JPH05320151A - Production of n-benzyloxycarbonyl-l-aspartic acid anhydride - Google Patents

Production of n-benzyloxycarbonyl-l-aspartic acid anhydride

Info

Publication number
JPH05320151A
JPH05320151A JP4125894A JP12589492A JPH05320151A JP H05320151 A JPH05320151 A JP H05320151A JP 4125894 A JP4125894 A JP 4125894A JP 12589492 A JP12589492 A JP 12589492A JP H05320151 A JPH05320151 A JP H05320151A
Authority
JP
Japan
Prior art keywords
zasp
anhydride
benzyloxycarbonyl
aspartic acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4125894A
Other languages
Japanese (ja)
Inventor
Tadashi Okuma
正 大熊
Yoshinori Ide
義則 井出
Shuji Ozawa
修二 小澤
Ryuichi Mita
隆一 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP4125894A priority Critical patent/JPH05320151A/en
Publication of JPH05320151A publication Critical patent/JPH05320151A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain an N-benzyloxycarbonyl-L-aspartic acid anhydride in high yield and quality in a short time by reacting N-benzyloxycarbonyl-L-aspartic acid with acetic anhydride in the presence of a metal alkoxide. CONSTITUTION:This compound is produced by reacting N-benzyloxycarbonyl-L- aspartic acid (ZASP) with acetic anhydride in the presence of a metal alkoxide catalyst (e.g. titanium tetraisopropoxide) in a solvent (e.g. acetone) at 20-100 deg.C. The amount of the acetic anhydride is 0.9-1.1mol based on 1mol of ZASP and that of the catalyst is 0.001-10mol% based on ZASP. The reaction goes to completion usually within 10hr. The compound is useful as an intermediate for peptide synthesis, especially as a raw material for N-benzyloxycarbonyl-alpha-L- aspartyl-L-phenylalanine methyl ester.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、N−ベンジルオキシカ
ルボニル−L−アスパラギン酸からその無水物であるN
−ベンジルオキシカルボニル−L−アスパラギン酸無水
物を製造する方法に関する。
The present invention relates to N-benzyloxycarbonyl-L-aspartic acid which is an anhydride of N-benzyloxycarbonyl-L-aspartic acid.
-A method for producing benzyloxycarbonyl-L-aspartic anhydride.

【0002】[0002]

【従来の技術】本発明の目的化合物N−ベンジルオキシ
カルボニル−L−アスパラギン酸無水物(以下ZASP
無水物と略す。)は、ペプチド合成時の中間体として重
要な化合物である。とりわけ近年その高い甘味度並びに
良質な甘味特性からその需要が著しく伸長しているα−
L−アスパルチル−L−フェニルアラニンメチルエステ
ル(アスパルテーム)製造時の中間体として重要な化合
物である。
The object compound of the present invention N-benzyloxycarbonyl-L-aspartic acid anhydride (hereinafter referred to as ZASP)
Abbreviated as anhydrous. ) Is an important compound as an intermediate during peptide synthesis. Particularly, in recent years, the demand for α- has been remarkably increased due to its high degree of sweetness and high-quality sweetness characteristics.
It is an important compound as an intermediate in the production of L-aspartyl-L-phenylalanine methyl ester (aspartame).

【0003】このα−L−アスパルチル−L−フェニル
アラニンメチルエステルを製造する方法としてこれまで
に種々の方法が開示されている。一般的には、N−保護
アスパラギン酸無水物とL−フェニルアラニンメチルエ
ステルとを反応させてN−保護α−L−アスパルチル−
L−フェニルアラニンメチルエステルを製造し、続いて
N−保護基を脱離する方法が工業的な製造法として適し
ている。しかし、α−L−アスパルチル−L−フェニル
アラニンメチルエステルが熱並びに酸、アルカリに不安
定な化合物であることから、N−保護α−L−アスパル
チル−L−フェニルアラニンメチルエステルのN−保護
基の脱離工程には自ずから制約があり、中性且つ温和な
条件下で行えるものが望ましい。その意味から、水添反
応にて脱離することができるベンジルオキシカルボニル
基が工業的に適したN−保護基であり、この保護基を用
いたα−L−アスパルチル−L−フェニルアラニンメチ
ルエステルの改良製造法が種々提案されてきている。
Various methods have been disclosed so far for producing the α-L-aspartyl-L-phenylalanine methyl ester. Generally, N-protected aspartic anhydride and L-phenylalanine methyl ester are reacted to form N-protected α-L-aspartyl-
The method of producing L-phenylalanine methyl ester and subsequently removing the N-protecting group is suitable as an industrial production method. However, since α-L-aspartyl-L-phenylalanine methyl ester is a compound that is unstable to heat, acid, and alkali, the N-protecting group of N-protected α-L-aspartyl-L-phenylalanine methyl ester is removed. The separation step is naturally limited, and it is desirable that the separation step can be performed under neutral and mild conditions. In that sense, a benzyloxycarbonyl group that can be eliminated by a hydrogenation reaction is an industrially suitable N-protecting group, and α-L-aspartyl-L-phenylalanine methyl ester using this protecting group Various improved manufacturing methods have been proposed.

【0004】従来ZASP無水物は、N−ベンジルオキ
シカルボニル−L−アスパラギン酸(以下ZASPと略
す。)を溶媒中或いは無溶媒で無水酢酸を作用させるこ
とにより製造する方法が知られている。古くは大過剰の
無水酢酸と加熱反応させて無水物化した後、過剰の無水
酢酸を留去させ、石油エーテル等の溶媒を添加し、ZA
SP無水物を結晶として単離して次工程に使用してい
た。しかし、この様な方法では操作が煩雑化し、更に単
離する際に母液へのロス等を生じることから、必ずしも
工業的な製造法とは言い難い。工業的にはZASP無水
物を単離することなく、反応液をそのままL−フェニル
アラニンメチルエステルと反応させることが望ましい。
しかし、ZASPを無水物化した後に、あまりに多量の
無水酢酸が残存すると、次のL−フェニルアラニンメチ
ルエステルとの反応収率が低下するために好ましくな
い。この方法では、無水物化剤として使用する無水酢酸
を無水物化後の反応液中に殆ど残存させない工夫が必要
であり、その為にはできるだけ理論量の無水酢酸を使用
して、且つ高収率でZASP無水物を製造する必要があ
る。
Conventionally, there is known a method for producing ZASP anhydride by reacting N-benzyloxycarbonyl-L-aspartic acid (hereinafter abbreviated as ZASP) with acetic anhydride in a solvent or without solvent. In the old days, it was heated to react with a large excess of acetic anhydride to form an anhydride, and then the excess acetic anhydride was distilled off, and a solvent such as petroleum ether was added, and ZA was added.
The SP anhydride was isolated as crystals and used in the next step. However, such a method complicates the operation and further causes a loss to the mother liquor during isolation, so that it is not necessarily an industrial production method. Industrially, it is desirable to directly react the reaction solution with L-phenylalanine methyl ester without isolating ZASP anhydride.
However, if a large amount of acetic anhydride remains after the ZASP is anhydridized, the reaction yield with the subsequent L-phenylalanine methyl ester will decrease, which is not preferable. In this method, it is necessary to devise a method in which acetic anhydride used as an anhydride-forming agent is hardly left in the reaction solution after the anhydride, and for that purpose, the theoretical amount of acetic anhydride is used as much as possible, and the yield is high. It is necessary to produce ZASP anhydride.

【0005】ZASPと理論量程度の無水酢酸を作用さ
せてZASP無水物を製造する方法は、例えば酢酸中均
一系にてこの無水物化反応を行っても、反応完結までに
は長い反応時間を必要とする。一方、反応時間を短縮す
るために反応温度を高くすると、ZASP及びZASP
無水物が分解し、結果的に反応収率の低下を招くために
好ましくない。
The method for producing ZASP anhydride by reacting ZASP with a theoretical amount of acetic anhydride requires a long reaction time until the reaction is completed even if this anhydride reaction is carried out in a homogeneous system in acetic acid. And On the other hand, if the reaction temperature is increased to shorten the reaction time, ZASP and ZASP
It is not preferable because the anhydride decomposes, resulting in a decrease in reaction yield.

【0006】また、ZASPの無水物化反応の反応速度
を高め、且つ高収率にてZASP無水物を製造する方法
としてこれまでに幾つかの触媒が提案されている。一つ
は特開昭58−167578に見られるように解離定数
5×10-2以上の酸触媒の存在下で行う方法、更にもう
一つは特開昭58−167577に見られる金属の酸化
物・水酸化物・塩もしくは有機塩基触媒の存在下で行う
方法である。事実、これらの先行技術に記載されている
触媒は、この無水物化反応の触媒として効果が認められ
る。
Several catalysts have been proposed so far as a method for increasing the reaction rate of ZASP anhydride reaction and producing ZASP anhydride in a high yield. One is a method which is carried out in the presence of an acid catalyst having a dissociation constant of 5 × 10 -2 or more as seen in JP-A-58-167578, and the other is a metal oxide disclosed in JP-A-58-167577. -This method is carried out in the presence of a hydroxide / salt or an organic base catalyst. In fact, the catalysts described in these prior art are found to be effective as catalysts for this dehydration reaction.

【0007】[0007]

【課題を解決するための手段】本発明者は、これら従来
公知の技術以外に工業的に更に有用なZASP無水物の
製造法を見出す必要があると考え、ZASPと無水酢酸
とからZASP無水物を製造する方法において、更に生
産性の向上をはかり、且つ目的のZASP無水物を短時
間で高収率且つ高品質で製造する方法について鋭意検討
した。
The present inventor believes that it is necessary to find an industrially more useful process for producing ZASP anhydride in addition to these conventionally known techniques, and ZASP and acetic anhydride are used to produce ZASP anhydride. In the method for producing (1), the inventors have earnestly studied a method for further improving the productivity and producing the desired ZASP anhydride in a high yield and high quality in a short time.

【0008】その結果、ZASPを無水酢酸で無水物化
する際、当該目的に適した新規な触媒として金属アルコ
キシドを見出し、実質的に理論量ないしはその近傍量の
無水酢酸で短時間に高収率でZASP無水物を製造でき
ること、さらに、そのZASP無水物を単離すること無
くL−フェニルアラニンメチルエステルと反応させ、得
られるN−ベンジルオキシカルボニル−α−L−アスパ
ルチル−L−フェニルアラニンメチルエステルの収率、
品質に何ら問題ないことを見出し本発明を完成するに至
った。
As a result, when ZASP is anhydrateized with acetic anhydride, a metal alkoxide is found as a novel catalyst suitable for the purpose, and a substantially theoretical amount or a near amount thereof is used in a short time with a high yield. ZASP anhydride can be produced, and further, the yield of N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester obtained by reacting ZASP anhydride with L-phenylalanine methyl ester without isolation ,
The inventors have found that there is no problem with quality and have completed the present invention.

【0009】即ち、本発明は、ZASPと無水酢酸とか
らZASP無水物を製造する方法において、ZASPと
無水酢酸を各種金属アルコキシドの存在下で反応させる
ことを特徴とするZASP無水物の製造法である。
That is, the present invention is a method for producing ZASP anhydride from ZASP and acetic anhydride, which comprises reacting ZASP and acetic anhydride in the presence of various metal alkoxides. is there.

【0010】本発明の方法は、ZASPと無水酢酸とか
らZASP無水物を製造する方法において、実質的に理
論量ないしはその近傍量の無水酢酸を用いて短時間に高
収率のZASP無水物を製造することを目的とするZA
SP無水物の製造法である。
The method of the present invention is a method for producing ZASP anhydride from ZASP and acetic anhydride, and a high yield of ZASP anhydride is obtained in a short time by using acetic anhydride in a substantially theoretical amount or in the vicinity thereof. ZA for the purpose of manufacturing
This is a method for producing SP anhydrous.

【0011】本発明は、通常は有機溶媒中で実施され
る。使用される溶媒は、原料及び生成物に不活性なもの
であれば特に制約はない。具体的には、アセトン、メチ
ルエチルケトン等のケトン類、ジエチルエーテル、テト
ラヒドロフラン、ジオキサン等のエーテル類、アセトニ
トリル等のニトリル類、酢酸エチル、プロピオン酸メチ
ル等のエステル類、ギ酸、酢酸、プロピオン酸等のカル
ボン酸類、クロロホルム、ジクロロメタン、エチレンジ
クロリド等のハロゲン化炭化水素類、トルエン、キシレ
ン、ヘキサン、シクロヘキサン等の炭化水素類、ジメチ
ルホルムアミド等のアミド類、ジメチルスルホキシド、
γ−ブチロラクトン、ニトロメタンなどを挙げることが
できる。これらの溶媒は、通常単独で使用されるが、2
種以上の溶媒を併用することも何ら問題ない。
The present invention is usually practiced in organic solvents. The solvent used is not particularly limited as long as it is inert to the raw materials and products. Specifically, acetone, ketones such as methyl ethyl ketone, ethers such as diethyl ether, tetrahydrofuran, dioxane, nitriles such as acetonitrile, esters such as ethyl acetate and methyl propionate, carboxylic acids such as formic acid, acetic acid and propionic acid. Acids, halogenated hydrocarbons such as chloroform, dichloromethane and ethylene dichloride, hydrocarbons such as toluene, xylene, hexane and cyclohexane, amides such as dimethylformamide, dimethyl sulfoxide,
Examples include γ-butyrolactone and nitromethane. These solvents are usually used alone, but
There is no problem in using more than one solvent together.

【0012】本発明においてはZASPに無水酢酸を作
用させてZASP無水物を製造するに際して、触媒量の
金属アルコキシドが使用される。使用される金属アルコ
キシドを具体的に例示すれば、マグネシウム、カルシウ
ム等の元素周期表2A族元素、スカンジウム等の3B族
元素、チタン、ジルコニウム等の4B族元素、バナジウ
ム等の5B族元素、クロム、モリブデン等の6B元素、
マンガン等の7B族元素、鉄、コバルト、ニッケル等の
8B族元素、銅等の 1B族元素、亜鉛等の2B族元
素、アルミニウム等の3A族元素、ケイ素、スズ等の4
A族元素、リン等の5A族元素等各種金属からなる金属
アルコキシドである。また、これら金属アルコキシドの
アルキル基としてメチル、エチル、n−プロピル、イソ
プロピル、n−ブチル、イソブチル、sec−ブチル、
tert−ブチル、n−ペンチル、イソペンチル、se
c−ペンチル、tert−ペンチル、ネオペンチル、
1,2−ジメチルプロピル、イソヘキシル、n−ヘキシ
ル、sec−ヘキシル、tert−ヘキシル、シクロヘ
キシル基等のアルキル基が有効である。
In the present invention, a catalytic amount of a metal alkoxide is used in the production of ZASP anhydride by reacting ZASP with acetic anhydride. Specific examples of the metal alkoxide used include periodic table 2A elements such as magnesium and calcium, 3B group elements such as scandium, 4B group elements such as titanium and zirconium, 5B group elements such as vanadium, chromium, 6B element such as molybdenum,
7B group elements such as manganese, 8B group elements such as iron, cobalt and nickel, 1B group elements such as copper, 2B group elements such as zinc, 3A group elements such as aluminum, 4 such as silicon and tin
It is a metal alkoxide made of various metals such as Group A elements and Group 5A elements such as phosphorus. In addition, as alkyl groups of these metal alkoxides, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl,
tert-butyl, n-pentyl, isopentyl, se
c-pentyl, tert-pentyl, neopentyl,
Alkyl groups such as 1,2-dimethylpropyl, isohexyl, n-hexyl, sec-hexyl, tert-hexyl and cyclohexyl are effective.

【0013】金属アルコキシドの使用量は通常触媒量で
よいが、極端に少なすぎるとその触媒効果は小さくな
り、また多すぎても経済的に好ましくない。通常はZA
SPに対して0.001〜10モル%、好ましくは0.
005〜5モル%の範囲で使用される。本発明を工業的
に実施する場合に存在させるこれらの化合物の適量は、
当業者であれば事前の予備実験により容易に見出すこと
ができる。又、その添加方法は一般的には無水物化反応
の開始時に添加するが、実際には反応中に反応系内に金
属アルコキシドが存在するような形をとれば問題はな
い。
The amount of the metal alkoxide used is usually a catalytic amount. However, if the amount is too small, the catalytic effect will be small, and if the amount is too large, it is not economically preferable. Usually ZA
0.001 to 10 mol% with respect to SP, preferably 0.1.
It is used in the range of 005 to 5 mol%. Suitable amounts of these compounds to be present when the present invention is industrially carried out are
Those skilled in the art can easily find out by preliminary experiments. Further, the addition method is generally added at the start of the anhydride reaction, but in practice, there is no problem as long as the metal alkoxide is present in the reaction system during the reaction.

【0014】本発明の方法において、無水酢酸の使用量
は、ZASPに対して0.9〜1.1モル比であり、好
ましくは0.95〜1.05モル比の範囲で使用され
る。無水酢酸をZASPに対して著しく過剰に用いても
ZASPの無水物化反応に限っては特に問題ないが、こ
の反応液をそのままL−フェニルアラニンメチルエステ
ルとの反応に用いる関係上、過剰の無水酢酸の存在はN
−ベンジルオキシカルボニル−α−L−アスパルチル−
L−フェニルアラニンメチルエステルの収率低下を招き
好ましくない。
In the method of the present invention, the amount of acetic anhydride used is in the range of 0.9 to 1.1 mol ratio, preferably 0.95 to 1.05 mol ratio, based on ZASP. Even if acetic anhydride is used in a remarkably excessive amount relative to ZASP, there is no particular problem only in the ZASP anhydride reaction. However, since this reaction solution is directly used in the reaction with L-phenylalanine methyl ester, excess acetic anhydride is used. Existence is N
-Benzyloxycarbonyl-α-L-aspartyl-
This is not preferable because it causes a decrease in the yield of L-phenylalanine methyl ester.

【0015】本発明の方法において具体的な実施方法を
示せば、例えばZASPを溶解又は懸濁させた有機溶媒
液中に金属アルコキシドを所定量加え、更に所定量の無
水酢酸を装入して反応させる方法を挙げることができ
る。しかし、原料の装入順序はこれに限定されるもので
なく、いかなる順序でも良い。
The method of the present invention will be described in detail. For example, a predetermined amount of metal alkoxide is added to an organic solvent solution in which ZASP is dissolved or suspended, and then a predetermined amount of acetic anhydride is charged to carry out the reaction. The method of making it possible can be mentioned. However, the order of charging the raw materials is not limited to this, and any order may be used.

【0016】反応温度は、余りに低すぎると反応速度が
遅く、高すぎると反応速度は著しく高まるものの、ZA
SP並びにZASP無水物の分解反応が起こり、逆にZ
ASP無水物の収率及び品質低下を招くことから、20
〜100℃、好ましくは30〜80℃の範囲が良い。反
応時間は触媒量並びに反応温度により一義的に決まるも
のではないが、通常は10時間以内に反応が完結し、高
収率でZASP無水物が得られる。
If the reaction temperature is too low, the reaction rate is slow, and if it is too high, the reaction rate remarkably increases.
The decomposition reaction of SP and ZASP anhydride occurs, and conversely Z
Since the yield and quality of ASP anhydrous are deteriorated, 20
The range of -100 ° C, preferably 30-80 ° C is good. The reaction time is not uniquely determined by the amount of catalyst and the reaction temperature, but usually the reaction is completed within 10 hours and ZASP anhydride is obtained in high yield.

【0017】このように本発明方法によれば、工業上極
めて有用なN−ベンジルオキシカルボニル−α−L−ア
スパルチル−L−フェニルアラニンメチルエステルの原
料であるZASP無水物をN−ベンジルオキシカルボニ
ル−L−アスパラギン酸から短時間且つ高収率で得るこ
とができる。しかも得られたZASP無水物は反応系か
ら単離することなく、そのまま次のL−フェニルアラニ
ンメチルエステルと反応させることができる。それ故、
工業的に極めて価値の高いZASP無水物の製造法であ
る。
Thus, according to the method of the present invention, ZASP anhydride, which is a raw material of N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester, which is extremely useful industrially, is converted into N-benzyloxycarbonyl-L. It can be obtained from aspartic acid in a short time and in high yield. Moreover, the obtained ZASP anhydride can be directly reacted with the following L-phenylalanine methyl ester without being isolated from the reaction system. Therefore,
It is an industrially extremely valuable method for producing ZASP anhydride.

【0018】[0018]

【実施例】以下、実施例により本発明を更に説明する
が、本発明はその要旨を越えない限り、以下の実施例に
限定させるものではない。又、ZASP無水物は、反応
液にアニリンを加えアニリドとし、HPLC内部標準法
で定量した。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. The ZASP anhydride was quantified by HPLC internal standard method by adding aniline to the reaction solution to give anilide.

【0019】実施例1 ZASP26.8g(0.100モル)を酢酸52gに
溶解させ、攪拌下温度を60℃に保ち、チタンテトライ
ソプロポキシド0.93g(0.0033モル)及び無
水酢酸10.9g(0.107モル)を添加し、1時間
反応を行った。得られた溶液の一部をHPLCで分析し
た結果、ZASP無水物を純度換算収率96.5%で得
た。
Example 1 26.8 g (0.100 mol) of ZASP was dissolved in 52 g of acetic acid, the temperature was kept at 60 ° C. with stirring, and 0.93 g (0.0033 mol) of titanium tetraisopropoxide and 10. 9 g (0.107 mol) was added and reacted for 1 hour. As a result of analyzing a part of the obtained solution by HPLC, ZASP anhydrous was obtained in a purity conversion yield of 96.5%.

【0020】実施例2 チタンテトライソプロポキシド0.09g(0.000
3モル)を用いて実施例1と同様に行うと、ZASP無
水物を純度換算収率97.2%で得た。
Example 2 Titanium tetraisopropoxide 0.09 g (0.000)
(3 mol) was carried out in the same manner as in Example 1 to obtain ZASP anhydride in a purity conversion yield of 97.2%.

【0021】実施例3 金属アルコキシドとしてマグネシウムジエトキシド0.
35g(0.0031モル)を用いて、実施例1と同様
に行うと、ZASP無水物を純度換算収率96.8%で
得た。
Example 3 As a metal alkoxide, magnesium diethoxide.
When 35 g (0.0031 mol) was used and carried out in the same manner as in Example 1, ZASP anhydride was obtained in a purity conversion yield of 96.8%.

【0022】比較例 金属アルコキシドを触媒として加えることなく、実施例
1と同様に反応を行うと、ZASP無水物を純度換算収
率32.6%で得た。
Comparative Example When the reaction was performed in the same manner as in Example 1 without adding a metal alkoxide as a catalyst, ZASP anhydride was obtained in a purity conversion yield of 32.6%.

【0023】[0023]

【発明の効果】本発明の方法は、常に高収率でZASP
無水物を得る方法として、工業的に極めて有用な方法で
ある。
INDUSTRIAL APPLICABILITY The method of the present invention always produces ZASP with high yield.
It is an industrially extremely useful method for obtaining an anhydride.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三田 隆一 福岡県大牟田市浅牟田町30 三井東圧化学 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryuichi Mita 30 Asamuta-cho, Omuta-shi, Fukuoka Mitsui Toatsu Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 N−ベンジルオキシカルボニル−L−ア
スパラギン酸と無水酢酸を金属アルコキシドの存在下で
反応させることを特徴とするN−ベンジルオキシカルボ
ニル−L−アスパラギン酸無水物の製造法。
1. A method for producing N-benzyloxycarbonyl-L-aspartic acid anhydride, which comprises reacting N-benzyloxycarbonyl-L-aspartic acid with acetic anhydride in the presence of a metal alkoxide.
【請求項2】 炭素数1〜6のアルキル基を有する金属
アルコキシドを用いる請求項1記載の方法。
2. The method according to claim 1, wherein a metal alkoxide having an alkyl group having 1 to 6 carbon atoms is used.
JP4125894A 1992-05-19 1992-05-19 Production of n-benzyloxycarbonyl-l-aspartic acid anhydride Pending JPH05320151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4125894A JPH05320151A (en) 1992-05-19 1992-05-19 Production of n-benzyloxycarbonyl-l-aspartic acid anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4125894A JPH05320151A (en) 1992-05-19 1992-05-19 Production of n-benzyloxycarbonyl-l-aspartic acid anhydride

Publications (1)

Publication Number Publication Date
JPH05320151A true JPH05320151A (en) 1993-12-03

Family

ID=14921546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4125894A Pending JPH05320151A (en) 1992-05-19 1992-05-19 Production of n-benzyloxycarbonyl-l-aspartic acid anhydride

Country Status (1)

Country Link
JP (1) JPH05320151A (en)

Similar Documents

Publication Publication Date Title
US3933781A (en) Process for the preparation of α-L-aspartyl-L-phenylalanine alkyl esters
JP4114200B2 (en) Method for producing nateglinide crystals
KR910009350B1 (en) Process for the preparation of n-formylaspartic anhydride
JPH05320151A (en) Production of n-benzyloxycarbonyl-l-aspartic acid anhydride
CA2083108A1 (en) Process for the production of .alpha.-hydroxy-.beta.-aminocarboxylic acids
JPH1077253A (en) Production of aminodicarboxylic-n,n-diacetic acids
JPH05331159A (en) Production of n-benzyloxycarbonyl-l-aspartic acid anhydride
JPH05331158A (en) Production of n-benzyloxycarbonyl-l-aspartic acid anhydride
EP1535900B1 (en) Process for the preparation of nateglinide, preferably in b-form
JPH05331160A (en) Production of n-benzyloxycarbonyl-l-asparticl acid anhydride
JPH05230049A (en) Production of n-benzyloxycarbonyl-l-aspartic anhydride
JP3845977B2 (en) Method for producing 4,4'-bischloromethylbiphenyl
JP2788495B2 (en) Method for producing N-carbobenzoxy-L-aspartic anhydride
JP3257779B2 (en) Method for producing tartanyl acids
JP2788496B2 (en) Method for producing N-carbobenzoquine-L-aspartic anhydride
JP2688214B2 (en) Process for producing N-carbobenzoxy-L-aspartic anhydride
JP3661198B2 (en) Method for producing hydroxyphenylpropionic acid ester
US6294692B1 (en) Process for producing N-formylleucine of high purity
EP0297560B1 (en) Imides; a process for their production and a process for the production of dipeptides using them
JP4186405B2 (en) Method for producing 3,4-methylenedioxymandelic acid
JP3205975B2 (en) Method for producing pyrazinecarboxamide
JP2688213B2 (en) Process for producing N-carbobenzoxy-L-aspartic anhydride
JPH07173128A (en) Production of n-cyanoethaneimido ester
JP2022536218A (en) Malathion catalyzed environmentally friendly production method
EP0166026A2 (en) Process for the preparation of N-thiocarboxyanhydrides of amino acids

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees