP2004205127A (en) Low temperature air layer forming system with cold heat storage floor and its operating method
KR200403761Y1 (en) Forice-on-coil a device inclusion of thermal stroage package system
JP6279906B2 (en) Snow energy supply system
JP2696046B2 (en) Latent heat storage device
CN116066918A (en) Cold accumulation air conditioner and control method thereof
JP2002061896A (en) Ice thermal storage type air conditioner
JP2006112652A (en) Ice making method and device for heat storage
CN116066914A (en) Cold accumulation air conditioner and control method thereof
CN117515849A (en) Workshop temperature control equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees