JP3845977B2 - Method for producing 4,4'-bischloromethylbiphenyl - Google Patents

Method for producing 4,4'-bischloromethylbiphenyl Download PDF

Info

Publication number
JP3845977B2
JP3845977B2 JP24880097A JP24880097A JP3845977B2 JP 3845977 B2 JP3845977 B2 JP 3845977B2 JP 24880097 A JP24880097 A JP 24880097A JP 24880097 A JP24880097 A JP 24880097A JP 3845977 B2 JP3845977 B2 JP 3845977B2
Authority
JP
Japan
Prior art keywords
reaction
bischloromethylbiphenyl
biphenyl
chloride
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24880097A
Other languages
Japanese (ja)
Other versions
JPH1180047A (en
Inventor
信行 黒田
隆人 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP24880097A priority Critical patent/JP3845977B2/en
Publication of JPH1180047A publication Critical patent/JPH1180047A/en
Application granted granted Critical
Publication of JP3845977B2 publication Critical patent/JP3845977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蛍光増白剤やエポキシ樹脂原料などの合成中間体として有用な化合物である4,4’−ビスクロロメチルビフェニルの製造法に関する。
【0002】
【従来の技術】
従来のビフェニルを塩化亜鉛の存在下にクロロメチル化して4,4’−ビスクロロメチルビフェニルを製造する方法としては、(1)水、塩化亜鉛ならびに低級脂肪族カルボン酸からなる触媒系の存在下において、ビフェニルをホルムアルデヒド及び塩化水素と反応させる方法(特公昭40−3774号公報)、(2)ビフェニルをシクロヘキサン溶媒中でパラホルムアルデヒド及び塩化水素と反応させる方法(特公昭46−29908号公報)、(3)ビフェニルをホルムアルデヒド重合物及び塩化チオニルと反応させる方法(特開平3−188029号公報)が知られている。
【0003】
しかしながら、(1)の方法では、触媒として使用する塩化亜鉛と低級脂肪酸カルボン酸の使用量が多く、工業的に実施するためには循環して使用することが望ましいが、反応開始時の水の濃度が収率に大きく影響するため、反応により生成する水を反応系より除去する必要があり、水の除去に非常に煩雑な操作が必要となる問題がある。(2)の方法では、触媒使用量は少ないが、反応時間が24時間と長いため生産性に問題がある。(3)の方法では、反応時間が比較的短いものの高価な塩化チオニルを多量に使用する必要があることから、副生するイオウ化合物の処理なども含め、経済性に問題があった。
【0004】
【発明が解決しようとする課題】
前記のような技術背景に鑑み、本発明は、ビフェニルをクロロメチル化して4,4’−ビスクロロメチルビフェニルを製造する方法において、4,4’−ビスクロロメチルビフェニルを少ない触媒量で、短時間にかつ高収率で製造することができ、イオウ化合物を副生しない経済的な製造法を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明者らは、前記の公知の製法における問題点を改良すべく、鋭意検討した結果、脂肪酸無水物又は脂肪酸塩化物を添加して、常圧又は加圧下に、反応を行うことにより、4,4’−ビスクロロメチルビフェニルを高収率で製造できると共に、前記の課題を全て解決できることを見いだした。
即ち、本発明の課題は、ビフェニルを塩化亜鉛の存在下にホルムアルデヒド重合物及び塩化水素と反応させて4,4’−ビスクロロメチルビフェニルを製造するに当たり、脂肪酸無水物又は脂肪酸塩化物を添加して、常圧又は加圧下に、反応を行うことを特徴とする4,4’−ビスクロロメチルビフェニルの製造法によって達成される。
【0006】
また、本発明の課題は、好ましくは、
1)ビフェニルを塩化亜鉛の存在下にホルムアルデヒド重合物及び塩化水素と反応させて4,4’−ビスクロロメチルビフェニルを製造するに当たり、脂肪酸無水物又は脂肪酸塩化物を添加して常圧又は加圧下に、反応を行うことを特徴とする4,4’−ビスクロロメチルビフェニルの製造法において、脂肪酸無水物が無水酢酸である4,4’−ビスクロロメチルビフェニルの製造法、
2)脂肪酸塩化物が塩化アセチルである1)記載の製造法、
3)反応が0.5〜5.0Kg/cm2 の加圧下で行われる1)記載の製造法であり、これらを組合わせた製法も好ましい。
【0007】
【発明の実施の形態】
【0008】
本発明は、例えば以下に示すような
反応式(1)
【0009】
【化1】

Figure 0003845977
【0010】
で表すことができる。
【0011】
本発明の製法において使用するホルムアルデヒド重合物としては、例えばパラホルムアルデヒド、ポリオキシメチレン、トリオキサンなどを挙げることができ、工業的にはパラホルムアルデヒド(特に純度75重量%以上のパラホルムアルデヒド)が好ましい。
ホルムアルデヒド重合物の使用量としては、通常ビフェニル1モルに対して1.8〜3.0倍モル、好ましくは2.0〜2.6倍モルである。
【0012】
本発明の製法において使用する塩化亜鉛としては、純度の高いものが好ましく、純度90重量%以上ものが特に好ましい。
塩化亜鉛の使用量としては、通常ビフェニル1モルに対して0.3〜1.0倍モル、好ましくは0.5〜0.8倍モルである。
【0013】
本発明の製法において使用する塩化水素の使用量としては、通常ビフェニル1モルに対して1.8〜50倍モル、好ましくは2.0〜30倍モルである。
【0014】
本発明の製法において使用する脂肪酸無水物としては、例えば無水酢酸、無水コハク酸、無水マレイン酸などを挙げることができ、好ましくは無水酢酸である。
本発明の製法において使用する脂肪酸塩化物としては、例えば塩化アセチル、塩化プロピオニル、塩化バレロイル、オキサリルクロライドなどを挙げることができ、好ましくは塩化アセチルである。
本発明の製法において使用する脂肪酸無水物および脂肪酸塩化物は、単独又は混合しても使用できる。使用量としては、通常ビフェニル1モルに対して0.05〜1.5倍モル、好ましくは0.1〜1.0倍モルである。
本発明の製法における脂肪酸無水物および脂肪酸塩化物の添加方法としては、他の反応に使用する化合物と一緒に仕込んでも、反応開始時又は反応途中で滴下してもよい。
【0015】
本発明の製法において使用する反応溶媒としては、反応に不活性な溶媒であれば特に制限はないが、例えばn−ヘプタン、シクロヘキサン、石油系溶剤などの炭素原子数5〜25の脂肪族炭化水素、ジクロロエタン、クロロホルム、四塩化炭素などのハロゲン置換炭化水素、酢酸、プロピオン酸などの低級脂肪酸などを挙げることができ、好ましくは脂肪族炭化水素である。これらの反応溶媒は単独又は混合しても使用できる。
反応溶媒の使用量としては、通常ビフェニルに対して0.8〜5重量倍、好ましくは1.0〜3.0重量倍モルである。
【0016】
本発明の製法は、常圧又は加圧下に行われるが、反応速度を上げるためには0.1〜10Kg/cm2 で反応を行うことが好ましく、0.5〜5.0Kg/cm2 で反応を行うことがより好ましい。
本発明の製法の反応温度としては、通常20〜80℃であり、好ましくは30〜60℃である。
本発明の製法の反応時間は、反応温度、触媒量および使用する反応溶媒などにより異なるが、通常5〜12時間であり、好ましくは8〜11時間である。
【0017】
本発明の製法において、生成した4,4’−ビスクロロメチルビフェニルを含む反応混合物から該目的化合物を得る方法は、通常の濾過、抽出、再結晶などにより分離・精製すればよい。
【0018】
【実施例】
以下に実施例を示して本発明をさらに詳しく説明するが、本発明の範囲はこれらに限定されるものではない。実施例および比較例における、GC純度はガスクロマトグラフィ−分析における純度(面積%)である。
【0019】
実施例1
冷却管、温度計、ガス導入管及び攪拌機を備えた内容積300mlの4つ口フラスコに、ビフェニル46.25g(0.30モル)、94重量%パラホルムアルデヒド21.06g(0.66モル)、98重量%塩化亜鉛24.5g(0.18モル)およびシクロヘキサン60gを入れ、50℃で撹拌しながら、塩化水素ガスを80ml/minで導入し、撹拌しながら滴下ロ−トで無水酢酸10g(0.098モル)を60分間で滴下して反応させた。滴下終了後、更に7時間塩化水素ガスを導入して反応させた。
反応終了後、得られた反応溶液のGC分析による溶媒以外の組成は、未反応ビフェニルは0.1%、4,4’−ビスクロロメチルビフェニルは68.9%であることがわかった。
反応終了後、得られた反応溶液を15℃まで冷却した後、水15mlとシクロヘキサン60mlとを加え、撹拌したのち、吸引濾過により析出した4,4’−ビスクロロメチルビフェニルを分離した。得られた4,4’−ビスクロロメチルビフェニルを、さらにメタノ−ル120mlで洗浄後、室温で24時間減圧乾燥し、乾燥品51.1g(ビフェニルに対する収率=67.9%)を得た。乾燥品のGC純度は90.4%であった。この乾燥品をシクロヘキサンより再結晶すると、融点136〜137℃、GC純度99.0%の白色結晶を得た。
【0020】
実施例2
冷却管、温度計、ガス導入管及び攪拌機を備えた内容積300mlの4つ口フラスコに、ビフェニル46.25g(0.30モル)、92重量%パラホルムアルデヒド21.52g(0.66モル)、98重量%塩化亜鉛24.5g(0.18モル)およびシクロヘキサン60gを入れ、50℃で撹拌しながら、塩化水素ガスを80ml/minで導入し、撹拌しながら滴下ロ−トで無水酢酸20g(0.196モル)を4時間で滴下して反応させた。滴下終了後、更に5時間塩化水素ガスを導入して反応させた。
反応終了後、得られた反応溶液のGC分析による溶媒以外の組成は、未反応ビフェニルは0.1%、4,4’−ビスクロロメチルビフェニルは64.4%であることがわかった。
反応終了後、得られた反応溶液を15℃まで冷却した後、水50mlとシクロヘキサン60mlとを加え、撹拌したのち、吸引濾過により析出した4,4’−ビスクロロメチルビフェニルを分離した。得られた4,4’−ビスクロロメチルビフェニルを、さらにメタノ−ル120mlで洗浄後、室温で24時間減圧乾燥し、乾燥品47.4g(ビフェニルに対する収率=62.9%)を得た。乾燥品のGC純度は92.2%であった。
【0021】
実施例3
反応温度を40℃とし、無水酢酸10gを1時間で滴下し、滴下後の塩化水素ガス吹き込み時間を10時間とした他は、実施例2と同様に反応させた。
反応終了後、得られた反応溶液のGC分析による溶媒以外の組成は、未反応ビフェニルは0%、4,4’−ビスクロロメチルビフェニルは63.7%であることがわかった。
【0022】
実施例4
無水酢酸に代えてアセチルクロライド9.45g(0.1モル)を使用した他は、実施例2と同様に反応させた。
反応終了後、得られた反応溶液のGC分析による溶媒以外の組成は、未反応ビフェニルは0%、4,4’−ビスクロロメチルビフェニルは62.4%であることがわかった。
【0023】
実施例5
温度計、ガス導入管及び攪拌機を備えた内容積300mlのガラス製オ−トクレ−ブに、ビフェニル46.25g(0.30モル)、92重量%パラホルムアルデヒド21.52g(0.66モル)、98重量%塩化亜鉛24.5g(0.18モル)および無水酢酸10g(0.098モル)および溶媒として石油系溶剤(商品名:SHELLSOL D40 Shell社製)を入れ、40℃で撹拌しながら、塩化水素ガスを導入し、系内を塩化水素ガスで置換した後、ガス出口を閉鎖し、圧力を2Kg/cm2 で保ったまま、11時間攪拌して反応させた。反応終了後、得られた反応溶液のGC分析による溶媒以外の組成は、未反応ビフェニルは0.1%、4,4’−ビスクロロメチルビフェニルは69.2%であることがわかった。
【0024】
比較例1
無水酢酸を添加せず、塩化水素ガス吹き込み時間を10時間とした他は、実施例2と同様に反応させた。
反応終了時の得られた反応溶液のGC分析による溶媒以外の組成は、未反応ビフェニルは6.1%、4,4’−ビスクロロメチルビフェニルは37.4%であることがわかった。
【0025】
【発明の効果】
本発明の製法によれば、4,4’−ビスクロロメチルビフェニルを少ない触媒量で、短時間にかつ高収率で製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing 4,4′-bischloromethylbiphenyl, which is a compound useful as a synthetic intermediate for fluorescent brighteners and epoxy resin raw materials.
[0002]
[Prior art]
As a conventional method for producing 4,4′-bischloromethylbiphenyl by chloromethylating biphenyl in the presence of zinc chloride, (1) in the presence of a catalyst system comprising water, zinc chloride and a lower aliphatic carboxylic acid. In which biphenyl is reacted with formaldehyde and hydrogen chloride (Japanese Patent Publication No. 40-3774), (2) a method in which biphenyl is reacted with paraformaldehyde and hydrogen chloride in a cyclohexane solvent (Japanese Patent Publication No. 46-29908), (3) A method of reacting biphenyl with a formaldehyde polymer and thionyl chloride (Japanese Patent Laid-Open No. 3-1888029) is known.
[0003]
However, in the method (1), the amount of zinc chloride and lower fatty acid carboxylic acid used as the catalyst is large, and it is desirable to circulate and use it for industrial implementation. Since the concentration greatly affects the yield, it is necessary to remove water produced by the reaction from the reaction system, and there is a problem that a very complicated operation is required for removing water. In the method (2), the amount of catalyst used is small, but there is a problem in productivity because the reaction time is as long as 24 hours. In the method (3), although it is necessary to use a large amount of expensive thionyl chloride although the reaction time is relatively short, there is a problem in economy including treatment of a by-product sulfur compound.
[0004]
[Problems to be solved by the invention]
In view of the technical background as described above, the present invention provides a method for producing 4,4′-bischloromethylbiphenyl by chloromethylating biphenyl and reducing the amount of 4,4′-bischloromethylbiphenyl with a small catalytic amount. It is an object of the present invention to provide an economical production method that can be produced in a long time and in a high yield and does not produce a sulfur compound as a by-product.
[0005]
[Means for Solving the Problems]
As a result of intensive investigations aimed at improving the problems in the above-mentioned known production methods, the present inventors added a fatty acid anhydride or a fatty acid chloride, and carried out the reaction under normal pressure or under pressure, whereby 4 It was found that 4,4′-bischloromethylbiphenyl can be produced in a high yield and all the above problems can be solved.
That is, an object of the present invention is to add a fatty acid anhydride or a fatty acid chloride when producing 4,4′-bischloromethylbiphenyl by reacting biphenyl with a formaldehyde polymer and hydrogen chloride in the presence of zinc chloride. Thus, this is achieved by a process for producing 4,4′-bischloromethylbiphenyl characterized by carrying out the reaction under normal pressure or under pressure.
[0006]
The subject of the present invention is preferably
1) In producing 4,4′-bischloromethylbiphenyl by reacting biphenyl with formaldehyde polymer and hydrogen chloride in the presence of zinc chloride, fatty acid anhydride or fatty acid chloride is added under normal pressure or pressure. And a process for producing 4,4′-bischloromethylbiphenyl, wherein the fatty acid anhydride is acetic anhydride,
2) The production method according to 1), wherein the fatty acid chloride is acetyl chloride,
3) The production method according to 1), wherein the reaction is carried out under a pressure of 0.5 to 5.0 kg / cm 2 , and a production method combining these is also preferred.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
[0008]
The present invention provides a reaction formula (1) as shown below, for example.
[0009]
[Chemical 1]
Figure 0003845977
[0010]
Can be expressed as
[0011]
Examples of the formaldehyde polymer used in the production method of the present invention include paraformaldehyde, polyoxymethylene, trioxane and the like, and industrially paraformaldehyde (particularly paraformaldehyde having a purity of 75% by weight or more) is preferable.
The amount of formaldehyde polymer used is usually 1.8 to 3.0 times mol, preferably 2.0 to 2.6 times mol for 1 mol of biphenyl.
[0012]
The zinc chloride used in the production method of the present invention preferably has a high purity, and particularly preferably has a purity of 90% by weight or more.
The amount of zinc chloride used is usually 0.3 to 1.0 times mol, preferably 0.5 to 0.8 times mol for 1 mol of biphenyl.
[0013]
The amount of hydrogen chloride used in the production method of the present invention is usually 1.8 to 50 times mol, preferably 2.0 to 30 times mol for 1 mol of biphenyl.
[0014]
Examples of the fatty acid anhydride used in the production method of the present invention include acetic anhydride, succinic anhydride, maleic anhydride and the like, preferably acetic anhydride.
Examples of the fatty acid chloride used in the production method of the present invention include acetyl chloride, propionyl chloride, valeroyl chloride, oxalyl chloride, and the like, and preferably acetyl chloride.
The fatty acid anhydride and fatty acid chloride used in the production method of the present invention can be used alone or in combination. As a usage-amount, it is 0.05-1.5 times mole normally with respect to 1 mol of biphenyl, Preferably it is 0.1-1.0 times mole.
As a method for adding the fatty acid anhydride and the fatty acid chloride in the production method of the present invention, the fatty acid anhydride and the fatty acid chloride may be added together with a compound used for another reaction, or may be dropped at the start of the reaction or during the reaction.
[0015]
The reaction solvent used in the production method of the present invention is not particularly limited as long as it is an inert solvent for the reaction, but for example, an aliphatic hydrocarbon having 5 to 25 carbon atoms such as n-heptane, cyclohexane, petroleum solvent and the like. , Halogen-substituted hydrocarbons such as dichloroethane, chloroform and carbon tetrachloride, lower fatty acids such as acetic acid and propionic acid, and the like, preferably aliphatic hydrocarbons. These reaction solvents can be used alone or in combination.
The amount of the reaction solvent used is usually 0.8 to 5 times by weight, preferably 1.0 to 3.0 times by mole, relative to biphenyl.
[0016]
The process of the present invention is atmospheric pressure or carried out under pressure, in order to increase the reaction rate is preferably to carry out the reaction in 0.1 to 10 / cm 2, at 0.5~5.0Kg / cm 2 It is more preferable to carry out the reaction.
As reaction temperature of the manufacturing method of this invention, it is 20-80 degreeC normally, Preferably it is 30-60 degreeC.
Although the reaction time of the manufacturing method of this invention changes with reaction temperature, the amount of catalysts, the reaction solvent to be used, etc., it is 5 to 12 hours normally, Preferably it is 8 to 11 hours.
[0017]
In the production method of the present invention, a method for obtaining the target compound from the reaction mixture containing 4,4′-bischloromethylbiphenyl thus produced may be separated and purified by ordinary filtration, extraction, recrystallization and the like.
[0018]
【Example】
The present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to these examples. The GC purity in Examples and Comparative Examples is the purity (area%) in gas chromatography analysis.
[0019]
Example 1
In a four-necked flask having an internal volume of 300 ml equipped with a condenser, a thermometer, a gas inlet tube and a stirrer, 46.25 g (0.30 mol) of biphenyl, 21.06 g (0.66 mol) of 94 wt% paraformaldehyde, 24.5 g (0.18 mol) of 98 wt% zinc chloride and 60 g of cyclohexane were added, hydrogen chloride gas was introduced at 80 ml / min while stirring at 50 ° C., and 10 g of acetic anhydride was added with stirring at a dropping funnel. 0.098 mol) was added dropwise over 60 minutes to react. After completion of dropping, hydrogen chloride gas was further introduced for 7 hours to react.
After the reaction, the composition of the obtained reaction solution other than the solvent by GC analysis was found to be 0.1% for unreacted biphenyl and 68.9% for 4,4′-bischloromethylbiphenyl.
After completion of the reaction, the resulting reaction solution was cooled to 15 ° C., 15 ml of water and 60 ml of cyclohexane were added and stirred, and 4,4′-bischloromethylbiphenyl deposited by suction filtration was separated. The obtained 4,4′-bischloromethylbiphenyl was further washed with 120 ml of methanol and then dried under reduced pressure at room temperature for 24 hours to obtain 51.1 g (yield based on biphenyl = 67.9%) of a dried product. . The GC purity of the dried product was 90.4%. When this dried product was recrystallized from cyclohexane, white crystals having a melting point of 136 to 137 ° C. and a GC purity of 99.0% were obtained.
[0020]
Example 2
In a four-necked flask with an internal volume of 300 ml equipped with a condenser, a thermometer, a gas inlet tube and a stirrer, 46.25 g (0.30 mol) of biphenyl, 21.52 g (0.66 mol) of 92 wt% paraformaldehyde, 24.5 g (0.18 mol) of 98% by weight zinc chloride and 60 g of cyclohexane were added. While stirring at 50 ° C., hydrogen chloride gas was introduced at 80 ml / min. 0.196 mol) was added dropwise over 4 hours to react. After completion of dropping, hydrogen chloride gas was further introduced for reaction for 5 hours.
After the reaction, the composition of the obtained reaction solution other than the solvent by GC analysis was found to be 0.1% for unreacted biphenyl and 64.4% for 4,4′-bischloromethylbiphenyl.
After completion of the reaction, the resulting reaction solution was cooled to 15 ° C., 50 ml of water and 60 ml of cyclohexane were added and stirred, and 4,4′-bischloromethylbiphenyl deposited by suction filtration was separated. The obtained 4,4′-bischloromethylbiphenyl was further washed with 120 ml of methanol and then dried under reduced pressure at room temperature for 24 hours to obtain 47.4 g (yield based on biphenyl = 62.9%) of a dried product. . The GC purity of the dried product was 92.2%.
[0021]
Example 3
The reaction was conducted in the same manner as in Example 2 except that the reaction temperature was 40 ° C., 10 g of acetic anhydride was added dropwise over 1 hour, and the hydrogen chloride gas blowing time after the addition was changed to 10 hours.
After completion of the reaction, the composition other than the solvent by GC analysis of the obtained reaction solution was found to be 0% for unreacted biphenyl and 63.7% for 4,4′-bischloromethylbiphenyl.
[0022]
Example 4
The reaction was conducted in the same manner as in Example 2 except that 9.45 g (0.1 mol) of acetyl chloride was used instead of acetic anhydride.
After the reaction, the composition of the obtained reaction solution other than the solvent by GC analysis was found to be 0% for unreacted biphenyl and 62.4% for 4,4′-bischloromethylbiphenyl.
[0023]
Example 5
Into a 300 ml glass autoclave equipped with a thermometer, a gas introduction pipe and a stirrer, 46.25 g (0.30 mol) of biphenyl, 21.52 g (0.66 mol) of 92 wt% paraformaldehyde, 24.5 g (0.18 mol) of 98 wt% zinc chloride and 10 g (0.098 mol) of acetic anhydride and a petroleum solvent (trade name: SHELLSOL D40 Shell) as a solvent were added and stirred at 40 ° C. After introducing hydrogen chloride gas and replacing the inside of the system with hydrogen chloride gas, the gas outlet was closed and the reaction was continued for 11 hours while maintaining the pressure at 2 Kg / cm 2 . After the reaction, the composition of the obtained reaction solution other than the solvent by GC analysis was found to be 0.1% for unreacted biphenyl and 69.2% for 4,4′-bischloromethylbiphenyl.
[0024]
Comparative Example 1
The reaction was conducted in the same manner as in Example 2 except that acetic anhydride was not added and the hydrogen chloride gas blowing time was changed to 10 hours.
The composition other than the solvent by GC analysis of the obtained reaction solution at the end of the reaction was found to be 6.1% for unreacted biphenyl and 37.4% for 4,4'-bischloromethylbiphenyl.
[0025]
【The invention's effect】
According to the production method of the present invention, 4,4′-bischloromethylbiphenyl can be produced in a short time and in a high yield with a small amount of catalyst.

Claims (1)

ビフェニルを塩化亜鉛の存在下にホルムアルデヒド重合物及び塩化水素と反応させて4,4’−ビスクロロメチルビフェニルを製造するに当たり、脂肪酸無水物又は脂肪酸塩化物を添加して、常圧又は加圧下に、反応を行うことを特徴とする4,4’−ビスクロロメチルビフェニルの製造法。In producing 4,4′-bischloromethylbiphenyl by reacting biphenyl with formaldehyde polymer and hydrogen chloride in the presence of zinc chloride, fatty acid anhydride or fatty acid chloride is added, and atmospheric pressure or pressure is applied. A process for producing 4,4′-bischloromethylbiphenyl, characterized by carrying out a reaction.
JP24880097A 1997-09-12 1997-09-12 Method for producing 4,4'-bischloromethylbiphenyl Expired - Lifetime JP3845977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24880097A JP3845977B2 (en) 1997-09-12 1997-09-12 Method for producing 4,4'-bischloromethylbiphenyl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24880097A JP3845977B2 (en) 1997-09-12 1997-09-12 Method for producing 4,4'-bischloromethylbiphenyl

Publications (2)

Publication Number Publication Date
JPH1180047A JPH1180047A (en) 1999-03-23
JP3845977B2 true JP3845977B2 (en) 2006-11-15

Family

ID=17183597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24880097A Expired - Lifetime JP3845977B2 (en) 1997-09-12 1997-09-12 Method for producing 4,4'-bischloromethylbiphenyl

Country Status (1)

Country Link
JP (1) JP3845977B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY153048A (en) * 2008-11-06 2014-12-31 Nippon Kayaku Kk Phenol resin mixture, epoxy resin mixture, epoxy resin composition and cured product
CN101928198B (en) * 2009-06-22 2014-09-03 上海华理生物医药有限公司 Preparation method of high-purity 4,4'-dichloromethyl biphenyl
CN102267870A (en) * 2011-07-18 2011-12-07 扬州市中宝银鹏合成材料有限公司 Production process of 4,4'-bis(chloromethyl)-biphenyl

Also Published As

Publication number Publication date
JPH1180047A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JP3845977B2 (en) Method for producing 4,4'-bischloromethylbiphenyl
JPH11130706A (en) Production of 4,4'-bischloromethylbiphenyl
JP2517304B2 (en) Method for producing bromoacetonitrile
IL168110A (en) Process for production of an acetylenic compound
FR2647110A1 (en) PROCESS FOR THE SYNTHESIS OF ACYL CYANIDES
JP2586950B2 (en) Process for producing p- or m-tert-butoxybenzaldehyde
EP0169375A2 (en) Process for producing 2-tert.-butyl-4,5-dichloro-3(2H)-pyridazinone
KR100296737B1 (en) The Process of Aceclofenac
JPH07330755A (en) Production of piperonal
JP4038024B2 (en) Process for producing 1-chloro-4-arylbutanes
JP2594826B2 (en) Method for producing p- or m-hydroxyphenethyl alcohol
JP2586949B2 (en) Method for producing p- or m-hydroxybenzaldehyde
JPH06116236A (en) Production of bisimide compound
US20030065211A1 (en) Method for producing n-butyryl-4-amino-3-methyl-methyl benzoate and the novel compound n-(4-bromine-2-methylphenyl)-butanamide
JPH10139699A (en) Production of 4,4'-bischloromethylbiphenyl
JP3234838B2 (en) Method for producing 2,4,5-trifluoro-3-hydroxybenzoic acid
JP3884572B2 (en) Process for producing tert-butyl 4'-methyl-2-biphenylcarboxylate
JP2021127332A (en) Method for Producing 5-Bromo-2-alkylbenzoic Acid
JP2000344722A (en) Production of 4-hydroxymethyl-1-aminocyclopent-2-ene derivative
JPH0656736A (en) Bis@(3754/24)2-halogeno-4,5-difluoro)benzophenone and new production method of 2-halogeno-4,5-difluorobenzoic acid through the same compound
JP3938049B2 (en) Method for producing 2-halogenocycloalkanone oxime
JP3757478B2 (en) Process for producing 2,4,5-trifluoro-3-iodobenzoic acid
JPH11322676A (en) Production of 4'-methyl-2-biphenylcarboxylic acid tert-butyl ester
JPS62129242A (en) Production of fluorine-containing alpha,beta-unsaturated carboxylic acid
JP2001039929A (en) Production of chloronitrobenzotrifluoride

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term