JP2000249420A - Ice thermal storage device and ice thermal storage refrigerator - Google Patents

Ice thermal storage device and ice thermal storage refrigerator

Info

Publication number
JP2000249420A
JP2000249420A JP11052114A JP5211499A JP2000249420A JP 2000249420 A JP2000249420 A JP 2000249420A JP 11052114 A JP11052114 A JP 11052114A JP 5211499 A JP5211499 A JP 5211499A JP 2000249420 A JP2000249420 A JP 2000249420A
Authority
JP
Japan
Prior art keywords
ice
refrigerant
pipe
valve
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11052114A
Other languages
Japanese (ja)
Inventor
Yasuhiro Iwata
育弘 岩田
Kazuhide Mizutani
和秀 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP11052114A priority Critical patent/JP2000249420A/en
Publication of JP2000249420A publication Critical patent/JP2000249420A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve unification in ice making and ice thawing and prevent lowering of efficiency of a compressor by reversing a flowing direction of refrigerant between a first direction wherein the refrigerant flows from a first end side to a second end side in a heating tube, and a second direction wherein the refrigerant flows from the second end side to the first end side. SOLUTION: An ice thermal storage device 16 is arranged such that a heating tube 15 in which refrigerant flows is immersed in water 17 for making ice. Further, switching means 33-40 are provided for reversing the flowing direction of the refrigerant in the heating tube 15 between a first direction wherein the flow occurs from a first end side toward a second end side, and a second direction wherein the flow occurs from the second end side toward the first end side. In an ice making operation, when flowing of the refrigerant causes much more attachment of ice on one end portion side of the heating tube 15 than the other end portion side thereof, the direction of the refrigerant flow is switched. As a result, ice is attached more to the side which used to have less attachment of ice, thereby totally unifying attachment of ice. Also, in an ice thawing operation, by switching the refrigerant flow, the inclination of ice thawing an be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、氷蓄熱装置と、該
氷蓄熱装置が冷媒回路に組み込まれた氷蓄熱式冷凍装置
とに関し、特に、氷蓄熱槽内に貯留された製氷用の水の
中に伝熱管を浸漬した構成の、いわゆるスタティック式
氷蓄熱装置における製氷と解氷の均一化策に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device and an ice heat storage type refrigeration device in which the ice heat storage device is incorporated in a refrigerant circuit, and more particularly, to ice making water stored in an ice heat storage tank. The present invention relates to a so-called static ice heat storage device having a configuration in which a heat transfer tube is immersed therein, and to a measure for equalizing ice making and defrosting.

【0002】[0002]

【従来の技術】従来より、スタティック式の氷蓄熱装置
は、例えば特開平8−261519号公報に示されてい
るように、空調システム等に利用することが提案されて
いる。図6には、この氷蓄熱装置(16)を利用した空調シ
ステム(1) の回路構成の一例を示している。この空調シ
ステム(1) の冷媒回路は、圧縮機(11)と、室外熱交換器
(熱源側熱交換器)(13)と、室外膨張弁(25)と、氷蓄熱
装置(16)と、室内膨張弁(19)と、室内熱交換器(利用側
熱交換器)(20)とを、冷媒配管により冷媒の循環が可能
に接続したもので、圧縮機(11)の吐出側には、冷媒の循
環方向を逆転させるために四路切換弁(12)が設けられて
いる。
2. Description of the Related Art Conventionally, it has been proposed to use a static type ice heat storage device in an air conditioning system or the like as disclosed in, for example, JP-A-8-261519. FIG. 6 shows an example of a circuit configuration of an air conditioning system (1) using the ice heat storage device (16). The refrigerant circuit of the air conditioning system (1) includes a compressor (11), an outdoor heat exchanger (heat source side heat exchanger) (13), an outdoor expansion valve (25), an ice heat storage device (16), An indoor expansion valve (19) and an indoor heat exchanger (use-side heat exchanger) (20) are connected so that refrigerant can be circulated by refrigerant piping, and a discharge side of the compressor (11) A four-way switching valve (12) is provided to reverse the direction of circulation of the refrigerant.

【0003】この冷媒回路では、液配管が、互いに並列
の第1液配管(23)及び第2液配管(24)からなり、氷蓄熱
装置(16)は、氷蓄熱槽(14)に設けられた伝熱管(15)の第
1端側が第1液配管(23)に接続され、伝熱管(15)の第2
端側が第2液配管(24)に接続されている。また、第1液
配管(23)には、上記室外膨張弁(25)と第1開閉弁(26)と
が設けられ、第2液配管(24)には、第2開閉弁(27)と第
3開閉弁(28)とが設けられている。さらに、この冷媒回
路には、室内熱交換器(20)をバイパスするバイパス通路
(31)が設けられ、このバイパス通路(31)には第4開閉弁
(32)が設けられている。
In this refrigerant circuit, the liquid pipe comprises a first liquid pipe (23) and a second liquid pipe (24) parallel to each other, and the ice heat storage device (16) is provided in an ice heat storage tank (14). The first end of the heat transfer tube (15) is connected to the first liquid pipe (23), and the second end of the heat transfer tube (15) is
The end side is connected to the second liquid pipe (24). The first liquid pipe (23) is provided with the outdoor expansion valve (25) and the first on-off valve (26), and the second liquid pipe (24) is provided with the second on-off valve (27). A third on-off valve (28) is provided. Furthermore, a bypass passage that bypasses the indoor heat exchanger (20) is provided in the refrigerant circuit.
(31), and a fourth on-off valve is provided in the bypass passage (31).
(32) is provided.

【0004】なお、氷蓄熱装置(16)の伝熱管(15)は、図
示するように、一般に複数のパイプ材(15a) から構成さ
れ、第1液配管(23)は、分流器(41)と複数のキャピラリ
チューブ(42)とを介して各パイプ材(15a) の第1端側に
接続されている。また、各パイプ材(15a) の第2端には
ヘッダー(18)が接続され、このヘッダー(18)が第2液配
管(24)に接続されている。
The heat transfer tube (15) of the ice heat storage device (16) is generally composed of a plurality of pipe members (15a) as shown in the figure, and the first liquid pipe (23) is provided with a flow divider (41). And a plurality of capillary tubes (42) connected to the first end of each pipe member (15a). A header (18) is connected to a second end of each pipe member (15a), and the header (18) is connected to a second liquid pipe (24).

【0005】この空調システム(1) において蓄冷熱運転
(製氷運転)をする場合、圧縮機(11)から吐出された冷
媒は、実線の矢印で示すように、凝縮器(13)で凝縮され
た後、膨張弁(25)で減圧されて伝熱管(15)に供給され、
さらに該伝熱管(15)で蒸発してからバイパス通路(31)を
通って圧縮機(11)に戻るサイクルで冷媒配管内を循環す
る。そして、冷媒が、伝熱管(15)を流れるときに氷蓄熱
槽(14)内の水(17)との間で熱交換して蒸発しながら該水
(17)を冷却することによって、伝熱管(15)の周囲に氷が
生成される。
[0005] In the air-conditioning system (1), when a cold storage heat operation (ice making operation) is performed, the refrigerant discharged from the compressor (11) is condensed in the condenser (13) as shown by a solid arrow. Thereafter, the pressure is reduced by the expansion valve (25) and supplied to the heat transfer tube (15).
Further, the refrigerant circulates in the refrigerant pipe in a cycle of evaporating in the heat transfer tube (15) and returning to the compressor (11) through the bypass passage (31). Then, when the refrigerant flows through the heat transfer tube (15), it exchanges heat with the water (17) in the ice heat storage tank (14) and evaporates.
By cooling (17), ice is generated around the heat transfer tube (15).

【0006】一方、冷熱利用運転時(解氷運転時)に
は、室外膨張弁(25)と各開閉弁(26〜28)の開閉状態を切
り換えて、圧縮機(11)の吐出冷媒を、破線の矢印で示す
ように伝熱管(15)に逆方向から流して過冷却あるいは凝
縮した後、室内熱交換器(20)を通すことによって、氷の
冷熱を利用して室内の冷房を行うようにしている。この
システム(1) では、上述のような動作を行うことで、蓄
冷熱を利用して室内の冷房が行えるので、深夜電力を利
用して氷を生成し、日中にこの冷熱を取り出すことによ
り、日中の消費電力を低減することができるものとなっ
ている。
On the other hand, at the time of the cold-heat utilization operation (during the de-icing operation), the open / close state of the outdoor expansion valve (25) and each of the on-off valves (26-28) is switched to discharge the refrigerant discharged from the compressor (11) After being supercooled or condensed by flowing from the opposite direction to the heat transfer tube (15) as indicated by the dashed arrow, the room is cooled using ice cold by passing through the indoor heat exchanger (20). I have to. In this system (1), by performing the above-described operation, the indoor cooling can be performed by using the cold storage heat, so that ice is generated using late-night power, and this cold heat is extracted during the day. Thus, power consumption during the day can be reduced.

【0007】ところで、近年、地球環境問題に鑑みて、
冷媒の代替化が進められている。地球環境に悪影響を与
えない冷媒として種々の冷媒が検討されてはいるが、単
一冷媒で所定の条件を満たすものはほとんどなく、今
後、混合冷媒が使用される可能性が高まっている。その
中でも、有望な混合冷媒の大半は、非共沸混合冷媒であ
る。
In recent years, in view of global environmental problems,
Replacement of refrigerants is being promoted. Various refrigerants have been studied as refrigerants that do not adversely affect the global environment. However, there is hardly any single refrigerant that satisfies predetermined conditions, and the possibility of using a mixed refrigerant is increasing in the future. Among them, most promising mixed refrigerants are non-azeotropic mixed refrigerants.

【0008】[0008]

【発明が解決しようとする課題】そこで、上記空調シス
テム(1) などの氷蓄熱式冷凍装置において単一冷媒を使
用する場合と非共沸混合冷媒を使用する場合のそれぞれ
について考察してみると、まず、単一冷媒の場合は、蓄
冷熱運転時に、伝熱管(15)内での圧力損失により冷媒の
蒸発温度が徐々に低下するため、伝熱管(15)の出口(第
2端)側が着氷しやすくなり、伝熱管(15)の周囲に均一
には着氷しない傾向があった。この場合、冷熱利用運転
時には、氷の厚い第2端側から解氷されるが、製氷自体
が不均一であるため、解氷も安定して行われない場合が
あり、氷が溶け残るなどの問題が生じることがあった。
Therefore, a case where a single refrigerant is used and a case where a non-azeotropic mixed refrigerant is used in an ice storage type refrigerating apparatus such as the above-described air conditioning system (1) will be considered. First, in the case of a single refrigerant, the evaporating temperature of the refrigerant gradually decreases due to the pressure loss in the heat transfer tube (15) during the cold storage operation, so that the outlet (second end) side of the heat transfer tube (15) is It was easy for ice to accumulate, and it did not tend to accumulate uniformly around the heat transfer tube (15). In this case, during the operation using the cold heat, the ice is thawed from the second end side where the ice is thick. However, since the ice making itself is not uniform, the thaw may not be stably performed, and the ice may remain unmelted. Problems sometimes occurred.

【0009】一方、非共沸混合冷媒を使用した場合は、
蓄冷熱運転時に、低沸点の冷媒から蒸発するために伝熱
管(15)の入口側の蒸発温度が低くなり、しかも入口側の
管内熱伝達率が良い(乾き度が小さい)ため、単一冷媒
とは逆に伝熱管(15)の入口側で着氷しやすい傾向にあっ
た。これに対して、管長を伸ばすなどの方法によって伝
熱管(15)内での圧力損失を大きくして蒸発温度を均一化
し、製氷を均一化する方法が考えられるが、その場合、
回路中の高低圧差が大きくなり、圧縮機(11)の効率が低
下するなど、新たな問題が生じることになる。
On the other hand, when a non-azeotropic mixed refrigerant is used,
During cold storage operation, the evaporation temperature of the inlet side of the heat transfer tube (15) decreases due to evaporation from the refrigerant having a low boiling point, and the heat transfer coefficient in the inlet side of the tube is good (dryness is small). Conversely, icing tended to occur on the inlet side of the heat transfer tube (15). On the other hand, a method of increasing the pressure loss in the heat transfer tube (15) by elongating the length of the tube to equalize the evaporation temperature and make the ice making uniform is conceivable.
A new problem arises, such as an increase in the pressure difference in the circuit and a decrease in the efficiency of the compressor (11).

【0010】また、非共沸混合冷媒での冷熱利用運転時
には、蓄冷熱運転時と逆方向に冷媒を流すと、製氷時に
着氷しにくかった氷の薄い第2端側から解氷することに
なり、単一冷媒の場合と比較して解氷がさらに不均一と
なる問題がある。
[0010] Further, in the cold-heat utilization operation using the non-azeotropic mixed refrigerant, when the refrigerant flows in a direction opposite to that in the cold storage heat operation, it is possible to thaw the ice from the thin second end, which is hard to make ice during ice making. Thus, there is a problem that the thawing becomes more uneven compared to the case of a single refrigerant.

【0011】このように、従来は単一冷媒と非共沸混合
冷媒のどちらを使用した場合でも製氷や解氷が均一に行
われにくい欠点があった。本発明は、このような問題点
に鑑みて創案されたものであり、その目的とするところ
は、製氷及び解氷を均一化するとともに、その均一化に
伴って圧縮機の効率が低下するなどの新たな問題が生じ
るのを防止することである。
As described above, there has been a disadvantage that ice making and deicing are difficult to be performed uniformly in the case of using either a single refrigerant or a non-azeotropic mixed refrigerant. The present invention has been made in view of the above problems, and aims to uniformize ice making and defrosting, and reduce the efficiency of the compressor with the uniformity. To prevent a new problem from occurring.

【0012】[0012]

【課題を解決するための手段】本発明は、製氷時や解氷
時に冷媒の流れ方向を切り換えながら運転を行うことに
よって、圧縮機の効率の低下等の問題を抑えつつ、製氷
や解氷を均一化するようにしたものである。
SUMMARY OF THE INVENTION According to the present invention, the operation of switching the flow direction of the refrigerant during ice making or ice melting is performed while suppressing the problems such as a decrease in the efficiency of the compressor and the like. It is intended to be uniform.

【0013】具体的に、本発明が講じた第1の解決手段
は、製氷用の水(17)を貯留する氷蓄熱槽(14)内に、冷媒
が流通する伝熱管(15)が、該水(17)に浸漬するように設
けられた氷蓄熱装置を前提としている。そして、伝熱管
(15)内での冷媒の流れ方向を、伝熱管(15)の第1端側か
ら第2端側へ向かう第1方向と、第2端側から第1端側
へ向かう第2方向とに反転させる切換手段(33〜40)を備
えている。
Specifically, the first solution taken by the present invention is that a heat transfer tube (15) through which a refrigerant flows is provided in an ice heat storage tank (14) for storing water (17) for ice making. It is premised on an ice heat storage device provided to be immersed in water (17). And heat transfer tubes
The flow direction of the refrigerant in (15) is defined as a first direction from the first end to the second end of the heat transfer tube (15) and a second direction from the second end to the first end. Switching means (33 to 40) for reversing are provided.

【0014】また、本発明が講じた第2の解決手段は、
上記第1の解決手段において、切換手段(33〜40)を、蓄
冷熱運転時に、冷媒を第1方向と第2方向とに切り換え
ながら伝熱管(15)に流通させるように構成したものであ
る。
[0014] A second solution taken by the present invention is:
In the first solution, the switching means (33 to 40) is configured to flow the refrigerant through the heat transfer tube (15) while switching between the first direction and the second direction during the cold storage operation. .

【0015】また、本発明が講じた第3の解決手段は、
上記第1の解決手段において、切換手段(33〜40)を、冷
熱利用運転時に、冷媒を第1方向と第2方向とに切り換
えながら伝熱管(15)に流通させるように構成したもので
ある。
[0015] A third solution taken by the present invention is:
In the first solving means, the switching means (33 to 40) is configured to flow the refrigerant through the heat transfer tube (15) while switching between the first direction and the second direction during the operation using cold heat. .

【0016】また、本発明が講じた第4の解決手段は、
上記第1の解決手段において、切換手段(33〜40)を、蓄
冷熱運転時及び冷熱利用運転時に、冷媒を第1方向と第
2方向とに切り換えながら伝熱管(15)に流通させるよう
に構成したものである。
A fourth solution taken by the present invention is:
In the first solving means, the switching means (33 to 40) is configured to allow the refrigerant to flow through the heat transfer tube (15) while switching between the first direction and the second direction during the cold storage operation and the cold utilization operation. It is composed.

【0017】また、本発明が講じた第5の解決手段は、
上記第1乃至第4の何れか1の解決手段において、使用
する冷媒を、非共沸混合冷媒としたものである。
Further, a fifth solution taken by the present invention is:
In any one of the first to fourth solutions, the refrigerant to be used is a non-azeotropic mixed refrigerant.

【0018】また、本発明が講じた第6の解決手段は、
上記第1乃至第5の何れか1の解決手段の氷蓄熱装置が
冷媒回路に組み込まれた氷蓄熱式冷凍装置を前提として
いる。そして、冷媒回路は、熱源側熱交換器(13)と利用
側熱交換器(20)の間で互いに並列に設けられた第1液配
管(23)及び第2液配管(24)と、利用側熱交換器(20)のバ
イパス通路(31)とを備えている。また、第1液配管(23)
には膨張弁(25)とその下流側に位置する第1開閉弁(26)
とが直列に設けられ、第2液配管(24)には第2開閉弁(2
7)と第3開閉弁(28)とが直列に設けられ、バイパス通路
(31)には第4開閉弁(32)が設けられている。
A sixth solution taken by the present invention is:
The ice heat storage device of any one of the first to fifth solving means is premised on an ice heat storage refrigeration device incorporated in a refrigerant circuit. The refrigerant circuit includes a first liquid pipe (23) and a second liquid pipe (24) provided in parallel between the heat source side heat exchanger (13) and the use side heat exchanger (20). And a bypass passage (31) for the side heat exchanger (20). Also, the first liquid pipe (23)
Has an expansion valve (25) and a first on-off valve (26) located downstream thereof.
Are provided in series, and a second on-off valve (2
7) and a third on-off valve (28) are provided in series, and a bypass passage is provided.
(31) is provided with a fourth on-off valve (32).

【0019】さらに、この第6の解決手段では、上記切
換手段(33〜40)が、膨張弁(25)と第1開閉弁(26)との間
の第1液配管(23)と伝熱管(15)の第1端側とに接続され
た第1連絡管(33)と、膨張弁(25)と第1開閉弁(26)との
間の第1液配管(23)と伝熱管(15)の第2端側とに接続さ
れた第2連絡管(34)と、第2開閉弁(27)と第3開閉弁(2
8)との間の第2液配管(24)と伝熱管(15)の第2端とに接
続された第3連絡管(35)と、第2開閉弁(27)と第3開閉
弁(28)との間の第2液配管(24)と伝熱管(15)の第1端と
に接続された第4連絡管(36)と、第1連絡管ないし第4
連絡管(33〜36)にそれぞれ設けられた開閉可能な第1切
換弁ないし第4切換弁(37〜40)とを備えている。
Further, in the sixth solution, the switching means (33-40) comprises a first liquid pipe (23) between the expansion valve (25) and the first on-off valve (26) and a heat transfer pipe. (15), a first connecting pipe (33) connected to the first end side, a first liquid pipe (23) between the expansion valve (25) and the first on-off valve (26), and a heat transfer pipe ( The second connecting pipe (34) connected to the second end of the second switching valve (15), the second on-off valve (27) and the third on-off valve (2).
8), a third connecting pipe (35) connected to the second end of the heat transfer pipe (15), a second on-off valve (27) and a third on-off valve ( A fourth connecting pipe (36) connected to the second liquid pipe (24) between the second connecting pipe and the first end of the heat transfer pipe (15);
There are provided first to fourth switching valves (37 to 40) which can be opened and closed, respectively provided in the communication pipes (33 to 36).

【0020】また、本発明が講じた第7の解決手段は、
上記第6の解決手段において、伝熱管(15)が、互いに並
列に接続された複数のパイプ材(15a) と、該パイプ材
(15a)の各第1端が接続された第1ヘッダー(18
a) と、該パイプ材(18a) の各第2端が接続された第
2ヘッダー(18b) とを備えている。また、第1連絡管(3
3)は、分流器(41)と複数のキャピラリチューブ(42)とを
介して各パイプ材(15a) の第1端側に接続され、第2連
絡管(34)は、分流器(43)と複数のキャピラリチューブ(4
4)とを介して各パイプ材(15a) の第2端側に接続され、
第3連絡管(35)は第2ヘッダー(18b) に接続され、第4
連絡管(36)は第1ヘッダー(18a) に接続されている。
Further, a seventh solution taken by the present invention is:
In the sixth solution, the heat transfer tube (15) includes a plurality of pipe members (15a) connected in parallel with each other, and a first header (18) connected to each first end of the pipe members (15a).
a) and a second header (18b) to which each second end of the pipe member (18a) is connected. In addition, the first connecting pipe (3
3) is connected to the first end of each pipe member (15a) via a flow divider (41) and a plurality of capillary tubes (42), and the second connecting pipe (34) is connected to the flow divider (43) And multiple capillary tubes (4
4) is connected to the second end of each pipe member (15a) through
The third connecting pipe (35) is connected to the second header (18b), and the fourth connecting pipe (35) is connected to the fourth connecting pipe (35).
The connecting pipe (36) is connected to the first header (18a).

【0021】−作用− 上記第1の解決手段では、製氷運転時に冷媒を流通させ
て、伝熱管(15)の一方の端部側での着氷が他方の端部側
よりも多くなると、冷媒の流れ方向が切り換えられる。
そうすると、今度は着氷の少なかった側に多く着氷する
ことになり、全体として着氷が平均することになる。ま
た、解氷時にも、冷媒の流れ方向を切り換えることによ
り、解氷の偏りが防止され、より均一な解氷が行われ
る。
In the first solution, the refrigerant is circulated during the ice making operation, and when the amount of icing at one end of the heat transfer tube (15) becomes larger than that at the other end, the refrigerant is cooled. Is switched.
Then, this time, more icing will occur on the side with less icing, and icing will be averaged as a whole. Also, at the time of defrosting, by switching the flow direction of the refrigerant, the bias of defrosting is prevented, and more uniform defrosting is performed.

【0022】次に、上記第2の解決手段では、冷媒の流
れ方向の切換が製氷運転時に行われ、上記第3の解決手
段では、冷媒の流れ方向の切換が解氷運転時に行われ、
上記第4の解決手段では、冷媒の流れ方向の切換が製氷
運転時と解氷運転時の両方に行われ、上記第5の解決手
段では、非共沸混合冷媒を使用した場合に、その流れ方
向を切り換えながら、製氷や解氷が行われる。
Next, in the second solution, the flow direction of the refrigerant is switched during the ice making operation, and in the third solution, the flow direction of the refrigerant is switched during the ice defrosting operation.
In the fourth solution, the flow direction of the refrigerant is switched during both the ice making operation and the ice melting operation. In the fifth solution, when the non-azeotropic mixed refrigerant is used, the flow is changed. While changing directions, ice making and melting are performed.

【0023】また、上記第6の解決手段では、蓄冷熱運
転時に、膨張弁(25)の開度を制御しつつ、第1開閉弁(2
6)を全閉にして、冷媒を氷蓄熱装置(16)の伝熱管(15)に
供給する。このとき、第1,第3切換弁(37,39) を開い
て第2,第4切換弁(38,40)を閉じると、冷媒は第1連
絡管(33)から伝熱管(15)の第1端側に流入し、さらに伝
熱管(15)の第2端へ向かう方向(第1方向)に流れて、
第3連絡管(35)を通って伝熱管(15)から流出する。ま
た、このとき、第2〜第4開閉弁(26〜28)は、伝熱管(1
5)を通過した冷媒がバイパス通路(31)を通って圧縮機(1
1)に戻るように、それぞれ、開閉状態が制御される。
In the sixth solution, the first on-off valve (2) is controlled while controlling the opening of the expansion valve (25) during the cold storage operation.
6) is fully closed, and the refrigerant is supplied to the heat transfer tube (15) of the ice heat storage device (16). At this time, when the first and third switching valves (37, 39) are opened and the second and fourth switching valves (38, 40) are closed, the refrigerant flows from the first communication pipe (33) to the heat transfer pipe (15). It flows into the first end side and further flows in the direction (first direction) toward the second end of the heat transfer tube (15),
It flows out of the heat transfer pipe (15) through the third connecting pipe (35). At this time, the second to fourth on-off valves (26 to 28) are connected to the heat transfer tubes (1).
The refrigerant that has passed through 5) passes through the bypass passage (31), and the compressor (1).
The opening / closing state is controlled so as to return to 1).

【0024】この状態で運転を所定時間継続して着氷が
偏ると、第1,第3切換弁(37,39)を閉じて第2,第4
切換弁(38,40) を開き、第2連絡管(34)と第4連絡管(3
6)を使って冷媒を伝熱管(15)の第2端から第1端の方向
(第2方向)へ流す。そうすると、それまで着氷の少な
かった側に多く着氷することになり、着氷が均一化され
る。一方、解氷時にも各切換弁(37〜40)の開閉状態を切
り換えると、冷媒の流れ方向を反転させながら運転する
ことが可能であり、それによって解氷が均一化される。
In this state, if the operation is continued for a predetermined time and the icing is unbalanced, the first and third switching valves (37, 39) are closed and the second and fourth switching valves (37, 39) are closed.
The switching valves (38, 40) are opened, and the second connecting pipe (34) and the fourth connecting pipe (3
Using 6), the refrigerant flows from the second end to the first end (second direction) of the heat transfer tube (15). Then, more icing will occur on the side where there was less icing, and the icing will be uniform. On the other hand, when the open / close state of each of the switching valves (37 to 40) is switched also at the time of defrosting, the operation can be performed while reversing the flow direction of the refrigerant, thereby making the defrosting uniform.

【0025】また、上記第7の解決手段では、蓄冷熱運
転時には、冷媒は、第1方向と第2方向のどちらに流す
場合でも、液冷媒の状態で分流器(41,43) とキャピラリ
チューブ(42,44) を通って各パイプ材(15a) に均一に流
入し、各パイプ材(15a) から流出する際は、ガス冷媒の
状態でヘッダー(18a,18b) で合流してからバイパス通路
(31)へと流れる。一方、冷熱利用運転時には、冷媒は、
液相のまま相変化せず、伝熱管(15)にヘッダー(18a,18
b) 側から流入して過冷却され、さらにキャピラリチュ
ーブ(42,44) 等を通って利用側熱交換器(20)へ流れてい
く。
Further, in the above-mentioned seventh solution means, in the regenerative heat operation, regardless of whether the refrigerant flows in the first direction or the second direction, the refrigerant flows in the state of the liquid refrigerant in the flow divider (41, 43) and the capillary tube. (42,44), uniformly flow into each pipe material (15a), and out of each pipe material (15a), merge at the headers (18a, 18b) in the state of gas refrigerant and then bypass
Flow to (31). On the other hand, at the time of operation using cold heat, the refrigerant is
The liquid phase does not change and the header (18a, 18
b) It flows in from the side, is supercooled, and further flows to the use side heat exchanger (20) through the capillary tubes (42, 44) and the like.

【0026】これに対して、例えば、図6に示した従来
の氷蓄熱装置(16)を用いた冷凍装置において、キャピラ
リチューブ(42)やヘッダー(18)の構成はそのままにし
て、冷媒配管側で冷媒の流れ方向を切り換えられるよう
に構成すると、例えば蓄冷熱運転中の流れ方向の切り換
えの際に、伝熱管(15)から流出したガス冷媒がキャピラ
リチューブ(42)を通過するので、圧力損失が増加して効
率が低下する問題が生じるが、上記第7の解決手段で
は、このように単に冷媒の流れ方向を反転できるように
するだけではなく、伝熱管(15)の両端部に分流器(41,4
3) 及びキャピラリチューブ(42,44) とヘッダー(18a,18
b) とを設けてガス冷媒がキャピラリチューブ(42,44)
を通過しないようにしているので、そのような問題は生
じない。
On the other hand, for example, in the refrigerating apparatus using the conventional ice heat storage device (16) shown in FIG. 6, the configuration of the capillary tube (42) and the header (18) is kept as it is and the refrigerant piping side When the flow direction of the refrigerant can be switched by, for example, when the flow direction is switched during the cold storage operation, the gas refrigerant flowing out of the heat transfer tube (15) passes through the capillary tube (42), so that the pressure loss However, in the seventh solution, not only the flow direction of the refrigerant can be simply reversed but also the flow dividers are provided at both ends of the heat transfer tube (15). (41,4
3) and capillary tubes (42,44) and headers (18a, 18
b) and the gas refrigerant flows into the capillary tube (42,44)
Such a problem does not occur.

【0027】[0027]

【発明の効果】上記第1の解決手段から第4の解決手段
によれば、製氷や解氷をより均一に行うことができるか
ら、製氷時には氷を効率良く生成できる。また、解氷時
には氷を均一に溶かすことにより、氷の溶け残りが生じ
るのを防止しながら、冷熱の利用効率を高めることがで
きる。
According to the first to fourth solutions, ice making and melting can be performed more uniformly, so that ice can be efficiently generated during ice making. In addition, when the ice is thawed, by uniformly melting the ice, it is possible to prevent the unmelted portion of the ice from occurring and to improve the utilization efficiency of the cold heat.

【0028】上記第5の解決手段によれば、従来は単一
冷媒よりも製氷や解氷が不均一になりがちであった非共
沸混合冷媒を用いた場合でも、均一な製氷や解氷が可能
となり、製氷時に効率を向上させ、解氷時に溶け残りを
防止できる。
According to the fifth solution, even when a non-azeotropic mixed refrigerant which conventionally tends to make ice making and ice melting more uneven than a single refrigerant is used, uniform ice making and ice melting can be achieved. It is possible to improve the efficiency at the time of ice making and to prevent the unmelted residue at the time of melting ice.

【0029】上記第6の解決手段によれば、上記第1か
ら第5の解決手段の氷蓄熱装置を適用した冷凍装置にお
いて、各開閉弁(26〜28)等の開閉状態を制御しながら各
切換弁(37〜40)を切り換えるだけで冷媒の流れ方向を反
転させることができ、上記第1から第5の解決手段の効
果を簡単に得ることができる。
According to the sixth aspect, in the refrigeration system to which the ice heat storage device of the first to fifth aspects is applied, each of the on-off valves (26 to 28) and the like is controlled while controlling the open / close state thereof. The flow direction of the refrigerant can be reversed simply by switching the switching valves (37 to 40), and the effects of the first to fifth solving means can be easily obtained.

【0030】また、上記第7の解決手段によれば、複数
のパイプ材(15a) から構成した伝熱管(15)での冷媒の偏
流を防止するために分流器(41)とキャピラリチューブ(4
2)とを用いる実用的な構成の氷蓄熱装置において、伝熱
管(15)の反対側の端部にも分流器(43)とキャピラリチュ
ーブ(44)を追加することにより、蓄冷熱運転時に冷媒の
流れ方向を切り換えても、圧力損失等の問題が発生する
のを防止できる。
According to the seventh solution, the flow divider (41) and the capillary tube (4) are provided in order to prevent the refrigerant from drifting in the heat transfer tube (15) composed of the plurality of pipe members (15a).
2) In a practical configuration of an ice heat storage device, a shunt (43) and a capillary tube (44) are also added to the opposite end of the heat transfer tube (15) so that the refrigerant can be operated during the cold storage operation. Even if the flow direction is switched, it is possible to prevent problems such as pressure loss from occurring.

【0031】[0031]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。なお、本実施形態は、スタテ
ィック式の氷蓄熱装置(16)をビル等の空調システム(1)
に適用した例である。また、このシステム(1) は、非共
沸混合冷媒の一種であるR407Cを使用するシステム
として構成されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. In this embodiment, a static ice heat storage device (16) is used for an air conditioning system (1) for a building or the like.
This is an example applied to The system (1) is configured as a system using R407C, which is a kind of non-azeotropic refrigerant mixture.

【0032】−システム構成− 図1は、この空調システム(1) の構成を示す回路図であ
る。図示するように、この空調システム(1) は、室外ユ
ニット(2) と、蓄熱ユニット(3) と、室内ユニット(4)
とから構成されている。図では、室内ユニット(4) を1
台のみにしたものを示しているが、該室内ユニット(4)
は、複数台を並列に接続することも可能である。
-System Configuration- FIG. 1 is a circuit diagram showing the configuration of the air conditioning system (1). As shown, this air conditioning system (1) has an outdoor unit (2), a heat storage unit (3), and an indoor unit (4).
It is composed of In the figure, the indoor unit (4) is
Although only the table is shown, the indoor unit (4)
It is also possible to connect a plurality of units in parallel.

【0033】室外ユニット(2) には、圧縮機(11)と、四
路切換弁(12)と、室外熱交換器(熱源側熱交換器)(13)
とが設けられている。四路切換弁(12)は、第1ポート(1
2a)と第2ポート(12b) とが連通すると共に第3ポート
(12c) と第4ポート(12d) とが連通する実線の状態と、
第1ポート(12a) と第4ポート(12d) とが連通すると共
に第2ポート(12b) と第3ポート(12c) とが連通する破
線の状態とに切り換え可能に構成されている。
The outdoor unit (2) includes a compressor (11), a four-way switching valve (12), and an outdoor heat exchanger (heat source side heat exchanger) (13).
Are provided. The four-way switching valve (12) is connected to the first port (1
2a) communicates with the second port (12b) and the third port
(12c) and the state of the solid line communicating with the fourth port (12d);
The first port (12a) and the fourth port (12d) communicate with each other while the second port (12b) and the third port (12c) communicate with each other so as to be switched to the state shown by a broken line.

【0034】蓄熱ユニット(3) には、氷蓄熱槽(14)と伝
熱管(15)とを備えた氷蓄熱装置(16)が設けられている。
氷蓄熱槽(14)には、製氷用の水(または他の蓄熱媒体で
も可)(17)が貯留され、伝熱管(15)は、この水(17)の中
に浸漬するように設けられている。伝熱管(15)は、具体
的には第1端が第1ヘッダー(18a) に接続されると共
に、第2端が第2ヘッダー(18b) に接続されて並列にな
った複数のパイプ材(15a) から構成されている。各パイ
プ材(15a) は、蓄熱槽(14)内において図では鉛直方向に
延びる複数の配管の上端部同士及び下端部同士をU字管
で連結した構成になっているが、水平方向に延びる複数
の配管の各端部同士をU字管で連結した構成であっても
よい。なお、図では、簡略化のために、パイプ材(15a)
は2本のみを表している。
The heat storage unit (3) is provided with an ice heat storage device (16) including an ice heat storage tank (14) and a heat transfer tube (15).
Water for ice making (or other heat storage medium) (17) is stored in the ice heat storage tank (14), and the heat transfer tube (15) is provided so as to be immersed in the water (17). ing. Specifically, the heat transfer tube (15) has a first end connected to the first header (18a) and a second end connected to the second header (18b), and a plurality of pipe members (15) arranged in parallel. 15a). Each pipe member (15a) has a configuration in which upper ends and lower ends of a plurality of pipes extending in the vertical direction are connected by a U-shaped pipe in the heat storage tank (14) in the drawing, but extends in the horizontal direction. A configuration in which respective ends of a plurality of pipes are connected by a U-shaped pipe may be used. In the figure, for simplicity, the pipe material (15a)
Represents only two lines.

【0035】また、室内ユニット(3) には、室内膨張弁
(19)と室内熱交換器(利用側熱交換器)(20)とが設けら
れている。
The indoor unit (3) includes an indoor expansion valve.
(19) and an indoor heat exchanger (use-side heat exchanger) (20).

【0036】−回路構成− 次に、この空調システム(1) における冷媒回路の具体的
な回路構成について説明する。まず、圧縮機(11)の吐出
側は、吐出ガス配管(21)を介して四路切換弁(12)の第1
ポート(12a) に接続され、四路切換弁(12)の第2ポート
(12b) が、第1ガス配管(22)を介して、室外熱交換器(1
3)の一端側に接続されている。
-Circuit Configuration- Next, a specific circuit configuration of the refrigerant circuit in the air conditioning system (1) will be described. First, the discharge side of the compressor (11) is connected to the first four-way switching valve (12) via the discharge gas pipe (21).
Connected to port (12a), the second port of four-way switching valve (12)
(12b) is connected to the outdoor heat exchanger (1) through the first gas pipe (22).
3) is connected to one end.

【0037】室外熱交換器(13)と室内熱交換器(20)の間
の液配管は、互いに並列に設けられた第1液配管(23)
(一点鎖線で示した配管)と第2液配管(24)(二点鎖線
で示した配管)とを含んでいる。この第1液配管(23)に
は膨張弁(電子膨張弁)(25)とその下流側に位置する第
1開閉弁(26)とが直列に設けられ、第2液配管(24)には
第2開閉弁(27)と第3開閉弁(28)とが直列に設けられて
いる。なお、各開閉弁(26〜28)には電磁弁が用いられて
いる。
A liquid pipe between the outdoor heat exchanger (13) and the indoor heat exchanger (20) is a first liquid pipe (23) provided in parallel with each other.
(A dashed-dotted line) and a second liquid pipe (24) (a dashed-dotted line). An expansion valve (electronic expansion valve) (25) and a first opening / closing valve (26) located downstream of the first liquid pipe (23) are provided in series with the first liquid pipe (23). The second on-off valve (27) and the third on-off valve (28) are provided in series. Note that an electromagnetic valve is used for each of the on-off valves (26 to 28).

【0038】室内熱交換器(20)は、第2ガス配管(29)を
介して四路切換弁(12)の第4ポート(12d) と接続され、
四路切換弁(12)の第3ポート(12c) が、吸入ガス配管(3
0)を介して圧縮機(11)の吸入側に接続されている。ま
た、この冷媒回路では、第2液配管(24)と第2ガス配管
(29)の間に、利用側熱交換器(20)のバイパス通路(31)が
設けられており、該バイパス通路(31)には第4開閉弁(3
2)として電磁弁が設けられている。
The indoor heat exchanger (20) is connected to the fourth port (12d) of the four-way switching valve (12) through the second gas pipe (29),
The third port (12c) of the four-way switching valve (12) is connected to the intake gas pipe (3
0) is connected to the suction side of the compressor (11). In this refrigerant circuit, the second liquid pipe (24) and the second gas pipe
(29), a bypass passage (31) for the use-side heat exchanger (20) is provided, and the bypass passage (31) has a fourth on-off valve (3
2) A solenoid valve is provided.

【0039】氷蓄熱装置(16)は、第1液配管(23)と第2
液配管(24)の間に接続されている。具体的には、伝熱管
(15)の第1端側の端部と第2端側の端部とが、それぞ
れ、第1連絡管(33)と第2連絡管(34)とによって、第1
液配管(23)の膨張弁(25)と第1開閉弁(26)との間の位置
に接続され、伝熱管(15)の両端部に設けられた第2ヘッ
ダー(18b) と第1ヘッダー(18a) とが、それぞれ、第3
連絡管(35)と第4連絡管(36)とによって、第2液配管(2
4)の両開閉弁(27,28) の間の位置に接続されている。
The ice heat storage device (16) is provided with a first liquid pipe (23) and a second liquid pipe (23).
It is connected between the liquid pipes (24). Specifically, heat transfer tubes
The end on the first end side and the end on the second end side of (15) are respectively connected to the first connecting pipe (33) and the second connecting pipe (34) by the first connecting pipe (34).
A second header (18b) and a first header connected to a position between the expansion valve (25) and the first on-off valve (26) of the liquid pipe (23) and provided at both ends of the heat transfer pipe (15). (18a) and the third
The second liquid pipe (2) is connected by the connecting pipe (35) and the fourth connecting pipe (36).
4) It is connected at a position between the two on-off valves (27, 28).

【0040】本実施形態では、第1連絡管(33)には第1
切換弁(37)が、第2連絡管(34)には第2切換弁(38)が、
第3連絡管(35)には第3切換弁(39)が、そして第4連絡
管(36)には第4切換弁(40)が設けられている。これらの
切換弁(37〜40)には電磁弁が用いられている。そして、
各連絡管(33〜36)と各切換弁(37〜40)とにより、冷媒の
流通方向を制御するための切換手段が構成されている。
In this embodiment, the first connecting pipe (33) has the first
A switching valve (37), a second switching valve (38) in the second connecting pipe (34),
The third communication pipe (35) is provided with a third switching valve (39), and the fourth communication pipe (36) is provided with a fourth switching valve (40). Solenoid valves are used for these switching valves (37 to 40). And
The connecting pipes (33 to 36) and the switching valves (37 to 40) constitute switching means for controlling the flow direction of the refrigerant.

【0041】また、第1連絡管(33)は、パイプ材(15a)
の本数に対応した分流器(41)と複数のキャピラリチュー
ブ(42)とを介して、各パイプ材(15a) の第1端側に接続
され、第2連絡管(34)も、パイプ材(15a) の本数に対応
した分流器(43)と複数のキャピラリチューブ(44)とを介
して、各パイプ材(15a) の第2端側に接続されている。
The first connecting pipe (33) is made of a pipe material (15a).
The pipes (15a) are connected to the first end of each pipe member (15a) via a flow divider (41) and a plurality of capillary tubes (42) corresponding to the number of the pipe members (41). The pipes (15a) are connected to the second ends of the pipe members (15a) via flow dividers (43) and a plurality of capillary tubes (44) corresponding to the number of pipes (15a).

【0042】−運転動作− 次に、この空調システム(1) の運転動作について説明す
る。この空調システム(1) は、氷蓄熱槽(14)内に冷熱源
としての氷を生成する蓄冷熱運転(製氷運転)、氷蓄熱
槽(14)内に生成された氷の冷熱を使用して室内を冷房す
る冷熱利用冷房運転(解氷運転)、氷の冷熱を使用せず
に室内を冷房する非利用冷房運転、そして冷媒の循環方
向を逆サイクルにして行う暖房運転の4つのモードで運
転を行うことができる。
-Operation- Next, the operation of the air conditioning system (1) will be described. This air conditioning system (1) uses a cold storage heat operation (ice making operation) that generates ice as a cold heat source in the ice heat storage tank (14), and uses the cold heat of the ice generated in the ice heat storage tank (14). Operation in four modes: cooling operation using cold energy to cool the room (de-icing operation), non-use cooling operation to cool the room without using the heat of ice, and heating operation in which the circulation direction of the refrigerant is reversed. It can be performed.

【0043】<蓄冷熱運転モード>まず、蓄冷熱運転モ
ードについて図2を参照して説明する。このモードで
は、圧縮機(11)から吐出された高温高圧のガス冷媒は、
室外熱交換器(13)で凝縮して液化する。蓄冷熱運転時に
は第1開閉弁(26)と第2開閉弁(27)とは閉じられてお
り、第3開閉弁(28)と第4開閉弁(32)とが開かれてい
る。したがって、室外熱交換器(13)を通過した液冷媒
は、室外膨張弁(25)を通って減圧してから、氷蓄熱装置
(16)の伝熱管(15)に流入する。
<Cooling Energy Operation Mode> First, the cooling energy operation mode will be described with reference to FIG. In this mode, the high-temperature and high-pressure gas refrigerant discharged from the compressor (11)
It is condensed and liquefied in the outdoor heat exchanger (13). During the cold storage operation, the first on-off valve (26) and the second on-off valve (27) are closed, and the third on-off valve (28) and the fourth on-off valve (32) are open. Therefore, the liquid refrigerant that has passed through the outdoor heat exchanger (13) is decompressed through the outdoor expansion valve (25), and then depressurized.
It flows into the heat transfer tube (15) of (16).

【0044】各切換弁(37〜40)については、当初、第
1,第3切換弁(37,39) が開かれ、第2,第4切換弁(3
8,40) が閉じられている。このため、液冷媒は、実線の
矢印で示すように、第1切換弁(37)から分流器(41)とキ
ャピラリチューブ(42)とを通って、伝熱管(15)を第1端
側から第2端側に向かう方向(第1方向)へ流れる。こ
のとき、液冷媒と製氷用の水(17)との間で熱交換が行わ
れ、冷媒が蒸発してガスになると共に、伝熱管(15)の周
囲に氷が生成される。伝熱管(15)を出たガス冷媒は、第
2ヘッダー(18b) で合流し、さらに第3切換弁(39)と第
3開閉弁(28)及び第4開閉弁(32)を通って第2ガス配管
(29)に流入し、四路切換弁(12)を経て圧縮機(11)に戻
る。
At first, the first and third switching valves (37, 39) are opened and the second and fourth switching valves (3 to 40) are opened.
8,40) is closed. Therefore, the liquid refrigerant passes through the flow divider (41) and the capillary tube (42) from the first switching valve (37) and passes through the heat transfer tube (15) from the first end side, as indicated by the solid arrow. It flows in the direction toward the second end (first direction). At this time, heat exchange is performed between the liquid refrigerant and the ice making water (17), and the refrigerant evaporates to a gas, and ice is generated around the heat transfer tube (15). The gas refrigerant that has exited the heat transfer tube (15) merges at the second header (18b), and further passes through the third switching valve (39), the third on-off valve (28), and the fourth on-off valve (32). 2 gas piping
(29), and returns to the compressor (11) via the four-way switching valve (12).

【0045】非共沸混合冷媒は、その非共沸性から、伝
熱管(15)内で蒸発または凝縮する際に温度が変化する特
性を有しており、蒸発温度は伝熱管(15)の入口側の方が
出口側よりも低い。したがって、冷媒を図2に実線の矢
印で示すような流れで循環させていると、入口側(第1
端側)の管内熱伝達率が良いことと相まって、伝熱管(1
5)の第1端側で生成される氷が、第2端側で生成される
氷よりも厚くなる。そこで、所定のタイミングで、第
1,第3開閉弁(37,39) を閉じ、第2,第4開閉弁(38,
40) を開く切り換え操作を行う。すると、冷媒が、図2
に破線の矢印で示すように向きを変えて、伝熱管(15)を
第2端側から第1端側に向かう方向(第2方向)へ流れ
ることになり、それまで氷の薄かった第2端側において
氷の生成が速くなる。
The non-azeotropic mixed refrigerant has a characteristic that the temperature changes when it is evaporated or condensed in the heat transfer tube (15) because of its non-azeotropic property. The entrance side is lower than the exit side. Therefore, when the refrigerant is circulated in the flow shown by the solid arrow in FIG.
In addition to the good heat transfer coefficient inside the tube (end side), the heat transfer tube (1
The ice generated at the first end in 5) is thicker than the ice generated at the second end. Therefore, at a predetermined timing, the first and third on-off valves (37, 39) are closed, and the second and fourth on-off valves (38, 39) are closed.
40) Perform a switching operation to open. Then, the refrigerant is
The direction of the heat transfer tube (15) is changed from the second end side to the first end side (second direction) by changing the direction as shown by the broken line arrow. Ice formation is faster at the edge.

【0046】このようにして少なくとも一回は伝熱管(1
5)での冷媒の流れ方向を切り換え、あるいは必要に応じ
てさらに何度か切り換えを繰り返すことにより、伝熱管
(15)の周囲に氷が均一に生成される。
In this way, the heat transfer tube (1
By switching the flow direction of the refrigerant in 5) or repeating the switching several times as necessary, the heat transfer tube
Ice is uniformly generated around (15).

【0047】<冷熱利用冷房運転モード>次に、冷媒の
流れを図3に示した冷熱利用冷房運転モードについて説
明する。このモードでは、四路切換弁(12)は図2の蓄冷
熱運転と同じ状態であるが、室外膨張弁(25)と第3開閉
弁(28)及び第4開閉弁(32)とが全閉に制御され、第1開
閉弁(26)及び第2開閉弁(27)は開放される。したがっ
て、圧縮機(11)から吐出された冷媒は、実線の矢印で示
すように、室外熱交換器(13)で凝縮した後、第2液配管
(24)を通って伝熱管(15)に流入する。
<Cooling Cooling Operation Mode> Next, the flow of the refrigerant will be described in the cooling cooling operation mode shown in FIG. In this mode, the four-way switching valve (12) is in the same state as the cold storage operation of FIG. 2, but the outdoor expansion valve (25), the third on-off valve (28) and the fourth on-off valve (32) are all It is controlled to be closed, and the first on-off valve (26) and the second on-off valve (27) are opened. Therefore, the refrigerant discharged from the compressor (11) is condensed in the outdoor heat exchanger (13) as shown by the solid arrow, and
It flows into the heat transfer tube (15) through (24).

【0048】このとき、当初は、第1,第3切換弁(37,
39)が開かれ、第2,第4切換弁(38,40)が閉じられてい
る。このため、冷媒は、第3切換弁(39)から第2ヘッダ
ー(18b) を通って伝熱管(15)を第2方向へ流れて過冷却
され、さらにキャピラリチューブ(42)、分流器(41)、第
1切換弁(37)、及び第1開閉弁(26)を通って、室内膨張
弁(19)及び室内熱交換器(20)に流入する。そして、冷媒
は、この室内熱交換器(20)で室内空気と熱交換して蒸発
し、室内空気を冷却した後、圧縮機(11)へ戻る。
At this time, initially, the first and third switching valves (37,
39) is opened, and the second and fourth switching valves (38, 40) are closed. For this reason, the refrigerant flows from the third switching valve (39) through the second header (18b) through the heat transfer tube (15) in the second direction, is supercooled, and is further cooled by the capillary tube (42) and the flow divider (41). ), Flows into the indoor expansion valve (19) and the indoor heat exchanger (20) through the first switching valve (37) and the first on-off valve (26). The refrigerant exchanges heat with the indoor air in the indoor heat exchanger (20) to evaporate, cools the indoor air, and returns to the compressor (11).

【0049】この場合、冷媒の温度は、伝熱管(15)の入
口(第2端)側が出口(第1端)側よりも高い。したが
って、この運転を継続していると、伝熱管(15)の周囲の
氷は、冷媒の流入側である第2端側から融解していき、
出口側である第1端側では溶け残りやすいことになる。
そこで、この場合も所定のタイミングで、第1,第3切
換弁(37,39) を閉じ、第2,第4切換弁(38,40) を開く
切り換え操作を行う。すると、冷媒が、破線の矢印で示
すように、伝熱管(15)を第1方向へ流れることになり、
第1端側の氷が溶け出すことになる。
In this case, the temperature of the refrigerant is higher at the inlet (second end) side of the heat transfer tube (15) than at the outlet (first end) side. Therefore, when this operation is continued, the ice around the heat transfer tube (15) melts from the second end side, which is the inflow side of the refrigerant,
The first end side, which is the outlet side, tends to remain undissolved.
Therefore, in this case also, at a predetermined timing, a switching operation of closing the first and third switching valves (37, 39) and opening the second and fourth switching valves (38, 40) is performed. Then, the refrigerant flows through the heat transfer tube (15) in the first direction, as indicated by the broken arrow,
The ice on the first end will melt.

【0050】この場合も、少なくとも一回は伝熱管(15)
での冷媒の流れ方向を切り換え、あるいは必要に応じて
何度か切り換えを繰り返すことにより、伝熱管(15)の周
囲の氷を均一に溶かして、溶け残りが発生するのを防止
できる。
Also in this case, at least once the heat transfer tube (15)
By switching the flow direction of the refrigerant in the above, or by repeating the switching several times as necessary, it is possible to uniformly melt the ice around the heat transfer tube (15) and prevent generation of unmelted residue.

【0051】<非利用冷房運転モード>次に、冷媒の流
れを図4に示した非利用冷房運転モードについて説明す
る。この運転モードでは、氷蓄熱装置(16)を利用せずに
室内の冷房が行われる。このとき、四路切換弁(12)は図
2及び図3と同じ状態であるが、室外膨張弁(25)と、第
1開閉弁(26)及び第4開閉弁(32)とが全閉に制御され、
第2開閉弁(27)及び第3開閉弁(28)が開放されている。
<Non-Use Cooling Operation Mode> Next, the flow of the refrigerant in the non-use cooling operation mode shown in FIG. 4 will be described. In this operation mode, indoor cooling is performed without using the ice heat storage device (16). At this time, the four-way switching valve (12) is in the same state as in FIGS. 2 and 3, but the outdoor expansion valve (25), the first on-off valve (26) and the fourth on-off valve (32) are fully closed. Controlled by
The second on-off valve (27) and the third on-off valve (28) are open.

【0052】したがって、圧縮機(11)から吐出された冷
媒は、四路切換弁(12)を通って室外熱交換器(13)に流入
し、該熱交換器(13)で凝縮した後、第2開閉弁(27)及び
第3開閉弁(28)を通って室内膨張弁(19)に流入する。冷
媒は、この室内膨張弁(19)で減圧されてから室内熱交換
器(20)に流入し、室内空気と熱交換して該室内空気を冷
却すると共に、自身は蒸発してガスとなり、圧縮機(11)
に戻る。このモードでは、以上のサイクルを繰り返すこ
とにより、室内の冷房が行われる。
Therefore, the refrigerant discharged from the compressor (11) flows into the outdoor heat exchanger (13) through the four-way switching valve (12), and is condensed in the heat exchanger (13). It flows into the indoor expansion valve (19) through the second on-off valve (27) and the third on-off valve (28). The refrigerant is decompressed by the indoor expansion valve (19), flows into the indoor heat exchanger (20), exchanges heat with the indoor air to cool the indoor air, and evaporates itself to become a gas, which is compressed. Machine (11)
Return to In this mode, the room is cooled by repeating the above cycle.

【0053】<暖房運転モード>次に、冷媒の流れを図
5に示した暖房運転モードについて説明する。この運転
モードでは、四路切換弁(12)が図1の実線の状態から破
線の状態に切り換えられる。また、室内膨張弁(19)は全
開に制御され、室外膨張弁(25)は開度制御される。さら
に、第1開閉弁(26)は全開に制御され、第2開閉弁(2
7)、第3開閉弁(28)、及び第4開閉弁(32)は全閉に制御
される。
<Heating operation mode> Next, the flow of the refrigerant will be described in the heating operation mode shown in FIG. In this operation mode, the four-way switching valve (12) is switched from the state shown by the solid line to the state shown by the broken line in FIG. Further, the indoor expansion valve (19) is controlled to be fully opened, and the outdoor expansion valve (25) is controlled to be open. Further, the first on-off valve (26) is controlled to be fully opened, and the second on-off valve (2
7), the third on-off valve (28), and the fourth on-off valve (32) are controlled to be fully closed.

【0054】この状態では、圧縮機(11)から吐出された
冷媒は、第2ガス配管(29)を通って室内熱交換器(20)に
流入し、該室内熱交換器(20)において室内空気と熱交換
して凝縮する際に室内空気を暖める。そして、室内膨張
弁(19)と第1開閉弁(26)とを通過した後、室外膨張弁(2
5)で減圧してから室外熱交換器(13)で蒸発し、圧縮機へ
戻る。このモードでは、以上のサイクルを繰り返すこと
により、室内の暖房が行われる。
In this state, the refrigerant discharged from the compressor (11) flows into the indoor heat exchanger (20) through the second gas pipe (29), where the refrigerant is discharged from the indoor heat exchanger (20). Heats room air when condensing by exchanging heat with air. After passing through the indoor expansion valve (19) and the first on-off valve (26), the outdoor expansion valve (2
After the pressure is reduced in 5), it is evaporated in the outdoor heat exchanger (13) and returns to the compressor. In this mode, the room is heated by repeating the above cycle.

【0055】−実施形態の効果− 本実施形態によれば、蓄冷熱運転時に冷媒を伝熱管(15)
に一方向から流通させて、該伝熱管(15)の一方の端部側
での着氷が他方の端部側よりも多くなると、冷媒の流れ
方向を切り換えて、伝熱管(15)の他方の端部側での着氷
を多くするようにしているので、全体として着氷を均一
化して、効率を高めることができる。また、解氷時に
も、冷媒の流れ方向を切り換えることにより、より均一
な解氷が行われるようにしているので、氷の溶け残りが
生じるのを防止できる。
-Effects of Embodiment- According to this embodiment, the refrigerant is transferred to the heat transfer tube (15) during the cold storage operation.
When the icing on one end side of the heat transfer tube (15) is larger than that on the other end side, the flow direction of the refrigerant is switched to the other end of the heat transfer tube (15). Since the amount of icing on the side of the end is increased, the icing can be made uniform as a whole and the efficiency can be increased. Also, when the ice is thawed, the direction of flow of the refrigerant is switched so that the ice is more evenly thawed.

【0056】また、冷媒の流れ方向を、各切換弁(37,3
8,39,40) を制御するだけで切り換えられるようにして
いるので、切り換え操作を簡単に行うことができる。
Further, the flow direction of the refrigerant is changed by each switching valve (37, 3).
8,39,40), the switching operation can be easily performed.

【0057】さらに、第1液配管(23)を、伝熱管(15)の
第1端側と第2端側の両方に、分流器(41,43) とキャピ
ラリチューブ(42,44) とを有する第1連絡管(33)と第2
連絡管(34)で接続し、第2液配管(24)を、第4連絡管(3
6)と第3連絡管(35)とで第1ヘッダー(18a) と第2ヘッ
ダー(18b) に接続するようにしているので、伝熱管(15)
を複数のパイプ材(15a) で構成した氷蓄熱装置(16)での
切り換え運転が可能になると共に、蓄冷熱運転を行うと
きに、ガス冷媒がキャピラリチューブ(42,44)を通って
圧縮機(11)に戻ることがなく、圧力損失による効率の低
下を防止できる利点がある。
Further, the first liquid pipe (23) is connected to the flow dividers (41, 43) and the capillary tubes (42, 44) at both the first end and the second end of the heat transfer tube (15). The first connecting pipe (33) and the second
Connected by the communication pipe (34), the second liquid pipe (24) was connected to the fourth communication pipe (3
6) and the third connecting pipe (35) are connected to the first header (18a) and the second header (18b).
Can be switched by the ice heat storage device (16) composed of a plurality of pipe materials (15a), and when performing the cold storage heat operation, the gas refrigerant passes through the capillary tubes (42, 44) and the compressor. There is an advantage that the efficiency does not decrease due to pressure loss without returning to (11).

【0058】[0058]

【発明のその他の実施の形態】本発明は、上記実施形態
について、以下のような構成としてもよい。
Other Embodiments of the Invention The present invention may be configured as follows with respect to the above embodiment.

【0059】例えば、上記実施形態は、非共沸混合冷媒
を使用する空調システム(1) に本発明の氷蓄熱装置(16)
を適用した例であるが、非共沸混合冷媒の変わりに、単
一冷媒を使用することも可能である。単一冷媒を使用す
る場合は、従来、伝熱管(15)の出口側が入口側よりも着
氷しやすい問題があったが、本実施形態の構成を適用す
れば、着氷を均一化し、しかも解氷を均一化できる。特
に、単一冷媒を使用する場合は、伝熱管(15)の管長が長
く、その内部での圧力損失が大きい(つまり伝熱管の入
口側と出口側での冷媒の温度差も大きい)システムにお
いて、本発明は効果的である。
For example, in the above embodiment, the ice heat storage device (16) of the present invention is applied to an air conditioning system (1) using a non-azeotropic mixed refrigerant.
However, a single refrigerant can be used instead of the non-azeotropic refrigerant mixture. In the case of using a single refrigerant, conventionally, there was a problem that the outlet side of the heat transfer tube (15) was more likely to icing than the inlet side, but by applying the configuration of the present embodiment, the icing was made uniform, and Thawing can be uniformed. In particular, when a single refrigerant is used, the length of the heat transfer tube (15) is long, and the pressure loss inside the heat transfer tube (15) is large (that is, the temperature difference of the refrigerant between the inlet side and the outlet side of the heat transfer tube is large). The present invention is effective.

【0060】また、上記実施形態の冷媒回路は、単なる
一例であって適宜変更することが可能であり、要は製氷
運転時や解氷運転時に氷蓄熱装置(16)での冷媒の流れ方
向を切り換えられるようになっていればよく、例えば上
述したピークシフト型のみならず、ピークカット型のシ
ステムにも適用できる。さらに、本発明は、空調システ
ム(1) 以外の冷凍装置であっても適用可能である。
The refrigerant circuit of the above embodiment is merely an example and can be changed as appropriate. In short, the flow direction of the refrigerant in the ice heat storage device (16) during the ice making operation or the ice melting operation is changed. It is only necessary to be able to switch, and for example, the present invention can be applied not only to the peak shift type described above but also to a peak cut type system. Further, the present invention is applicable to refrigeration devices other than the air conditioning system (1).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る氷蓄熱装置を用いた空
調システムの回路構成図である。
FIG. 1 is a circuit configuration diagram of an air conditioning system using an ice heat storage device according to an embodiment of the present invention.

【図2】図1の空調システムの蓄冷熱運転モードを示す
図である。
FIG. 2 is a diagram illustrating a cold storage operation mode of the air conditioning system of FIG. 1;

【図3】図1の空調システムの冷熱利用冷房運転モード
を示す図である。
FIG. 3 is a diagram showing a cooling operation using cooling energy of the air conditioning system of FIG. 1;

【図4】図1の空調システムの非利用冷房運転モードを
示す図である。
FIG. 4 is a diagram showing a non-use cooling operation mode of the air conditioning system of FIG. 1;

【図5】図1の空調システムの暖房運転モードを示す図
である。
FIG. 5 is a diagram showing a heating operation mode of the air conditioning system of FIG. 1;

【図6】従来の氷蓄熱装置を用いた空調システムの回路
構成図である。
FIG. 6 is a circuit configuration diagram of an air conditioning system using a conventional ice heat storage device.

【符号の説明】[Explanation of symbols]

(1) 空調システム(氷蓄熱式冷凍装置) (2) 室外ユニット (3) 蓄熱ユニット (4) 室内ユニット (11) 圧縮機 (12) 四路切換弁 (13) 室外熱交換器(熱源側熱交換器) (14) 氷蓄熱槽 (15) 伝熱管 (15a) パイプ材 (16) 氷蓄熱装置 (17) 水 (18a) 第1ヘッダー (18b) 第2ヘッダー (19) 室内膨張弁 (20) 室内熱交換器(利用側熱交換器) (23) 第1液配管 (24) 第2液配管 (25) 膨張弁 (26) 第1開閉弁 (27) 第2開閉弁 (28) 第3開閉弁 (31) バイパス通路 (32) 第4開閉弁 (33) 第1連絡管(切換手段) (34) 第2連絡管(切換手段) (35) 第3連絡管(切換手段) (36) 第4連絡管(切換手段) (37) 第1切換弁(切換手段) (38) 第2切換弁(切換手段) (39) 第3切換弁(切換手段) (40) 第4切換弁(切換手段) (41) 分流器 (42) キャピラリチューブ (43) 分流器 (44) キャピラリチューブ (1) Air conditioning system (ice storage type refrigeration system) (2) Outdoor unit (3) Heat storage unit (4) Indoor unit (11) Compressor (12) Four-way switching valve (13) Outdoor heat exchanger (heat source side heat) (14) Ice storage tank (15) Heat transfer tube (15a) Pipe material (16) Ice storage device (17) Water (18a) First header (18b) Second header (19) Indoor expansion valve (20) Indoor heat exchanger (use side heat exchanger) (23) First liquid pipe (24) Second liquid pipe (25) Expansion valve (26) First open / close valve (27) Second open / close valve (28) Third open / close Valve (31) Bypass passage (32) Fourth on-off valve (33) First communication pipe (switching means) (34) Second communication pipe (switching means) (35) Third communication pipe (switching means) (36) No. 4 communication pipe (switching means) (37) 1st switching valve (switching means) (38) 2nd switching valve (switching means) (39) 3rd switching valve (switching means) (40) 4th switching valve (switching means) (41) Flow divider (42) Capillary tube (43) Flow divider (44) Capillary tube

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 製氷用の水(17)を貯留する氷蓄熱槽(14)
内に、冷媒が流通する伝熱管(15)が、該水(17)に浸漬す
るように設けられた氷蓄熱装置であって、 該伝熱管(15)内での冷媒の流れ方向を、伝熱管(15)の第
1端側から第2端側へ向かう第1方向と、第2端側から
第1端側へ向かう第2方向とに反転させる切換手段(33
〜40)を備えている氷蓄熱装置。
An ice thermal storage tank (14) for storing water (17) for ice making.
Inside, a heat transfer tube (15) through which a refrigerant flows is an ice heat storage device provided so as to be immersed in the water (17), and transfers a flow direction of the refrigerant in the heat transfer tube (15). Switching means (33) for reversing a first direction from the first end side to the second end side of the heat tube (15) and a second direction from the second end side to the first end side.
~ 40) ice heat storage device.
【請求項2】 切換手段(33〜40)は、蓄冷熱運転時に、
冷媒を第1方向と第2方向とに切り換えながら伝熱管(1
5)に流通させるように構成されている請求項1記載の氷
蓄熱装置。
2. The switching means (33 to 40) is adapted to operate during cold storage operation.
While switching the refrigerant between the first direction and the second direction, the heat transfer tubes (1
The ice heat storage device according to claim 1, wherein the ice heat storage device is configured to be circulated in (5).
【請求項3】 切換手段(33〜40)は、冷熱利用運転時
に、冷媒を第1方向と第2方向とに切り換えながら伝熱
管(15)に流通させるように構成されている請求項1記載
の氷蓄熱装置。
3. The switching means (33 to 40) is configured to flow the refrigerant through the heat transfer tube (15) while switching between the first direction and the second direction during the operation using cold heat. Ice thermal storage device.
【請求項4】 切換手段(33〜40)は、蓄冷熱運転時及び
冷熱利用運転時に、冷媒を第1方向と第2方向とに切り
換えながら伝熱管(15)に流通させるように構成されてい
る請求項1記載の氷蓄熱装置。
4. The switching means (33-40) is configured to flow the refrigerant through the heat transfer tube (15) while switching between the first direction and the second direction during the cold storage operation and the cold utilization operation. The ice heat storage device according to claim 1.
【請求項5】 冷媒が、非共沸混合冷媒である請求項1
乃至4の何れか1記載の氷蓄熱装置。
5. The refrigerant according to claim 1, wherein the refrigerant is a non-azeotropic mixed refrigerant.
An ice heat storage device according to any one of claims 1 to 4.
【請求項6】 請求項1乃至5の何れか1記載の氷蓄熱
装置(16)が冷媒回路に組み込まれた氷蓄熱式冷凍装置
(1) であって、 上記冷媒回路は、熱源側熱交換器(13)と利用側熱交換器
(20)の間で互いに並列に設けられた第1液配管(23)及び
第2液配管(24)と、利用側熱交換器(20)のバイパス通路
(31)とを備えると共に、第1液配管(23)には膨張弁(25)
とその下流側に位置する第1開閉弁(26)とが直列に設け
られ、第2液配管(24)には第2開閉弁(27)と第3開閉弁
(28)とが直列に設けられ、バイパス通路(31)には第4開
閉弁(32)が設けられ、 切換手段(33〜40)は、上記膨張弁(25)と第1開閉弁(26)
との間の第1液配管(23)と伝熱管(15)の第1端側とに接
続された第1連絡管(33)と、膨張弁(25)と第1開閉弁(2
6)との間の第1液配管(23)と伝熱管(15)の第2端側とに
接続された第2連絡管(34)と、第2開閉弁(27)と第3開
閉弁(28)との間の第2液配管(24)と伝熱管(15)の第2端
とに接続された第3連絡管(35)と、第2開閉弁(27)と第
3開閉弁(28)との間の第2液配管(24)と伝熱管(15)の第
1端とに接続された第4連絡管(36)と、第1連絡管ない
し第4連絡管(33〜36)にそれぞれ設けられた開閉可能な
第1切換弁ないし第4切換弁(37〜40)とを備えている氷
蓄熱式冷凍装置。
6. An ice storage type refrigeration system in which the ice heat storage device (16) according to claim 1 is incorporated in a refrigerant circuit.
(1) wherein the refrigerant circuit comprises a heat source side heat exchanger (13) and a use side heat exchanger.
A first liquid pipe (23) and a second liquid pipe (24) provided in parallel with each other between (20), and a bypass passage of the use side heat exchanger (20);
(31), and an expansion valve (25) is provided in the first liquid pipe (23).
And a first on-off valve (26) located downstream thereof is provided in series, and a second on-off valve (27) and a third on-off valve are provided in the second liquid pipe (24).
(28) are provided in series, a fourth opening / closing valve (32) is provided in the bypass passage (31), and the switching means (33-40) is provided with the expansion valve (25) and the first opening / closing valve (26). )
, A first connecting pipe (33) connected to the first end of the heat transfer pipe (15), an expansion valve (25) and a first on-off valve (2).
A second connecting pipe (34) connected to the first liquid pipe (23) and the second end of the heat transfer pipe (15), a second on-off valve (27) and a third on-off valve (28), a third connecting pipe (35) connected to the second end of the heat transfer pipe (15), a second on-off valve (27), and a third on-off valve. A fourth connecting pipe (36) connected to the second liquid pipe (24) between the second connecting pipe (28) and the first end of the heat transfer pipe (15); 36. An ice storage type refrigerating apparatus comprising a first to fourth switching valves (37 to 40) which can be opened and closed respectively provided in 36).
【請求項7】 伝熱管(15)が、互いに並列に接続された
複数のパイプ材(15a) と、該パイプ材(15a) の各第1端
が接続された第1ヘッダー(18a) と、該パイプ材(15a)
の各第2端が接続された第2ヘッダー(18b) とを備え、 第1連絡管(33)は分流器(41)と複数のキャピラリチュー
ブ(42)とを介して各パイプ材(15a) の第1端側に接続さ
れ、第2連絡管(34)は分流器(43)と複数のキャピラリチ
ューブ(44)とを介して各パイプ材(15a) の第2端側に接
続され、第3連絡管(35)は第2ヘッダー(18b) に接続さ
れ、第4連絡管(36)は第1ヘッダー(18a) に接続されて
いる請求項6記載の氷蓄熱式冷凍装置。
7. A heat transfer tube (15) comprising a plurality of pipe members (15a) connected in parallel to each other, a first header (18a) connected to each first end of said pipe members (15a), The pipe material (15a)
A second header (18b) to which each second end of the pipe member (18b) is connected. The first connecting pipe (33) is connected to each pipe member (15a) via a flow divider (41) and a plurality of capillary tubes (42). The second communication pipe (34) is connected to the second end side of each pipe member (15a) via a flow divider (43) and a plurality of capillary tubes (44). 7. The ice regenerative refrigerator according to claim 6, wherein the third connecting pipe (35) is connected to the second header (18b), and the fourth connecting pipe (36) is connected to the first header (18a).
JP11052114A 1999-03-01 1999-03-01 Ice thermal storage device and ice thermal storage refrigerator Pending JP2000249420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11052114A JP2000249420A (en) 1999-03-01 1999-03-01 Ice thermal storage device and ice thermal storage refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11052114A JP2000249420A (en) 1999-03-01 1999-03-01 Ice thermal storage device and ice thermal storage refrigerator

Publications (1)

Publication Number Publication Date
JP2000249420A true JP2000249420A (en) 2000-09-14

Family

ID=12905852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11052114A Pending JP2000249420A (en) 1999-03-01 1999-03-01 Ice thermal storage device and ice thermal storage refrigerator

Country Status (1)

Country Link
JP (1) JP2000249420A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364945A (en) * 2001-06-06 2002-12-18 Iwaya Reitouki Seisakusho:Kk Dehumidifying drier
JP2006112727A (en) * 2004-10-15 2006-04-27 Daikin Ind Ltd Cold release control device for storage-type heat exchanger
US7124594B2 (en) 2003-10-15 2006-10-24 Ice Energy, Inc. High efficiency refrigerant based energy storage and cooling system
US7162878B2 (en) 2003-10-15 2007-01-16 Ice Energy, Llc Refrigeration apparatus
US7363772B2 (en) 2004-08-18 2008-04-29 Ice Energy, Inc. Thermal energy storage and cooling system with secondary refrigerant isolation
US7421846B2 (en) 2004-08-18 2008-09-09 Ice Energy, Inc. Thermal energy storage and cooling system with gravity fed secondary refrigerant isolation
US7503185B2 (en) 2004-05-25 2009-03-17 Ice Energy, Inc. Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability
US7690212B2 (en) 2004-04-22 2010-04-06 Ice Energy, Inc. Mixed-phase regulator for managing coolant in a refrigerant based high efficiency energy storage and cooling system
US7854129B2 (en) 2003-10-15 2010-12-21 Ice Energy, Inc. Refrigeration apparatus
US8181470B2 (en) 2008-02-15 2012-05-22 Ice Energy, Inc. Thermal energy storage and cooling system utilizing multiple refrigerant and cooling loops with a common evaporator coil
US8234876B2 (en) 2003-10-15 2012-08-07 Ice Energy, Inc. Utility managed virtual power plant utilizing aggregated thermal energy storage
JP2015156965A (en) * 2014-02-24 2015-09-03 株式会社毛髪クリニックリーブ21 Scalp cooling apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364945A (en) * 2001-06-06 2002-12-18 Iwaya Reitouki Seisakusho:Kk Dehumidifying drier
US8234876B2 (en) 2003-10-15 2012-08-07 Ice Energy, Inc. Utility managed virtual power plant utilizing aggregated thermal energy storage
US7124594B2 (en) 2003-10-15 2006-10-24 Ice Energy, Inc. High efficiency refrigerant based energy storage and cooling system
US7162878B2 (en) 2003-10-15 2007-01-16 Ice Energy, Llc Refrigeration apparatus
US7854129B2 (en) 2003-10-15 2010-12-21 Ice Energy, Inc. Refrigeration apparatus
US8109107B2 (en) 2004-04-22 2012-02-07 Ice Energy, Inc. Mixed-phase regulator
US7690212B2 (en) 2004-04-22 2010-04-06 Ice Energy, Inc. Mixed-phase regulator for managing coolant in a refrigerant based high efficiency energy storage and cooling system
US7827807B2 (en) 2004-05-25 2010-11-09 Ice Energy, Inc. Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability
US7503185B2 (en) 2004-05-25 2009-03-17 Ice Energy, Inc. Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability
US7793515B2 (en) 2004-08-18 2010-09-14 Ice Energy, Inc. Thermal energy storage and cooling system with isolated primary refrigerant loop
US7421846B2 (en) 2004-08-18 2008-09-09 Ice Energy, Inc. Thermal energy storage and cooling system with gravity fed secondary refrigerant isolation
US7363772B2 (en) 2004-08-18 2008-04-29 Ice Energy, Inc. Thermal energy storage and cooling system with secondary refrigerant isolation
US8505313B2 (en) 2004-08-18 2013-08-13 Ice Energy Holdings, Inc. Thermal energy storage and cooling system with secondary refrigerant isolation
US8707723B2 (en) 2004-08-18 2014-04-29 Ice Energy Holdings, Inc. Multiple refrigerant thermal energy storage and cooling system with secondary refrigerant isolation
JP2006112727A (en) * 2004-10-15 2006-04-27 Daikin Ind Ltd Cold release control device for storage-type heat exchanger
US8181470B2 (en) 2008-02-15 2012-05-22 Ice Energy, Inc. Thermal energy storage and cooling system utilizing multiple refrigerant and cooling loops with a common evaporator coil
JP2015156965A (en) * 2014-02-24 2015-09-03 株式会社毛髪クリニックリーブ21 Scalp cooling apparatus

Similar Documents

Publication Publication Date Title
JP5327308B2 (en) Hot water supply air conditioning system
WO2016113850A1 (en) Air-conditioning device
JP2000249420A (en) Ice thermal storage device and ice thermal storage refrigerator
JP2007010288A (en) Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device
KR100381634B1 (en) Refrigerator
JPH0634169A (en) Air conditioning device
KR101864636B1 (en) Waste heat recovery type hybrid heat pump system
JP2011247476A (en) Refrigerating cycle with refrigerant pipe for defrosting operation
JP2008134045A (en) Heat pump system
JP2013083439A (en) Hot water supply air conditioning system
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
JP2001263848A (en) Air conditioner
JP3360637B2 (en) Refrigeration air conditioner
JP3814877B2 (en) Thermal storage air conditioner
JP2003050059A (en) Freezing air conditioner
KR101127758B1 (en) Hot and cool water, heating and cooling supply system
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP2003202135A (en) Regenerative air-conditioning device
JP3427628B2 (en) Ice storage device
CN218001695U (en) Heat pump system
JP2006145098A (en) Heat storage type air conditioner
KR101272021B1 (en) Two stage heat pump cooling and heating apparatus
CN212870024U (en) Air conditioner
JP3643687B2 (en) Air conditioner with ice heat storage unit
JPH08313082A (en) Refrigerator