JP2001330280A - Ice thermal storage unit - Google Patents

Ice thermal storage unit

Info

Publication number
JP2001330280A
JP2001330280A JP2000149342A JP2000149342A JP2001330280A JP 2001330280 A JP2001330280 A JP 2001330280A JP 2000149342 A JP2000149342 A JP 2000149342A JP 2000149342 A JP2000149342 A JP 2000149342A JP 2001330280 A JP2001330280 A JP 2001330280A
Authority
JP
Japan
Prior art keywords
water
ice
heat exchanger
refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000149342A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Nishiyama
吉継 西山
Takeji Watanabe
竹司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000149342A priority Critical patent/JP2001330280A/en
Publication of JP2001330280A publication Critical patent/JP2001330280A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems of a decrease in an efficiency of a heat pump cycle due to a drop of a temperature of a low-pressure refrigerant as a growth of a generated ice in the case of using a flooded evaporator like a prior art in an ice thermal storage unit utilizing a heat pump and the like, and reductions in stability and durability of an ice thermal storage unit in the case of a closure of a channel due to a frequent phase change of water of a supercooling state to an ice in a heat exchanger, though an efficiency is improved in a method for ice thermal storing by generating the water of the supercooling state by using a plate type heat exchanger. SOLUTION: When a laminate type heat exchanger 5 formed by sequentially laminating a refrigerant plate 15 formed with a slit-like hole, a water plate 17 and a partition wall plate 16 inserted between these plates 15 and 17 is used, a flow of a water channel can be made in a laminar flow. Accordingly, the water of the supercooling state not frozen even at a temperature of an ice point or lower can be stably generated. Therefore, an icemaking (ice thermal storage) operation of a stable and high efficiency can be conducted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水の相変化を利用
して氷蓄熱を行う装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for storing ice heat using a phase change of water.

【0002】[0002]

【従来の技術】従来より、電力料金が廉価な深夜の余剰
電力を利用して氷、または冷水を生成し、昼間に生成し
た氷、または冷水を利用して冷房を行う氷蓄熱型空調装
置、あるいは水蓄熱型空調装置が提案されている。この
装置で空調を行うと電力需要をピークシフトさせること
が出来るばかりでなく、ランニングコストを大幅に削減
することが出来る。
2. Description of the Related Art Conventionally, an ice storage type air conditioner in which ice or cold water is generated by using surplus power at midnight, which is inexpensive, and cooling is performed by using ice or cold water generated in the daytime, Alternatively, a water storage type air conditioner has been proposed. When air conditioning is performed by this device, not only can the peak power demand be shifted, but also the running cost can be significantly reduced.

【0003】例えば、図7に示すような特告平7−94
931号公報に記されている装置は、冷媒を蒸発させて
製氷を行う熱交換器が、氷蓄熱タンクの内部でコイル状
あるいはU字形に形成された満液式蒸発器であり、熱交
換器の表面部分と接する水を凍らせて製氷する管外製氷
方式の氷蓄熱装置である。
[0003] For example, as shown in FIG.
No. 931 discloses an apparatus in which a heat exchanger for evaporating a refrigerant to make ice is a liquid-filled evaporator formed in a coil shape or a U shape inside an ice heat storage tank. An external ice making type ice heat storage device for making ice by freezing water in contact with the surface portion of the ice.

【0004】また、図8に示すような特開平11−32
5625号公報に記されている装置は、プレート式熱交
換器を用いて水を冷却し、冷水蓄熱タンクに冷水を蓄え
る方式の冷水蓄熱装置である。
[0004] Further, as shown in FIG.
The device described in Japanese Patent No. 5625 is a chilled water heat storage device that cools water by using a plate heat exchanger and stores chilled water in a chilled water heat storage tank.

【0005】また、図9に示すような特開平11−37
517号公報に記されている装置は、プレート式熱交換
器を用いて水を氷点以下の温度でも液相である過冷却状
態まで冷却し、その後過冷却状態の水に衝撃を与えて製
氷を行う氷蓄熱装置である。
[0005] Further, as shown in FIG.
The apparatus described in Japanese Patent Publication No. 517 uses a plate heat exchanger to cool water to a supercooled state, which is a liquid phase even at a temperature below the freezing point, and then impacts the supercooled water to produce ice. It is an ice thermal storage device.

【0006】図7は熱交換器の表面に製氷を行う従来方
式による氷蓄熱装置を模式的に示したものである。圧縮
機1、凝縮器2、減圧手段3a、氷蓄熱タンク9内に配
管をU字形に形成した製氷熱交換器4aの順に冷媒回路
8で接続されるヒートポンプ回路において、圧縮機1で
高温高圧となった冷媒は凝縮器2で液化し、減圧手段3
aを経て低温低圧となり、氷蓄熱タンク9の満液式蒸発
器である製氷熱交換器4aの表面に接する水9aを冷却
し凍結させる。従って、製氷熱交換器4aの表面には氷
9bが生成され、運転時間の経過と共に、生成された氷
9bの厚みが増していく。製氷熱交換器4aを通過した
冷媒は、三方弁7a、7bによって蒸発器6を介さない
ように圧縮機1へ戻される。上記の製氷(氷蓄熱)運転
は、深夜の余剰電力を用いて行われる。昼間は、以下の
ような動作を行う。凝縮器2で液化した高圧冷媒は、減
圧幅を最小となるように設定された減圧手段3aを通過
して高圧液体のままで製氷熱交換器4aへ入り、高圧冷
媒は製氷熱交換器4aの表面に生成した氷9bによって
冷却され、氷9bは融解する。温度の下がった冷媒は三
方弁7a、7b、減圧手段3bを介して蒸発器6へ送ら
れ、蒸発器6で外部から気化熱を奪い、圧縮機1へと戻
る。即ち、氷9bに蓄熱した冷熱は、高圧冷媒を冷却す
ることに利用し、冷凍効果を向上させて昼間のヒートポ
ンプサイクルの効率を大幅に向上させることを目的とし
ている。図7に示す装置を空調機として利用するとき、
蒸発器6が室内機となる。
FIG. 7 schematically shows a conventional ice heat storage device for making ice on the surface of a heat exchanger. In the heat pump circuit, which is connected by the refrigerant circuit 8 in the order of the compressor 1, the condenser 2, the decompression means 3a, and the ice making heat exchanger 4a in which a pipe is formed in a U-shape in the ice heat storage tank 9, the compressor 1 The condensed refrigerant is liquefied in the condenser 2,
After passing through a, low temperature and low pressure are applied, and the water 9a in contact with the surface of the ice making heat exchanger 4a which is a liquid-filled evaporator of the ice heat storage tank 9 is cooled and frozen. Therefore, ice 9b is generated on the surface of the ice making heat exchanger 4a, and the thickness of the generated ice 9b increases as the operation time elapses. The refrigerant that has passed through the ice making heat exchanger 4a is returned to the compressor 1 by the three-way valves 7a and 7b so as not to pass through the evaporator 6. The above-mentioned ice making (ice heat storage) operation is performed using surplus power at midnight. In the daytime, the following operation is performed. The high-pressure refrigerant liquefied in the condenser 2 passes through the depressurizing means 3a set so as to minimize the decompression width, enters the ice making heat exchanger 4a as a high-pressure liquid, and the high-pressure refrigerant is supplied to the ice making heat exchanger 4a. Cooled by the ice 9b formed on the surface, the ice 9b melts. The cooled refrigerant is sent to the evaporator 6 via the three-way valves 7a and 7b and the decompression means 3b. The evaporator 6 removes heat of vaporization from the outside and returns to the compressor 1. That is, the cold stored in the ice 9b is used to cool the high-pressure refrigerant, and the purpose is to improve the refrigerating effect and to greatly improve the efficiency of the daytime heat pump cycle. When using the device shown in FIG. 7 as an air conditioner,
The evaporator 6 is an indoor unit.

【0007】また、図10のように氷蓄熱タンク9内の
温度の低い水9aを直接蒸発器6へ送り外部の熱を吸熱
することもできる。
Further, as shown in FIG. 10, water 9a having a low temperature in the ice heat storage tank 9 can be sent directly to the evaporator 6 to absorb external heat.

【0008】上記氷蓄熱装置は、深夜電力を用いて上記
動作により氷蓄熱タンク9に氷を蓄積し、昼間に蓄積し
た氷を利用して冷房を行う。従って、蓄積できる氷の量
が多いほど、電力需要のピークシフト率が高くなり、ラ
ンニングコストを削減することが出来る。
The above-mentioned ice heat storage device accumulates ice in the ice heat storage tank 9 by the above-mentioned operation using electric power at midnight, and performs cooling using the ice accumulated in the daytime. Therefore, as the amount of ice that can be stored is larger, the peak shift rate of the power demand is higher, and the running cost can be reduced.

【0009】さらに、凝縮器2を水冷式とし、製氷運転
時に生成される温水を給湯に利用することもできる。ま
た、ヒートポンプ回路の冷媒が、圧縮機1、製氷熱交換
器4a、減圧弁3a、凝縮器2の順で冷媒が循環するよ
うな逆流れとなる冷媒回路構成とするとき、氷蓄熱タン
クの水は製氷熱交換器4aによって加熱され、温水が貯
水される。この氷蓄熱タンクに貯水した温水は暖房に使
うこともできる。
Further, the condenser 2 may be of a water-cooled type, and the hot water generated during the ice making operation may be used for hot water supply. Further, when the refrigerant of the heat pump circuit has a reverse flow such that the refrigerant circulates in the order of the compressor 1, the ice making heat exchanger 4a, the pressure reducing valve 3a, and the condenser 2, the water in the ice heat storage tank Is heated by the ice making heat exchanger 4a, and hot water is stored. The hot water stored in the ice heat storage tank can be used for heating.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
方式のようにヒートポンプサイクルを用いて製氷熱交換
器4aの表面に製氷させる管外製氷方式で氷蓄熱を行う
と、製氷熱交換器4aの表面に形成された氷9bの成長
とともに冷媒の蒸発する温度が下がるため、ヒートポン
プサイクルの効率が低下し、さらに、氷蓄熱するための
運転時間が長くなるためにランニングコストが高くなっ
てしまう。また、製氷熱交換器4aに関わる熱伝達は、
氷9bの熱伝導が主体となっているので、ヒートポンプ
サイクルは生成される氷9bの厚さと融解時の氷9bの
形態の影響を受けやすく、さらに、伝熱促進も図りにく
い。
However, if ice heat storage is performed by an external ice making method in which ice is made on the surface of the ice making heat exchanger 4a by using a heat pump cycle as in the conventional method, the surface of the ice making heat exchanger 4a will be rejected. Since the temperature at which the refrigerant evaporates decreases with the growth of the ice 9b formed in the ice, the efficiency of the heat pump cycle decreases, and the running time for storing ice heat increases, so that the running cost increases. The heat transfer relating to the ice making heat exchanger 4a is as follows.
Since the heat conduction of the ice 9b is mainly performed, the heat pump cycle is easily affected by the thickness of the generated ice 9b and the form of the ice 9b at the time of melting, and it is difficult to promote heat transfer.

【0011】プレート式熱交換器や二重管式熱交換器で
過冷却状態の水を生成して製氷する方法は、製氷した氷
の影響を受けずに製氷(氷蓄熱)運転ができるため、シ
ステムの高効率化と低ランニングコストを実現すること
ができる。しかし、過冷却状態の水は、僅かな衝撃を受
けると氷へと相変化し、過冷却された温度が低いほど極
く僅かな衝撃でも相変化する傾向となり、プレート式熱
交換器や二重管式熱交換器内に水の偏流や流れの乱れが
生じたとき、過冷却状態の水が氷へと相変化して流路を
閉塞してしまう。また、伝熱面近傍を流れる水の温度は
主流となる水の温度より低くなるから、主流の水が氷点
よりも高い温度であっても、伝熱面近傍の水が過冷却状
態の水となる場合があり、熱交換器の水流路で氷へと相
変化しやすい。度々、氷が流路を閉塞してしまうと運転
を停止しなければならないので、装置の安定性と耐久性
が低下する。また、凍結した氷を融解するための加熱装
置と制御装置が必要となり、装置のコストアップへとな
ってしまう。
The method of producing ice by generating supercooled water using a plate heat exchanger or a double tube heat exchanger can perform an ice making (ice heat storage) operation without being affected by the ice that has been made. High efficiency of the system and low running cost can be realized. However, supercooled water undergoes a phase change to ice when subjected to a slight shock, and tends to change with a very slight impact as the supercooled temperature is lower. When water drift or turbulence occurs in the tubular heat exchanger, the supercooled water changes its phase to ice and blocks the flow path. In addition, since the temperature of the water flowing near the heat transfer surface is lower than the temperature of the mainstream water, even if the mainstream water is at a temperature higher than the freezing point, the water near the heat transfer surface may be supercooled. And the phase easily changes to ice in the water flow path of the heat exchanger. Frequently, if the ice blocks the flow path, the operation must be stopped, thus reducing the stability and durability of the device. Further, a heating device and a control device for melting the frozen ice are required, which increases the cost of the device.

【0012】本発明は係る従来の課題を解決するための
装置であり、高効率で安定した氷蓄熱運転ができる装置
を提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide an apparatus capable of performing high-efficiency and stable ice heat storage operation.

【0013】[0013]

【課題を解決するための手段】本発明は上記課題を解決
するために、圧縮機と凝縮器と減圧手段と製氷熱交換器
が冷媒回路で順に接続されるヒートポンプ回路と、水を
貯水する氷蓄熱タンクと、氷蓄熱タンクの水を製氷熱交
換器でヒートポンプ回路の冷媒と熱交換して過冷却状態
まで冷却した後、氷蓄熱タンクへ戻す水回路を備え、前
記製氷熱交換器は積層式熱交換器であることを特徴とす
る氷蓄熱装置としたものである。
According to the present invention, there is provided a heat pump circuit in which a compressor, a condenser, a decompression means, and an ice making heat exchanger are sequentially connected by a refrigerant circuit, and an ice for storing water. A heat storage tank and a water circuit that exchanges heat of water in an ice heat storage tank with a refrigerant in a heat pump circuit in an ice making heat exchanger to cool to a supercooled state and then returns to an ice heat storage tank, and the ice making heat exchanger is a stacked type. An ice heat storage device characterized by being a heat exchanger.

【0014】上記発明によれば、高効率で安定した氷蓄
熱運転を行うことが出来る。
According to the present invention, a high-efficiency and stable ice heat storage operation can be performed.

【0015】[0015]

【発明の実施の形態】本発明は各請求項に記載した構成
とすることにより、本発明の目的を達成した実施形態の
氷蓄熱装置を実現できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention can realize an ice heat storage device according to an embodiment which achieves the object of the present invention by adopting the structure described in each claim.

【0016】すなわち、請求項1記載のように、圧縮機
と凝縮器と減圧手段と製氷熱交換器が冷媒回路で順に接
続されるヒートポンプ回路と、水を貯水する氷蓄熱タン
クと、氷蓄熱タンクの水を製氷熱交換器でヒートポンプ
回路の冷媒と熱交換して過冷却状態まで冷却した後、氷
蓄熱タンクへ戻す水回路を備え、前記製氷熱交換器は積
層式熱交換器である氷蓄熱装置とすることにより、低圧
となる冷媒の温度が氷の蓄積量とは無関係となり、製氷
(氷蓄熱)運転時の効率を高い状態で維持することがで
きる。
That is, as described in claim 1, a heat pump circuit in which a compressor, a condenser, a pressure reducing means, and an ice making heat exchanger are sequentially connected by a refrigerant circuit, an ice heat storage tank for storing water, and an ice heat storage tank A water circuit that exchanges heat with the refrigerant in a heat pump circuit in an ice making heat exchanger to cool the water to a supercooled state, and then returns the water to an ice heat storage tank, wherein the ice making heat exchanger is a stacked heat exchanger. By using the apparatus, the temperature of the low pressure refrigerant becomes independent of the amount of accumulated ice, and the efficiency during ice making (ice heat storage) operation can be maintained in a high state.

【0017】また、請求項2記載のように、積層式熱交
換器は、スリット状の穴を有する複数の冷媒プレート
と、スリット状の穴を有する複数の水プレートと、この
複数の冷媒プレートと水プレートの間に設けられていて
冷媒と水の隔壁をなす複数の隔壁プレートとから冷媒流
路と水流路を形成したものである請求項1記載の氷蓄熱
装置とすることにより、水流路の流れは層流となること
から、生成された過冷却状態の水は氷へと相変化させる
ことなく、氷蓄熱タンクへと送ることができる。
According to a second aspect of the present invention, there is provided a laminated heat exchanger comprising: a plurality of refrigerant plates having slit-shaped holes; a plurality of water plates having slit-shaped holes; The ice heat storage device according to claim 1, wherein the refrigerant flow path and the water flow path are formed from a plurality of partition plates provided between the water plates and forming a partition wall between the refrigerant and the water. Since the flow is laminar, the generated supercooled water can be sent to the ice storage tank without phase change to ice.

【0018】また、請求項3記載のように、氷蓄熱タン
クの水をヒートポンプ回路の冷媒と熱交換して冷却する
予冷熱交換器を、積層式熱交換器の水回路の入口に備え
た請求項1記載の氷蓄熱装置とすることにより、既存の
熱交換器で伝熱面積を増加させることができる。
According to a third aspect of the present invention, a pre-cooling heat exchanger for cooling the water in the ice heat storage tank by exchanging heat with the refrigerant in the heat pump circuit is provided at the inlet of the water circuit of the stacked heat exchanger. By using the ice heat storage device according to item 1, the heat transfer area can be increased with the existing heat exchanger.

【0019】また、請求項4記載のように、予冷熱交換
器と積層式熱交換器を順に接続する冷媒回路を設け、予
冷熱交換器と積層式熱交換器の間の前記冷媒回路に減圧
手段を備えた請求項3記載の氷蓄熱装置とすることによ
り、低圧冷媒の温度を適切な温度に制御できる。
Further, a refrigerant circuit for connecting the pre-cooling heat exchanger and the stacked heat exchanger in order is provided, and the refrigerant circuit between the pre-cooling heat exchanger and the stacked heat exchanger is decompressed. The temperature of the low-pressure refrigerant can be controlled to an appropriate temperature by using the ice heat storage device according to the third aspect including the means.

【0020】[0020]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】(実施例1)図1は本発明の実施例1にお
ける氷蓄熱装置を模式的に示したものである。図1の氷
蓄熱装置は、圧縮機1、凝縮器2、減圧手段3a、製氷
熱交換器である積層式熱交換器5、三方弁7a、7bを
順に接続する冷媒回路8から構成されるヒートポンプ回
路と、三方弁7a、7bの制御により冷媒を減圧手段3
b、蒸発器6の順に通過させるヒートポンプ回路と、氷
蓄熱タンク9に貯水された水9aを積層式熱交換器5を
介して循環させる循環ポンプ10と、その水が循環する
水回路11より構成されている。温度センサー12は積
層式熱交換器5から流出する水の温度を検知し、制御ユ
ニット13は温度センサー12が検知する温度が所定の
温度T1となるように循環ポンプ10から送られる水量
を制御するためのものである。
(Embodiment 1) FIG. 1 schematically shows an ice heat storage device according to Embodiment 1 of the present invention. The ice heat storage device of FIG. 1 is a heat pump including a compressor 1, a condenser 2, a pressure reducing means 3a, a laminated heat exchanger 5, which is an ice making heat exchanger, and a refrigerant circuit 8 which sequentially connects three-way valves 7a, 7b. The refrigerant is decompressed by the circuit and the three-way valves 7a and 7b.
b, a heat pump circuit for passing the evaporator 6 in this order, a circulation pump 10 for circulating the water 9a stored in the ice heat storage tank 9 through the laminated heat exchanger 5, and a water circuit 11 for circulating the water. Have been. The temperature sensor 12 detects the temperature of the water flowing out of the stacked heat exchanger 5, and the control unit 13 controls the amount of water sent from the circulation pump 10 so that the temperature detected by the temperature sensor 12 becomes a predetermined temperature T1. It is for.

【0022】図2に積層式熱交換器5の分解斜視図を示
す。積層式熱交換器5は、冷媒プレート15、水プレー
ト17、これらのプレート15、17の間に挿入する隔
壁プレート16を順に積層して形成する。冷媒プレート
15は、スリット状の穴である冷媒流路スリット15a
と水通路スリット15bが形成されている。水プレート
17は、スリット状の穴である冷媒通路スリット17
a、水流路スリット17bが形成されている。隔壁プレ
ート16は、スリット状の穴である冷媒通路スリット1
6aと水通路スリット16bが形成されている。冷媒流
路スリット15aは、トッププレート14と隔壁プレー
ト16と、あるいは両面の隔壁プレート16から挟まれ
ることにより冷媒流路を形成する。水流路スリット17
aは、両面の隔壁プレート16から挟まれることにより
水流路を形成する。冷媒プレート15の水通路スリット
15b、および隔壁プレート16の冷媒通路スリット1
6aと水通路スリット16b、および水プレート17の
冷媒通路スリット17aは、順に積層されることによっ
て貫通した空間を形成し、冷媒と水を各々のプレートの
流路に送る流入通路19a、20a、また各々の流路で
熱交換した冷媒あるいは水を合流させて積層式熱交換器
5から流出させるための流出通路19b、20bとな
る。順に積層したプレートの最上面にはトッププレート
14、最低面にはエンドプレート18を配し各々のスリ
ットを密閉空間とする。
FIG. 2 is an exploded perspective view of the laminated heat exchanger 5. The laminated heat exchanger 5 is formed by sequentially laminating a refrigerant plate 15, a water plate 17, and a partition plate 16 inserted between these plates 15, 17. The refrigerant plate 15 has a refrigerant passage slit 15a which is a slit-shaped hole.
And a water passage slit 15b. The water plate 17 has a coolant passage slit 17 which is a slit-shaped hole.
a, a water passage slit 17b is formed. The partition plate 16 is provided with a refrigerant passage slit 1 which is a slit-shaped hole.
6a and a water passage slit 16b are formed. The coolant channel slit 15a forms a coolant channel by being sandwiched between the top plate 14, the partition plate 16 or the partition plates 16 on both surfaces. Water channel slit 17
a forms a water channel by being sandwiched between the partition plates 16 on both sides. Water passage slit 15b of refrigerant plate 15 and refrigerant passage slit 1 of partition plate 16
6a, the water passage slit 16b, and the refrigerant passage slit 17a of the water plate 17 are sequentially laminated to form a penetrating space, and the inflow passages 19a, 20a for sending the refrigerant and water to the flow path of each plate, Outflow passages 19b and 20b are provided for merging the refrigerant or water that has exchanged heat in each flow path and flowing out of the laminated heat exchanger 5. The top plate 14 is arranged on the uppermost surface of the stacked plates, and the end plate 18 is arranged on the lowermost surface, and each slit is used as a closed space.

【0023】積層式熱交換器5の冷媒流路の高さ、およ
び水流路の流路高さは、冷媒プレート15、および水プ
レート17のプレートの厚みであり、流路の幅は冷媒流
路スリット15a、水流路スリット17aの幅となる。
本実施例では、水プレート17の厚みを0.1〜2.0
mmの範囲とし、水流路の水の流れが層流となるように
(レイノルズ数が1000以下)プレート17の厚みと
スリット17aの幅、および積層するプレートの枚数を
設計した。水流路を流れる水の流れは層流となり、一般
的に層流の熱伝達は低いとされているが、本発明のよう
に流路高さを0.1〜2.0mmの範囲とすると温度境界
層が薄膜化される。従って、冷媒流路を流れる冷媒と水
が熱交換を行う場合、水流路を流れる主流の温度と壁面
に沿って流れる水の温度はほぼ同じ温度となる。
The height of the refrigerant flow path of the laminated heat exchanger 5 and the flow path height of the water flow path are the thicknesses of the refrigerant plate 15 and the water plate 17, and the width of the flow path is the refrigerant flow path. The width of the slit 15a is equal to the width of the water passage slit 17a.
In this embodiment, the thickness of the water plate 17 is set to 0.1 to 2.0.
The thickness of the plate 17, the width of the slit 17a, and the number of plates to be laminated were designed so that the flow rate of water in the water flow path was laminar (Reynolds number was 1000 or less). The flow of the water flowing through the water flow path is laminar, and generally, the heat transfer of the laminar flow is low. However, when the flow path height is in the range of 0.1 to 2.0 mm as in the present invention, the temperature is low. The boundary layer is thinned. Therefore, when heat exchange occurs between the refrigerant flowing through the refrigerant flow passage and water, the temperature of the main flow flowing through the water flow passage and the temperature of the water flowing along the wall surface are substantially the same.

【0024】この構成における動作と作用について以下
に説明する。圧縮機1の動作によって高温高圧の気体と
なった冷媒は、凝縮器2で液化した後に減圧手段3aを
通過する際に減圧され、低温低圧の気液二相の状態で積
層式熱交換器5へ流れる。冷媒は積層式熱交換器5を流
れる際に循環ポンプ10よって循環する水を冷却し圧縮
機2へと戻り、再び高温高圧となって凝縮器3へと送ら
れる。積層式熱交換器5で冷却された水は氷蓄熱タンク
へ戻るが、そのときの温度は温度センサー12によって
検出され、所定の温度となるように制御ユニット13に
よって循環ポンプ10の流量を制御する。氷蓄熱タンク
9に貯水された水9a温度は、上記動作により徐々に下
がっていく。ここで、積層式熱交換器5から流出する水
の温度を氷点以下の温度に設定し、制御ユニット13よ
って温度センサー12で検出される温度が設定した氷点
以下の温度となるように、循環ポンプ10で送る水の流
量を制御する。水流路を流れる水を氷点以下の温度まで
冷却すると、水は氷点以下の温度でも液相である過冷却
状態となるが、流路内で流れの乱れ等の衝撃を受けると
瞬時に氷へと相変化し、水流路を閉塞する。しかし、上
述したように、積層式熱交換器5で冷却される水の流れ
は層流であり、さらに、水流路を流れる主流の温度と壁
面に沿って流れる水の温度はほぼ同じ温度となるため、
過冷却状態となった水は氷へ相変化することなく流路を
通過することが出来る。過冷却状態となった水は、積層
式熱交換器5を流出した後に氷蓄熱タンク9内へ放出さ
れ、氷蓄熱タンク9内の水9aと混合される。過冷却状
態となった水は、氷蓄熱タンク9内へ放出されたときに
受けた衝撃で、液相から流動性のあるシャーベット状の
氷へと相変化する。従って、連続的に積層式熱交換器5
で水を過冷却状態となるまで冷却し、氷蓄熱タンク9に
おいて氷9bへと相変化させることで、シャーベット状
の氷9bを氷蓄熱タンク9に蓄積することが出来る。ま
た、氷蓄熱タンク9に生成される氷の量に関係なく過冷
却状態の水の温度を制御することが出来る。本実施例に
おいて、上記のような製氷運転を製氷タンク9にシャー
ベット状の氷9bが体積比約60〜80%となるまで行
い、氷9bの密度は水よりも小さいので、タンク上層部
にはシャーベット状の氷9b、低層部に水が存在する形
態となる。また、本実施例では過冷却状態の水は、0℃
〜−10℃の範囲で生成することが出来が、−5℃以下
の状態になると極く僅かな衝撃でも氷へと相変化しやす
くなるため、装置の安定性を考えて設定温度の下限値を
−5℃とした。
The operation and operation of this configuration will be described below. The refrigerant, which has become a high-temperature and high-pressure gas by the operation of the compressor 1, is decompressed when passing through the decompression means 3a after being liquefied in the condenser 2 and becomes a low-temperature low-pressure two-phase gas-liquid two-phase heat exchanger 5. Flows to The refrigerant cools the water circulated by the circulation pump 10 when flowing through the laminated heat exchanger 5, returns to the compressor 2, becomes high-temperature and high-pressure again, and is sent to the condenser 3. The water cooled by the stacked heat exchanger 5 returns to the ice heat storage tank, and the temperature at that time is detected by the temperature sensor 12, and the flow rate of the circulation pump 10 is controlled by the control unit 13 so as to reach a predetermined temperature. . The temperature of the water 9a stored in the ice heat storage tank 9 gradually decreases by the above operation. Here, the temperature of the water flowing out of the stacked heat exchanger 5 is set to a temperature below the freezing point, and the circulating pump is set so that the temperature detected by the temperature sensor 12 by the control unit 13 becomes the temperature below the set freezing point. At 10 the flow rate of the water sent is controlled. When the water flowing through the water flow path is cooled to a temperature below freezing, the water is in a supercooled state, which is a liquid phase even at temperatures below freezing. The phase changes and the water flow path is closed. However, as described above, the flow of the water cooled by the stacked heat exchanger 5 is laminar, and the temperature of the main flow flowing through the water flow passage and the temperature of the water flowing along the wall surface are substantially the same. For,
The supercooled water can pass through the flow path without phase change to ice. The supercooled water is discharged into the ice heat storage tank 9 after flowing out of the stacked heat exchanger 5, and is mixed with the water 9a in the ice heat storage tank 9. The supercooled water undergoes a shock when it is discharged into the ice heat storage tank 9 and changes its phase from a liquid phase to fluid sherbet-like ice. Therefore, the stacked heat exchanger 5 is continuously
The water is cooled until it becomes a supercooled state, and the phase changes to ice 9b in the ice heat storage tank 9, so that the sherbet-like ice 9b can be stored in the ice heat storage tank 9. Further, the temperature of the supercooled water can be controlled regardless of the amount of ice generated in the ice heat storage tank 9. In this embodiment, the ice making operation as described above is performed until the volume ratio of the sherbet-like ice 9b is about 60 to 80% in the ice making tank 9, and the density of the ice 9b is smaller than that of water. The sherbet-like ice 9b is in a form in which water is present in the lower part. In this embodiment, the water in the supercooled state is 0 ° C.
It can be produced in the range of -10 ° C, but when it is -5 ° C or less, the phase changes easily to ice even with a slight impact, so the lower limit of the set temperature is considered in consideration of the stability of the device. Was set to −5 ° C.

【0025】図7に示す従来の方式による製氷運転で
は、図3に示すように熱交換器表面の氷9bが成長する
と、氷蓄熱タンク9の製氷量とともに製氷熱交換器を流
れる冷媒の温度が−15℃程度まで下がり、ヒートポン
プサイクルの効率が大幅に低下する。また、水を過冷却
状態まで冷却する熱交換器をプレート式熱交換器、ある
いは二重管式熱交換器等の乱流で伝熱促進を行うものと
置き換えた場合は、同様に過冷却状態の水を生成するこ
とができるが、流路内の水の偏流や流れの乱れ等によっ
て過冷却状態の水が氷へと相変化し、流路を閉塞してし
まう場合がある。しかし、積層式熱交換器5で過冷却状
態の水を生成するとき、氷蓄熱タンク9の氷の蓄積量に
よらず積層式熱交換器5を流れる冷媒の温度は−1℃〜
−6℃の範囲で制御することが出来るから、ヒートポン
プサイクルの効率を高効率な状態で維持することが出来
るとともに、冷却される水の流れは層流であり、さら
に、流路高さ方向の温度分布はほぼ均一であるため、過
冷却状態となった水は氷へ相変化することなく流路を通
過する。
In the ice making operation according to the conventional method shown in FIG. 7, when the ice 9b on the surface of the heat exchanger grows as shown in FIG. The temperature drops to about −15 ° C., and the efficiency of the heat pump cycle is greatly reduced. If the heat exchanger that cools the water to the supercooled state is replaced with a plate heat exchanger or a double-tube heat exchanger that promotes heat transfer by turbulence, Can be generated, but the supercooled water phase changes to ice due to the drift or turbulence of the water in the flow path, and the flow path may be blocked. However, when the supercooled water is generated in the stacked heat exchanger 5, the temperature of the refrigerant flowing through the stacked heat exchanger 5 is −1 ° C. or more regardless of the amount of accumulated ice in the ice heat storage tank 9.
Since the temperature can be controlled in the range of −6 ° C., the efficiency of the heat pump cycle can be maintained in a highly efficient state, and the flow of the cooled water is laminar. Since the temperature distribution is substantially uniform, the supercooled water passes through the flow path without phase change to ice.

【0026】氷蓄熱タンク9に生成し蓄積した氷9b
は、従来の方法と同じくヒートポンプサイクルの冷凍効
果を向上させるために高圧冷媒の冷却に利用される。例
えば、本実施例の氷蓄熱装置を冷房に利用する場合は、
蒸発器6が室内機となる。凝縮器2で高圧液体となった
冷媒は、積層式熱交換器5へ高圧のまま流入し、循環ポ
ンプ10によって送られる氷蓄熱タンク9の温度の低い
水によって冷却される。このとき、減圧手段3aは冷媒
の減圧幅が最小となるように設定される。高圧冷媒を冷
却した水は、再び氷蓄熱タンクへ放出され、生成された
シャーベット状の氷9bと直接接触して冷却される。三
方弁7a、7bの制御によって冷媒回路を切り替え、積
層式熱交換器5を流出した冷媒は減圧手段3bと蒸発器
6を通過し、蒸発器6で周囲から熱を奪ったのちに圧縮
機1へ戻る。また、図4に示すように、氷蓄熱タンク9
の温度の低い水を直接蒸発器6へ送り、冷却、あるいは
冷房を行うことも出来る。
The ice 9b generated and accumulated in the ice heat storage tank 9
Is used for cooling the high-pressure refrigerant in order to improve the refrigerating effect of the heat pump cycle as in the conventional method. For example, when using the ice heat storage device of the present embodiment for cooling,
The evaporator 6 is an indoor unit. The refrigerant that has become a high-pressure liquid in the condenser 2 flows into the stacked heat exchanger 5 while maintaining a high pressure, and is cooled by the low-temperature water in the ice heat storage tank 9 sent by the circulation pump 10. At this time, the pressure reducing means 3a is set so that the pressure reduction width of the refrigerant is minimized. The water that has cooled the high-pressure refrigerant is discharged again to the ice heat storage tank, and is directly contacted with the generated sherbet-like ice 9b to be cooled. The refrigerant circuit is switched by the control of the three-way valves 7a and 7b, and the refrigerant flowing out of the stacked heat exchanger 5 passes through the decompression means 3b and the evaporator 6, and takes heat from the surroundings by the evaporator 6, and then the compressor 1 Return to In addition, as shown in FIG.
Can be directly sent to the evaporator 6 to perform cooling or cooling.

【0027】また、本実施例のように、水を積層式熱交
換器5に強制的に送り込む形態としたことによって、従
来の熱交換器の表面に製氷を行う方法よりも熱交換器の
伝熱特性が大幅に向上するため、伝熱面積を縮小するこ
とが出来る。
Further, as in the present embodiment, the water is forcibly fed into the stacked heat exchanger 5, so that the transfer of heat through the heat exchanger can be performed in comparison with the conventional method of making ice on the surface of the heat exchanger. Since the thermal characteristics are significantly improved, the heat transfer area can be reduced.

【0028】さらに、本実施例の積層式熱交換器5は、
コイル状あるいはU字形に形成された熱交換器やプレー
ト式熱交換器よりも内容積が小さいため、充填する冷媒
の量を削減できるとともに、装置の小型・軽量化を図る
ことができる。
Further, the laminated heat exchanger 5 of this embodiment is
Since the internal volume is smaller than that of a coil-shaped or U-shaped heat exchanger or a plate-type heat exchanger, the amount of refrigerant to be charged can be reduced, and the size and weight of the device can be reduced.

【0029】尚、本実施例において凝縮器2を空冷式と
するが、水冷式とすることもできる。また、本実施例で
は氷蓄熱タンク9に貯水する媒体を水としたが、水にブ
ライン等を添加し、氷点温度を低くして製氷運転するこ
とも可能である。このとき、より低温で蓄熱することが
できるので、蓄熱できるエネルギー量が増加し、さら
に、氷点の異なる二成分媒体であることから、水回路が
氷で閉塞されることを防止することができる。水にブラ
インを添加した場合の所定の温度T1は、ブラインの添
加量に応じた値に設定することができる。また、蓄熱し
たエネルギーの用途に応じて、水の代わりに別の相変化
を伴う液体を使用しても良い。
Although the condenser 2 is air-cooled in this embodiment, it may be water-cooled. In this embodiment, water is used as the medium to be stored in the ice heat storage tank 9. However, the ice making operation can be performed by adding brine or the like to the water to lower the freezing point temperature. At this time, since heat can be stored at a lower temperature, the amount of energy that can be stored increases, and since the two-component medium has a different freezing point, it is possible to prevent the water circuit from being blocked by ice. The predetermined temperature T1 when brine is added to water can be set to a value according to the amount of brine added. Further, a liquid with another phase change may be used instead of water, depending on the use of the stored energy.

【0030】また、本実施例において、積層式熱交換器
5で冷却された水の温度は、温度センサー12で検知さ
れ、検知した温度が所定の温度T1となるように制御ユ
ニット13によって循環ポンプで送る水量を制御する。
この所定の温度T1は−5℃以上の範囲で運転時間と共
に段階的に設定値の変更を行う。運転初期は所定温度T
1を氷点より高い温度に設定し、氷蓄熱タンク9の水9
aを所定の温度T1まで冷却した後、所定の温度T1を
氷点以下の温度に設定し、積層式熱交換器5において過
冷却状態の水の生成を行う。また、運転初期から所定温
度T1を氷点以下の温度に設定することも可能であり、
どちらの設定であっても積層式熱交換器5から過冷却状
態の水が生成され、氷蓄熱タンク9へシャーベット状の
氷が蓄積される。また、循環する水量の制御は、循環ポ
ンプの制御のほかに、水回路11に流量制御弁を設置し
て制御することも可能である。また、圧縮機1にインバ
ーター回路を設け、冷却される水の温度が所定の温度T
1となるように圧縮機1の出力を制御しても同様の効果
を得ることが出来る。
In this embodiment, the temperature of the water cooled by the stacked heat exchanger 5 is detected by a temperature sensor 12, and the control unit 13 controls the circulation pump so that the detected temperature becomes a predetermined temperature T1. To control the amount of water sent.
The set value of the predetermined temperature T1 is changed stepwise with the operation time in a range of -5 ° C or more. The predetermined temperature T at the beginning of operation
1 is set to a temperature higher than the freezing point, and the water 9 in the ice heat storage tank 9 is set.
After cooling a to a predetermined temperature T1, the predetermined temperature T1 is set to a temperature below the freezing point, and water in a supercooled state is generated in the stacked heat exchanger 5. It is also possible to set the predetermined temperature T1 to a temperature below the freezing point from the beginning of operation,
Regardless of the setting, water in a supercooled state is generated from the stacked heat exchanger 5, and sherbet-like ice is accumulated in the ice heat storage tank 9. The amount of circulating water can be controlled by installing a flow control valve in the water circuit 11 in addition to controlling the circulation pump. Further, an inverter circuit is provided in the compressor 1 so that the temperature of the water to be cooled is set to a predetermined temperature T.
The same effect can be obtained even if the output of the compressor 1 is controlled to be 1.

【0031】尚、積層式熱交換器5で冷却される水の温
度が所定の温度T1となるように循環する水量、あるい
は圧縮機1の制御を行わずとも、氷蓄熱タンク9の水の
温度は徐々に低下し、ある時間経過後から積層式熱交換
器5から過冷却状態の水が生成され、氷蓄熱タンク9へ
シャーベット状の氷が蓄積される。従って、装置の簡素
化と低コスト化を図ることが出来る。しかし、運転時間
と共に積層式熱交換器5で生成される過冷却状態の水の
温度はさらに低下し、過冷却状態の水は温度が下がるほ
ど氷へと相変化しやすくなるため、−7℃に近い温度ま
で冷却されると熱交換器の流路で水が氷へと相変化して
流路を閉塞した。従って、装置の低コスト化を図ること
は出来るが、氷蓄熱タンク9へ蓄積できる氷の量が少な
くなり、さらに、装置の安定性が低下する。
The amount of water circulating so that the temperature of the water cooled by the stacked heat exchanger 5 becomes a predetermined temperature T1 or the temperature of the water in the ice heat storage tank 9 without controlling the compressor 1. After a certain time, supercooled water is generated from the laminated heat exchanger 5 and sherbet-like ice is accumulated in the ice heat storage tank 9. Therefore, simplification of the apparatus and cost reduction can be achieved. However, the temperature of the supercooled water generated in the stacked heat exchanger 5 decreases with the operation time, and the water in the supercooled state is more likely to change into ice as the temperature is lowered. When cooled to a temperature close to, water changed phase into ice in the flow path of the heat exchanger and closed the flow path. Therefore, the cost of the apparatus can be reduced, but the amount of ice that can be stored in the ice heat storage tank 9 decreases, and the stability of the apparatus decreases.

【0032】尚、本実施例では冷媒と水が熱交換する形
態としたが、高温流体と低温流体が熱交換して高温流体
が過冷却状態まで冷却される形態とすることもできる。
また、本実施例においてヒートポンプ回路は圧縮機1を
用いて冷媒を循環させる圧縮式サイクルで構成している
が、冷媒を吸収器で吸収剤に吸収させて再生器で冷媒を
発生させるような、吸収式サイクルで構成しても同様の
効果を得ることができる。
Although the refrigerant and the water exchange heat in the present embodiment, a configuration in which the high-temperature fluid exchanges heat with the low-temperature fluid and the high-temperature fluid is cooled to a supercooled state is also possible.
Further, in the present embodiment, the heat pump circuit is configured by a compression cycle in which the refrigerant is circulated by using the compressor 1, but the refrigerant is absorbed in the absorbent by the absorber to generate the refrigerant in the regenerator. The same effect can be obtained by using an absorption cycle.

【0033】さらに、本実施例では循環ポンプ10を用
いて氷蓄熱タンク内の水を循環させたが、氷蓄熱タンク
の水面のヘッド差を利用することにより自然循環式とす
ることも可能であり、装置の低コスト化を実現すること
ができる。
Further, in this embodiment, the water in the ice heat storage tank is circulated by using the circulation pump 10, but it is also possible to use a natural circulation type by utilizing the head difference of the water surface of the ice heat storage tank. Thus, the cost of the apparatus can be reduced.

【0034】また、本実施例の積層式熱交換器5は、対
向流となるようにしたが、直交流、あるいは平向流とな
るような構成としても同様な効果が得られる。
Although the laminated heat exchanger 5 of the present embodiment has a counter flow, a similar effect can be obtained even if the cross flow is a cross flow or a flat flow.

【0035】ここで、凝縮器2を水冷式とし、製氷運転
時に生成される温水を給湯に利用すると、さらにランニ
ングコストを下げることができる。また、ヒートポンプ
回路の冷媒が、圧縮機1、積層式熱交換器5、減圧弁3
a、凝縮器2の順で冷媒が循環するような逆流れとなる
冷媒回路構成とするとき、氷蓄熱タンクの水は積層式熱
交換器5によって加熱され、温水が貯水される。この氷
蓄熱タンクに貯水した温水は暖房に使うこともできる。
Here, when the condenser 2 is of a water-cooled type and hot water generated during the ice making operation is used for hot water supply, the running cost can be further reduced. In addition, the refrigerant of the heat pump circuit includes the compressor 1, the laminated heat exchanger 5, the pressure reducing valve 3.
When the refrigerant circuit configuration has a reverse flow such that the refrigerant circulates in the order of a and the condenser 2, the water in the ice heat storage tank is heated by the laminated heat exchanger 5, and the hot water is stored. The hot water stored in the ice heat storage tank can be used for heating.

【0036】(実施例2)図5は本発明の実施例2にお
ける氷蓄熱装置を模式的に示したものであり、本実施例
において実施例1と同一符号であるものは同じ機能を備
えている。本実施例は、実施例1の構成の積層式熱交換
器5の代わりに積層式熱交換器23と予冷熱交換器24
を設けた。予冷熱交換器24は循環ポンプ10から積層
式熱交換器23へと送られる水を予冷するために、積層
式熱交換器23の水回路11の入口に設置した。予冷熱
交換器24は、積層式熱交換器以外のプレート式熱交換
器や二重管式熱交換器を用いても可能であり、本実施例
では二重管式熱交換器を採用した。
(Embodiment 2) FIG. 5 schematically shows an ice heat storage device according to Embodiment 2 of the present invention. In this embodiment, components having the same reference numerals as those of Embodiment 1 have the same functions. I have. This embodiment is different from the first embodiment in that the stacked heat exchanger 23 and the precooled heat exchanger 24 are replaced with the stacked heat exchanger 5.
Was provided. The pre-cooling heat exchanger 24 was installed at the inlet of the water circuit 11 of the laminated heat exchanger 23 in order to pre-cool the water sent from the circulation pump 10 to the laminated heat exchanger 23. The pre-cooling heat exchanger 24 can be a plate heat exchanger or a double-pipe heat exchanger other than the stacked heat exchanger. In this embodiment, a double-pipe heat exchanger is employed.

【0037】この構成における動作と作用について以下
に説明する。氷蓄熱タンク9の水は循環ポンプ10によ
って予冷熱交換器24、積層式熱交換器23の順に送ら
れる。予冷熱交換器24に流入した水は、ヒートポンプ
回路の冷媒と熱交換して氷点温度に近い温度まで冷却さ
れ、その後さらに、積層式熱交換器23で氷点以下の温
度まで冷却される。積層式熱交換器23の水流路を流れ
る水の流れは層流であり、さらに、流路高さが小さいの
で温度境界層が薄膜化されるので、水流路を流れる水の
流路高さ方向の温度分布は均一な状態となっている。実
施例1で記載したように、積層式熱交換器23を流れる
水は、氷点以下の温度まで冷却しても凍結せず液相であ
る過冷却状態となる。過冷却状態の水は流れの乱れなど
の衝撃を受けると瞬時に水から氷へと相変化するが、積
層式熱交換器23内での水の流れは層流であるために、
水が過冷却状態となっても氷へ相変化することなく流路
を流れる。過冷却状態の水は、積層式熱交換器23を流
出した後に氷蓄熱タンク9内へ放出され、氷蓄熱タンク
9内へ放出されたときに受けた衝撃で、液相から流動性
のあるシャーベット状の氷9bへと相変化する。従っ
て、水を予冷熱交換器24で予冷したあと積層式熱交換
器23で水を過冷却状態となるまで冷却し、氷蓄熱タン
ク9において氷9bへと相変化させることで、シャーベ
ット状の氷9bを氷蓄熱タンク9に蓄積することが出来
る。
The operation and operation of this configuration will be described below. The water in the ice heat storage tank 9 is sent by the circulation pump 10 to the pre-cooling heat exchanger 24 and the stacked heat exchanger 23 in this order. The water that has flowed into the pre-cooling heat exchanger 24 exchanges heat with the refrigerant in the heat pump circuit to be cooled to a temperature close to the freezing point, and then further cooled to a temperature below the freezing point by the stacked heat exchanger 23. The flow of the water flowing through the water flow path of the stacked heat exchanger 23 is laminar, and the flow boundary height is small, so that the temperature boundary layer is thinned. Is in a uniform state. As described in the first embodiment, the water flowing through the stacked heat exchanger 23 does not freeze even when cooled to a temperature below the freezing point, and is in a supercooled state of a liquid phase. The supercooled water undergoes a phase change from water to ice instantly upon receiving an impact such as turbulence in the flow. However, since the flow of water in the stacked heat exchanger 23 is laminar,
Even if the water is in a supercooled state, it flows through the flow path without phase change to ice. The water in the supercooled state is discharged into the ice heat storage tank 9 after flowing out of the laminated heat exchanger 23, and is subjected to a shock when the water is discharged into the ice heat storage tank 9. The phase changes to ice 9b. Accordingly, the water is pre-cooled by the pre-cooling heat exchanger 24, and then cooled by the laminated heat exchanger 23 until the water is in a supercooled state, and the phase of the water is changed to the ice 9b in the ice heat storage tank 9, whereby the sherbet-like ice is formed. 9b can be stored in the ice heat storage tank 9.

【0038】積層式熱交換器23は予冷熱交換器24に
よって冷却された水を氷点以下の温度まで冷却するため
に設置するものであり、積層式熱交換器23の伝熱面積
は積層式熱交換器5より小さくすることが出来る。さら
に、従来の冷水蓄熱装置の冷水を生成する熱交換器の冷
水出口に、積層式熱交換器23を設置することによって
過冷却状態の水を生成することが可能となり、冷水蓄熱
装置を氷蓄熱装置とすることができる。また、積層式熱
交換器5を用いて氷蓄熱を行う装置の高効率化と高出力
化は、積層式熱交換器5の水回路入口に二重管式熱交換
器、あるいはプレート式熱交換器等の予冷熱交換器を設
置することによって容易に実現することが可能であり、
積層式熱交換器5の設計変更を行う必要はない。
The stacked heat exchanger 23 is provided for cooling the water cooled by the pre-cooling heat exchanger 24 to a temperature below the freezing point. The heat transfer area of the stacked heat exchanger 23 is It can be smaller than the exchanger 5. Furthermore, supercooled water can be generated by installing the laminated heat exchanger 23 at the chilled water outlet of the heat exchanger that generates chilled water of the conventional chilled water heat storage device, and the chilled water heat storage device can be cooled by ice. It can be a device. In addition, the high efficiency and high output of the apparatus for performing ice heat storage using the stacked heat exchanger 5 are achieved by installing a double tube heat exchanger or a plate heat exchanger at the water circuit inlet of the stacked heat exchanger 5. It can be easily realized by installing a pre-cooling heat exchanger such as a heat exchanger,
There is no need to change the design of the stacked heat exchanger 5.

【0039】尚、本実施例では冷媒が、予冷熱交換器2
4、積層式熱交換器23の順で流れるように冷媒回路8
を構成したが、水の流れが予冷熱交換器24、積層式熱
交換器23の順で流れるような構成であれば、冷媒の流
れは積層式熱交換器23、予冷熱交換器24の順で流れ
るような冷媒回路8の構成としてもよい。
In this embodiment, the refrigerant is the pre-cooled heat exchanger 2
4. Refrigerant circuit 8 so that it flows in the order of stacked heat exchanger 23
However, if the configuration is such that the flow of water flows in the order of the pre-cooling heat exchanger 24 and the stacked heat exchanger 23, the flow of the refrigerant will be in the order of the stacked heat exchanger 23 and the pre-cooling heat exchanger 24. It is good also as a structure of the refrigerant circuit 8 which flows by.

【0040】(実施例3)図6は本発明の実施例3にお
ける氷蓄熱装置を模式的に示したものであり、本実施例
において実施例2と同一符号であるものは同じ機能を備
えている。本実施例は、実施例2の構成の積層式熱交換
器23と予冷熱交換器24を連結する冷媒回路に減圧弁
25を設けている。
(Embodiment 3) FIG. 6 schematically shows an ice heat storage device according to Embodiment 3 of the present invention. In this embodiment, components having the same reference numerals as those of Embodiment 2 have the same functions. I have. In the present embodiment, a pressure reducing valve 25 is provided in a refrigerant circuit connecting the stacked heat exchanger 23 and the pre-cooling heat exchanger 24 having the configuration of the second embodiment.

【0041】この構成における動作と作用について以下
に説明する。実施例2と同様に、氷蓄熱タンク9の水は
循環ポンプ10によって予冷熱交換器24、積層式熱交
換器23の順に送られ、予冷熱交換器24に流入した水
は、ヒートポンプ回路の低温冷媒と熱交換して氷点温度
に近い温度まで冷却された後に、積層式熱交換器23で
氷点以下の温度まで冷却される。積層式熱交換器23を
流れる水は、氷点温度以下まで冷却しても凍結せず液相
である過冷却状態となり、氷蓄熱タンク9内へ放出され
たときに受ける衝撃で、液相から流動性のあるシャーベ
ット状の氷へと相変化する。実施例2の構成では、積層
式熱交換器23を流れる冷媒は、水を氷点以下の温度ま
で冷却するために、水の氷点温度より低い温度となるよ
うに減圧手段3aで減圧される。予冷熱交換器24を二
重管式熱交換器、あるいはプレート式熱交換器とすると
き、流路での水の流れは乱流であり、また、流路高さは
積層式熱交換器よりも大きいため流路高さ方向に温度分
布が形成される。従って、減圧手段3aで減圧された冷
媒が水の氷点温度より低い温度となって予冷熱交換器2
4へ流入してきた場合は、水の主流温度は氷点温度より
高くても、熱交換器の伝熱壁面近傍の温度は氷点温度よ
り低い過冷却状態となり、さらに、水の流れが乱流であ
るため伝熱壁面近傍の過冷却状態の水は氷へと相変化し
てしまう。予冷熱交換器24内で氷が生成してしまう
と、予熱熱交換器の伝熱性能が低下するばかりでなく、
積層式熱交換器23で過冷却状態の水の生成が不可能と
なる。そこで、図6に示すように予冷熱交換器24と積
層式熱交換器23を連結する冷媒回路に減圧手段25を
設け、凝縮器2で液化した高圧冷媒を減圧手段3aで水
の氷点温度より低い温度とならないように減圧し、さら
に、減圧手段25で水の氷点温度より低い温度まで減圧
する。予冷式熱交換器24を流れる冷媒の温度は、水の
氷点温度よりも高い温度であるから、熱交換器の伝熱壁
面近傍の水の温度が水の氷点温度以下まで冷却されるこ
とが防止することが出来る。
The operation and operation of this configuration will be described below. As in the second embodiment, the water in the ice heat storage tank 9 is sent by the circulation pump 10 to the pre-cooling heat exchanger 24 and the stacked heat exchanger 23 in this order. After exchanging heat with the refrigerant and cooling to a temperature close to the freezing point, the laminated heat exchanger 23 cools to a temperature below the freezing point. The water flowing through the laminated heat exchanger 23 does not freeze even when cooled to a temperature below the freezing point, and is in a supercooled state, which is a liquid phase. Phase changes to sexual sherbet-like ice. In the configuration of the second embodiment, the refrigerant flowing through the stacked heat exchanger 23 is decompressed by the decompression means 3a so as to have a temperature lower than the freezing point of water in order to cool the water to a temperature below the freezing point. When the pre-cooling heat exchanger 24 is a double tube heat exchanger or a plate heat exchanger, the flow of water in the flow path is turbulent, and the height of the flow path is higher than that of the stacked heat exchanger. Therefore, a temperature distribution is formed in the flow channel height direction. Therefore, the temperature of the refrigerant depressurized by the decompression means 3a becomes lower than the freezing point of water, and
When the water flows into the heat exchanger 4, even if the main flow temperature of the water is higher than the freezing point temperature, the temperature near the heat transfer wall surface of the heat exchanger is in a supercooled state lower than the freezing point temperature, and the flow of the water is turbulent. Therefore, the supercooled water near the heat transfer wall changes its phase to ice. If ice is generated in the precooling heat exchanger 24, not only does the heat transfer performance of the preheating heat exchanger deteriorate,
The generation of supercooled water becomes impossible in the stacked heat exchanger 23. Therefore, as shown in FIG. 6, a pressure reducing means 25 is provided in a refrigerant circuit connecting the pre-cooling heat exchanger 24 and the stacked heat exchanger 23, and the high-pressure refrigerant liquefied in the condenser 2 is depressurized by the pressure reducing means 3a from the freezing point of water. The pressure is reduced so that the temperature does not become low, and the pressure is further reduced by the pressure reducing means 25 to a temperature lower than the freezing point of water. Since the temperature of the refrigerant flowing through the pre-cooling heat exchanger 24 is higher than the freezing point of water, the temperature of the water near the heat transfer wall surface of the heat exchanger is prevented from being cooled below the freezing point of water. You can do it.

【0042】[0042]

【発明の効果】以上のように、本発明のような構成の氷
蓄熱装置において、次のような効果が得られる。
As described above, the following effects can be obtained in the ice heat storage device having the configuration as in the present invention.

【0043】請求項1、2に記載の発明によれば、氷蓄
熱タンクに蓄積した氷の量と低圧冷媒の温度が無関係と
なることから、満液式蒸発器で管外製氷を行う氷蓄熱装
置と比較して、高効率で製氷運転を行うことが出来る。
また、生成した過冷却状態の水は流路を閉塞することな
く氷蓄熱タンクへと送ることができるので、装置の安定
性と耐久性が向上する。さらに積層式熱交換器は、満液
式蒸発器やプレート式熱交換器よりも内容積が小さいた
め、充填する冷媒の量を削減できるとともに、装置の小
型・軽量化、低コスト化を図ることができる。
According to the first and second aspects of the present invention, since the amount of ice accumulated in the ice heat storage tank and the temperature of the low-pressure refrigerant become irrelevant, the ice heat storage for performing extra-ice ice making with a liquid-filled evaporator is used. The ice making operation can be performed with higher efficiency as compared with the apparatus.
Further, the generated supercooled water can be sent to the ice heat storage tank without blocking the flow path, so that the stability and durability of the device are improved. Furthermore, since the stacked heat exchanger has a smaller internal volume than the liquid-filled evaporator and the plate heat exchanger, the amount of refrigerant to be charged can be reduced, and the size, weight and cost of the device are reduced. Can be.

【0044】また、請求項3に記載の発明によれば、予
冷熱交換器を積層式熱交換器の水回路の入口に備えたの
で、積層式熱交換器が小型化され、装置の高効率化と高
出力化が低コストで簡単に実現できる。さらに、従来の
水蓄熱装置に積層式熱交換器を加えるだけで、高効率な
氷蓄熱装置へと変更することが可能となる。
According to the third aspect of the present invention, since the pre-cooling heat exchanger is provided at the inlet of the water circuit of the stacked heat exchanger, the stacked heat exchanger is reduced in size, and the efficiency of the apparatus is improved. And high output can be easily realized at low cost. Furthermore, it is possible to change to a high-efficiency ice heat storage device simply by adding a stacked heat exchanger to the conventional water heat storage device.

【0045】また、請求項4に記載の発明によれば、積
層式熱交換器の小型化と、装置の高効率化・高出力化が
低コストで実現されるばかりでなく、装置の安定性が向
上する。
According to the fourth aspect of the present invention, not only the miniaturization of the stacked heat exchanger and the high efficiency and high output of the device can be realized at low cost, but also the stability of the device. Is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における氷蓄熱装置の構成図FIG. 1 is a configuration diagram of an ice heat storage device according to a first embodiment of the present invention.

【図2】同氷蓄熱装置の積層式熱交換器の分解斜視図FIG. 2 is an exploded perspective view of the stacked heat exchanger of the ice heat storage device.

【図3】本発明の実施例1における冷媒温度と効率を示
すグラフ
FIG. 3 is a graph showing refrigerant temperature and efficiency in Embodiment 1 of the present invention.

【図4】本発明の実施例1における氷蓄熱装置の構成図FIG. 4 is a configuration diagram of an ice heat storage device according to the first embodiment of the present invention.

【図5】本発明の実施例2における氷蓄熱装置の構成図FIG. 5 is a configuration diagram of an ice heat storage device according to a second embodiment of the present invention.

【図6】本発明の実施例3における氷蓄熱装置の構成図FIG. 6 is a configuration diagram of an ice heat storage device according to a third embodiment of the present invention.

【図7】従来の氷蓄熱装置の構成図FIG. 7 is a configuration diagram of a conventional ice heat storage device.

【図8】従来の氷蓄熱装置の構成図FIG. 8 is a configuration diagram of a conventional ice heat storage device.

【図9】従来の氷蓄熱装置の構成図FIG. 9 is a configuration diagram of a conventional ice heat storage device.

【図10】従来の氷蓄熱装置の構成図FIG. 10 is a configuration diagram of a conventional ice heat storage device.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3a、3b、25 減圧手段 4a、30 製氷熱交換器 5、23 積層式熱交換器 6 蒸発器 8 冷媒回路 9 氷蓄熱タンク 9a 水 9b 氷 11、21、22 水回路 15 冷媒プレート 15a 冷媒流路スリット 15b 水通路スリット 16 隔壁プレート 16a 冷媒通路スリット 16b 水通路スリット 17 水プレート 17a 冷媒通路スリット 17b 水流路スリット 24 予冷熱交換器 DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3a, 3b, 25 Decompression means 4a, 30 Ice making heat exchanger 5, 23 Stacking type heat exchanger 6 Evaporator 8 Refrigerant circuit 9 Ice heat storage tank 9a Water 9b Ice 11, 21, 22 Water circuit 15 Refrigerant plate 15a Refrigerant passage slit 15b Water passage slit 16 Partition plate 16a Refrigerant passage slit 16b Water passage slit 17 Water plate 17a Refrigerant passage slit 17b Water passage slit 24 Pre-cooling heat exchanger

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と凝縮器と減圧手段と製氷熱交換器
が冷媒回路で順に接続されるヒートポンプ回路と、水を
貯水する氷蓄熱タンクと、氷蓄熱タンクの水を製氷熱交
換器でヒートポンプ回路の冷媒と熱交換して過冷却状態
まで冷却した後、氷蓄熱タンクへ戻す水回路を備え、前
記製氷熱交換器は積層式熱交換器であることを特徴とす
る氷蓄熱装置。
1. A heat pump circuit in which a compressor, a condenser, a decompression means, and an ice making heat exchanger are connected in order by a refrigerant circuit, an ice heat storage tank for storing water, and water in the ice heat storage tank using an ice making heat exchanger. An ice heat storage device, comprising: a water circuit that exchanges heat with a refrigerant of a heat pump circuit to cool to a supercooled state and then returns to an ice heat storage tank, wherein the ice making heat exchanger is a stacked heat exchanger.
【請求項2】積層式熱交換器は、スリット状の穴を有す
る複数の冷媒プレートと、スリット状の穴を有する複数
の水プレートと、この複数の冷媒プレートと水プレート
の間に設けられていて冷媒と水の隔壁をなす複数の隔壁
プレートとから冷媒流路と水流路を形成したものである
ことを特徴とする請求項1記載の氷蓄熱装置。
2. The laminated heat exchanger is provided with a plurality of refrigerant plates having slit-shaped holes, a plurality of water plates having slit-shaped holes, and between the plurality of refrigerant plates and the water plates. The ice heat storage device according to claim 1, wherein a refrigerant flow path and a water flow path are formed by a plurality of partition plates forming a partition wall between the refrigerant and the water.
【請求項3】氷蓄熱タンクの水をヒートポンプ回路の冷
媒と熱交換して冷却する予冷熱交換器を、積層式熱交換
器の水回路の入口に備えたことを特徴とする請求項1記
載の氷蓄熱装置。
3. A pre-cooling heat exchanger for cooling water by exchanging water in an ice heat storage tank with a refrigerant in a heat pump circuit at an inlet of a water circuit of the stacked heat exchanger. Ice thermal storage device.
【請求項4】予冷熱交換器と積層式熱交換器を順に接続
する冷媒回路を設け、予冷熱交換器と積層式熱交換器の
間の前記冷媒回路に減圧手段を備えたことを特徴とする
請求項3記載の氷蓄熱装置。
4. A refrigerant circuit for sequentially connecting a pre-cooling heat exchanger and a stacked heat exchanger is provided, and the refrigerant circuit between the pre-cooling heat exchanger and the stacked heat exchanger is provided with a pressure reducing means. The ice heat storage device according to claim 3, wherein
JP2000149342A 2000-05-22 2000-05-22 Ice thermal storage unit Pending JP2001330280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000149342A JP2001330280A (en) 2000-05-22 2000-05-22 Ice thermal storage unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000149342A JP2001330280A (en) 2000-05-22 2000-05-22 Ice thermal storage unit

Publications (1)

Publication Number Publication Date
JP2001330280A true JP2001330280A (en) 2001-11-30

Family

ID=18655211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000149342A Pending JP2001330280A (en) 2000-05-22 2000-05-22 Ice thermal storage unit

Country Status (1)

Country Link
JP (1) JP2001330280A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249258A (en) * 2004-03-03 2005-09-15 Mitsubishi Electric Corp Cooling system
US7007501B2 (en) 2003-08-15 2006-03-07 The Boeing Company System, apparatus, and method for passive and active refrigeration of at least one enclosure
US7089756B2 (en) 2003-02-19 2006-08-15 The Boeing Company System and method of refrigerating at least one enclosure
US7093458B2 (en) * 2003-02-19 2006-08-22 The Boeing Company System and method of refrigerating at least one enclosure
JP2008224183A (en) * 2007-03-15 2008-09-25 Taikisha Ltd Ice heat accumulating facility
CN102095290A (en) * 2011-03-11 2011-06-15 蒋剑荣 Ice crystal evaporator and ice crystal water cooling device producing from same
CN102927651A (en) * 2011-08-11 2013-02-13 青岛海信日立空调系统有限公司 Water temperature self-adaptive water source air conditioning system and control method thereof
JP2013076553A (en) * 2011-09-15 2013-04-25 Atsushi Sato Method and device for producing sherbet ice
KR101359887B1 (en) 2013-07-16 2014-02-11 주식회사 스노우폴 Snowmaking shower booth apparatus of heat exchange type
JP2015073455A (en) * 2013-10-08 2015-04-20 本田技研工業株式会社 Pretreatment method of biomass
CN112393333A (en) * 2017-10-30 2021-02-23 浙江三花智能控制股份有限公司 Air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7089756B2 (en) 2003-02-19 2006-08-15 The Boeing Company System and method of refrigerating at least one enclosure
US7093458B2 (en) * 2003-02-19 2006-08-22 The Boeing Company System and method of refrigerating at least one enclosure
US7007501B2 (en) 2003-08-15 2006-03-07 The Boeing Company System, apparatus, and method for passive and active refrigeration of at least one enclosure
JP2005249258A (en) * 2004-03-03 2005-09-15 Mitsubishi Electric Corp Cooling system
JP2008224183A (en) * 2007-03-15 2008-09-25 Taikisha Ltd Ice heat accumulating facility
CN102095290A (en) * 2011-03-11 2011-06-15 蒋剑荣 Ice crystal evaporator and ice crystal water cooling device producing from same
CN102095290B (en) * 2011-03-11 2012-12-26 蒋剑荣 Ice crystal evaporator and ice crystal water cooling device producing from same
CN102927651A (en) * 2011-08-11 2013-02-13 青岛海信日立空调系统有限公司 Water temperature self-adaptive water source air conditioning system and control method thereof
JP2013076553A (en) * 2011-09-15 2013-04-25 Atsushi Sato Method and device for producing sherbet ice
KR101359887B1 (en) 2013-07-16 2014-02-11 주식회사 스노우폴 Snowmaking shower booth apparatus of heat exchange type
JP2015073455A (en) * 2013-10-08 2015-04-20 本田技研工業株式会社 Pretreatment method of biomass
CN112393333A (en) * 2017-10-30 2021-02-23 浙江三花智能控制股份有限公司 Air conditioner

Similar Documents

Publication Publication Date Title
JP5203702B2 (en) Refrigerant heat storage and cooling system with enhanced heat exchange function
KR101638675B1 (en) Combined binary refrigeration cycle apparatus
CN102597657B (en) Air conditioning device
KR100758902B1 (en) multi type air conditioning system and controlling method of the system
CN102575860B (en) Air conditioning device
JP2001330280A (en) Ice thermal storage unit
JP5145561B2 (en) Refrigerant heat storage cooling system and cooling method using refrigerant heat storage cooling system
JP2007163013A (en) Refrigerating cycle device
JP2706828B2 (en) refrigerator
JP2000249420A (en) Ice thermal storage device and ice thermal storage refrigerator
JP4334818B2 (en) Cooling system
JP2597926B2 (en) Low temperature cold water production heat storage system
JP2002022333A (en) Refrigerator
KR200489423Y1 (en) Liquid Phase Beverage Supercooling Device
KR101060512B1 (en) Cold and hot water generator
JP3360637B2 (en) Refrigeration air conditioner
KR200493302Y1 (en) Liquid Phase Beverage Supercooling Device
JP2012026686A (en) Load-side device and refrigeration/cold-storage system
JPH10281572A (en) Secondary refrigerant freezer
JP2001324177A (en) Ice storage device
JP3750228B2 (en) Water cooler
CN218096773U (en) Refrigerator with multiple temperature zones
JP2008281290A (en) Heat storage system and heat storage type air conditioner using the same
CN217465080U (en) Refrigeration device with cascade refrigeration system
JP2005106315A (en) Refrigerator-freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209