JPS62129242A - Production of fluorine-containing alpha,beta-unsaturated carboxylic acid - Google Patents

Production of fluorine-containing alpha,beta-unsaturated carboxylic acid

Info

Publication number
JPS62129242A
JPS62129242A JP26907885A JP26907885A JPS62129242A JP S62129242 A JPS62129242 A JP S62129242A JP 26907885 A JP26907885 A JP 26907885A JP 26907885 A JP26907885 A JP 26907885A JP S62129242 A JPS62129242 A JP S62129242A
Authority
JP
Japan
Prior art keywords
fluorine
carbon dioxide
reaction
zinc
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26907885A
Other languages
Japanese (ja)
Inventor
Mitsuru Takahashi
満 高橋
Hideo Akeyama
朱山 秀雄
Yukihiro Tsutsumi
堤 幸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP26907885A priority Critical patent/JPS62129242A/en
Priority to EP86304021A priority patent/EP0204494B1/en
Priority to DE8686304021T priority patent/DE3673245D1/en
Publication of JPS62129242A publication Critical patent/JPS62129242A/en
Priority to US07/222,302 priority patent/US5004567A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To readily obtain the titled compound in high yield under mild condition, by adjusting the concentration of CO2 in an organic solvent to a specific value, reacting a fluorine-containing halogenoalkene as a raw material in the presence of zinc and hydrolyzing the reaction product with a mineral acid. CONSTITUTION:A fluorine-containing halogenoalkene expressed by formula I (R1-R3 are H, F, alkyl or fluorine-containing alkyl and at least one therereof is F or fluorine-containing alkyl; X is Cl, Br or I), e.g. 3,3,3-trifluoro-2- iodopropene, etc., is reacted in the presence of zinc at 0-150 deg.C by adjusting the concentration of CO2 in an organic solvent to >=0.3mol/l and the reaction product is then hydrolyzed with a mineral acid to afford the aimed compound expressed by formula II, e.g. alpha-trifluoro-methylacrylic acid, etc. EFFECT:The purification process of the aimed compound is simplified and isolating operation is facilitated without requiring recovering operation of the unreacted raw material. USE:A synthetic intermediate for medicines and agricultural chemicals, raw material for polymers, e.g. resists for producing LSI, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は含フッ素α、β−不飽和カルポン酸の製造方法
に関するものである。更に詳しくは含フッ素ハロゲン化
アルケンを原料とする、簡便でかつ効率的な含フッ素α
、β−不飽和カル?ン酸の製造方法を提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a fluorine-containing α,β-unsaturated carboxylic acid. For more details, see simple and efficient fluorine-containing α using fluorine-containing halogenated alkenes as raw materials.
, β-unsaturated Cal? The present invention provides a method for producing phosphoric acid.

含フッ素α、β−不飽和カルボン酸は各種含フッ素化合
物の中間原料として有用な物質であシ、例えば医農薬の
合成中間体、塗料用材料、LSI製造製造用メソストに
用いられる重合体の原料として重要である。
Fluorine-containing α,β-unsaturated carboxylic acids are useful substances as intermediate raw materials for various fluorine-containing compounds, such as synthetic intermediates for pharmaceuticals and agricultural chemicals, materials for coatings, and raw materials for polymers used in LSI manufacturing methods. important as such.

〔従来の技術〕[Conventional technology]

含フッ素ハロゲン化アルケンを出発原料とする含フッ素
α、β−不飽和カルボン酸の従来法としては、 ■ 含フッ素ビニルプロミドと、n−ブチルリチウムあ
るいはマグネシウムとから、含フッ素ビニルリチウムあ
るいはマグネシウムプロミドを調製し、低温下で二酸化
炭素と反応する方法(例えばジャーナルオプオーがニッ
ククミストリ(J、Org、Chem、)33,280
(1967)あるいはケミカルアブストラクト(Che
m、 Aba、 ) 53 。
Conventional methods for producing fluorine-containing α,β-unsaturated carboxylic acids using fluorine-containing halogenated alkenes as starting materials include: ■ producing fluorine-containing vinyllithium or magnesium bromide from fluorine-containing vinyl bromide and n-butyllithium or magnesium; method of preparing and reacting with carbon dioxide at low temperature (e.g. Journal Op. Nick Kmistry (J, Org, Chem,) 33,280
(1967) or Chemical Abstracts (Che
m, Aba, ) 53.

6987g等)。6987g etc.).

■ 含フッ素ビニルハロr<化合物と二酸化炭素を亜鉛
−銅対の存在下(例えば特公昭6〇−6332号公報等
)に、あるいは亜鉛粉末存在下に超音波を照射(例えば
第10回フッ素化学討論会予稿集、1985年、33頁
等)して、反応を行う方法 ■ トリエチルアミン及びパラジウム触媒の存在下に、
2−プロモー3.3.3−トリフルオロプロペンと一酸
化炭素と水とを反応し、α−トリフルオロメチルアクリ
ル酸を合成する方法(例えば特開昭58−154529
号公報等)。
■ Fluorine-containing vinyl halo r< compound and carbon dioxide are irradiated with ultrasonic waves in the presence of a zinc-copper pair (e.g., Japanese Patent Publication No. 6332/1983) or in the presence of zinc powder (e.g., 10th Fluorine Chemistry Discussion) Proceedings, 1985, p. 33, etc.) ■ In the presence of triethylamine and a palladium catalyst,
2-promo 3.3. A method of reacting 3-trifluoropropene, carbon monoxide, and water to synthesize α-trifluoromethylacrylic acid (for example, JP-A-58-154529
Publications, etc.).

等が知られている。etc. are known.

しかしながらこれらの従来方法は工兵的技術として充分
満足できるものとは言い難い。すなわち、n−ブチルリ
チウムあるいはマグネシウムを用いる方法は、それぞれ
−100℃あるいは一40℃という低温で反応を行わな
ければならず、かつ得られる目的物も低収率である。
However, these conventional methods cannot be said to be fully satisfactory as engineering techniques. That is, in the method using n-butyllithium or magnesium, the reaction must be carried out at a low temperature of -100°C or -40°C, respectively, and the yield of the desired product is also low.

亜鉛−銅対を用いる方法では、反応の前段階で亜鉛−銅
対を調製する必要があシ反応操作が複雑となること、ま
た比較的高い収率が得られる場合もあるが、一定の活性
度を有する亜鉛−銅対を得ることが難しく収率に再現性
がない等の問題点がある。さらに亜鉛粉末の存在下に超
音波を照射して行う方法では、超音波発生装置の大皿化
が困難であること、低収率でおることから工業的にみて
効率の良い方法とは言い難い。パラジウム触媒を用いる
方法では、高圧の一酸化炭素(30〜40atm)を必
要とし反応時間が極めて長いことからこれも工業的合成
法としては採用し難い。
In the method using a zinc-copper pair, it is necessary to prepare the zinc-copper pair in the pre-reaction step, which complicates the reaction operation.Although relatively high yields may be obtained, a certain level of activity is required. There are problems such as difficulty in obtaining a zinc-copper pair having a high degree of strength and lack of reproducibility in yield. Furthermore, the method of irradiating ultrasonic waves in the presence of zinc powder cannot be said to be an efficient method from an industrial perspective because it is difficult to use a large-sized ultrasonic generator and the yield is low. The method using a palladium catalyst requires high pressure carbon monoxide (30 to 40 atm) and the reaction time is extremely long, so this method is also difficult to employ as an industrial synthesis method.

すなわち、含フッ素ハロゲン化アルケンを出発原料とす
る含フッ素α、β−不飽和カルがン酸の製造に関する従
来法には (1)反応条件が過酷 (2)収率が低い (3)反応操作が複雑 等の問題点があった。
That is, the conventional method for producing fluorine-containing α,β-unsaturated carboxylic acid using a fluorine-containing halogenated alkene as a starting material requires (1) harsh reaction conditions, (2) low yield, and (3) reaction procedures. However, there were problems such as complexity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは上記の如き状況に鑑み、温和な反応条件下
で簡便にかつ高収率で含フッ素α、β−不飽和カルデン
酸を製造することができる方法について鋭意研究を行っ
た結果、本発明をなすに至ったものである。
In view of the above-mentioned circumstances, the present inventors conducted extensive research on a method that can easily produce fluorine-containing α,β-unsaturated caldicic acid in high yield under mild reaction conditions. This is what led to the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明者は、亜鉛の存在下、含フッ素ハロゲン
化アルケンと二酸化炭素を反応させる方法において、反
応系中の二酸化炭素濃度が目的物の収率に予想以上の大
きな影響を及ぼすことを見出し本発明を完成するに至っ
たのである。
That is, the present inventor discovered that in a method of reacting a fluorine-containing halogenated alkene with carbon dioxide in the presence of zinc, the carbon dioxide concentration in the reaction system has a larger than expected effect on the yield of the target product. This led to the completion of the invention.

本発明者が前記特徴を見出すに至ったのは次のことによ
る。
The inventor of the present invention discovered the above feature based on the following.

すなわち、亜鉛の存在下にベルフロオロアルキルハログ
ン化物と二酸化炭素との反応においては、一般K、if
亜鉛とペルフルオロアルキルハロf7化物から、反応性
中間体が生じ、これが炭酸ガスと反応してペルフルオロ
−カルボン酸の亜鉛塩を生成すると考えられる。この反
応性中間体が反応系中で不安定であると、分解反応等の
副反応との競争反応となる為、目的物であるカルが7酸
の選択率が低下する。従って、反応物の一方である二酸
化炭素濃度を高めることによって原料の転化率をあげる
ことはできないが、目的とするカルボン酸への選択率を
高めることができると考えられる。
That is, in the reaction of a perfluoroalkyl halogonide with carbon dioxide in the presence of zinc, the general K, if
It is believed that the zinc and perfluoroalkyl halo f7ide form a reactive intermediate that reacts with carbon dioxide gas to form the zinc salt of the perfluoro-carboxylic acid. If this reactive intermediate is unstable in the reaction system, it will compete with side reactions such as decomposition reactions, resulting in a decrease in the selectivity of the target Cal-7 acid. Therefore, although it is not possible to increase the conversion rate of the raw material by increasing the concentration of carbon dioxide, which is one of the reactants, it is considered that the selectivity to the target carboxylic acid can be increased.

このため、反応溶媒中の二酸化炭素濃度と収率の関係を
詳細に検討したところ、二酸化炭素の濃度をある値以上
にすれば、ベルフルオロカルデン酸の収率が急激に上昇
するという予想外の現象を見出した。すなわち二酸化炭
素の濃度を0.3モに/II以上とすると、目的とする
ペルフルオロカル?ン酸を高選択率、高収率で得ること
ができ、さらに転化率をも増大することが明らかとなっ
た。こうした二酸化炭素濃度の効果の原因については、
明らかではないが、競争反応の一方の反応に関与する反
応試剤の濃度を上昇させるとい1″う反応速度論的効果
以外に、反応系全体の極性、塩基性度等の物性の変化を
起こし、その結果反応性中間体の安定性が増し、その生
成速度を増大させる効果をももたらした為であると推察
される。
For this reason, a detailed study of the relationship between the carbon dioxide concentration in the reaction solvent and the yield revealed that the yield of perfluorocardic acid sharply increased when the carbon dioxide concentration exceeded a certain value. discovered the phenomenon of In other words, if the concentration of carbon dioxide is set to 0.3 mo/II or more, the target perfluorocar? It has become clear that phosphoric acid can be obtained with high selectivity and yield, and that the conversion rate can also be increased. Regarding the cause of this effect of carbon dioxide concentration,
Although it is not clear, in addition to the kinetic effect of increasing the concentration of the reaction reagents involved in one of the competitive reactions, it also causes changes in the physical properties of the entire reaction system, such as polarity and basicity. This is presumed to be because the stability of the reactive intermediate increased as a result, which also had the effect of increasing its production rate.

この知見をもとに、含フッ素ハロゲン化アルケンに対し
、上記の方法を適用したところ全く同様の効果が発現し
、有機溶媒中の二酸化炭素の濃度を0.3モル/l以上
とすれば、高収率で含フッ素α、β−不飽和カルデン酸
が得られることを見出し、本発明を完成した。
Based on this knowledge, when the above method was applied to fluorine-containing halogenated alkenes, exactly the same effect was obtained, and if the concentration of carbon dioxide in the organic solvent was set to 0.3 mol/l or more, The present invention was completed based on the discovery that fluorine-containing α,β-unsaturated caldicic acid can be obtained in high yield.

すなわち、本発明の特徴は、 一般式; R,(R2)C=C(R,)X     ・
・・(I)(但し、式中R1,R2,R,は水素原子、
フッ素原子、アルキル基、含フッ素アルキル基のいずれ
かで、かつ少なくとも一つはフッ素原子あるいは含フッ
素アルキル基、Xは、塩素原子、臭素原子、ヨウ素原子
のいずれかを示す。)で表わされg含フッ素ハロゲン化
アルケンを、有機溶媒中、亜鉛の存在下、二酸化炭素と
反応させ、次いで反応生成物を加水分解し、 一般式;R1(R2)C=C(R3)CO□H・・・(
II)(但し、式中R1,R2、R,は水素原子、フッ
素原子、アルキル基、含フッ素アルキル基のいずれかで
、かつ少々くとも一つは)、素原子あるいは含フッ素ア
ルキル基を示す。)であられされる含フッ素α、β−不
飽和カル?ン酸を生成する方法において、有機溶媒中の
二酸化炭素の濃度を0,3モル/l以上にして反応を行
うようにしたところにある。
That is, the characteristics of the present invention are as follows: General formula; R, (R2)C=C(R,)X ・
...(I) (However, in the formula, R1, R2, R are hydrogen atoms,
A fluorine atom, an alkyl group, or a fluorine-containing alkyl group, at least one of which is a fluorine atom or a fluorine-containing alkyl group, and X represents any one of a chlorine atom, a bromine atom, and an iodine atom. ) A fluorine-containing halogenated alkene represented by g is reacted with carbon dioxide in the presence of zinc in an organic solvent, and then the reaction product is hydrolyzed to obtain the general formula; R1 (R2) C=C (R3) CO□H...(
II) (However, in the formula, R1, R2, and R are any one of a hydrogen atom, a fluorine atom, an alkyl group, and a fluorine-containing alkyl group, and at least one of them) represents an elementary atom or a fluorine-containing alkyl group. . ) is a fluorine-containing α,β-unsaturated cal? In the method for producing carbonic acid, the reaction is carried out at a concentration of carbon dioxide in an organic solvent of 0.3 mol/l or more.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明の方法で使用される一般式(I)であられされる
含フッ素ノ・ログン化アルケンとしては、種々のものを
用いることができるが、ノ・ログン化アルケンと亜鉛の
反応性から一般式(I)であられされるR1 、 R2
、R5のうちいずれか一つはフッ素原子あるいは含フッ
素アルキル基であることが必要である。
As the fluorine-containing alkene represented by the general formula (I) used in the method of the present invention, various types can be used, but due to the reactivity of the alkene and zinc, the general formula (I) R1, R2
, R5 must be a fluorine atom or a fluorine-containing alkyl group.

このような化合物としては、例えば、F2O−C(F)
X。
Examples of such compounds include F2O-C(F)
X.

F2O−C(H)X 、 H(F)C−C(F)X 1
H(F)C−C(H)X、H2C−C(nX(式中Xは
塩素、臭素、ヨウ素原子のいずれかを示す)であられさ
れる含フッ素ピニルノ・ロダン化合物、あるいはこの化
合物群の水素原子あるいはフッ素原子がアルキル基ある
いは含フッ素アルキル基で置換された、例えば、p2c
mc(u)x、F(R)C−C(F)X 、 H(R)
C−C(F)X 、 F(R)C−C(H)X 。
F2O-C(H)X, H(F)C-C(F)X 1
A fluorine-containing pinirno-rhodan compound represented by H(F)C-C(H)X, H2C-C(nX (in the formula, X represents either chlorine, bromine, or iodine atom), or a group of this compound. Hydrogen atoms or fluorine atoms are substituted with alkyl groups or fluorine-containing alkyl groups, for example, p2c
mc(u)x, F(R)C-C(F)X, H(R)
C-C(F)X, F(R)CC(H)X.

H(F)C−C(R)X 、 p2cmc(ur)x 
、 r(Rf)c−c(r)x 。
H(F)CC(R)X, p2cmc(ur)x
, r(Rf)cc(r)x.

a(Rf)c−c(p)x XF(Rf)c−c(n)
x 、 u(7)c−c(Rf)x 。
a(Rf)cc(p)x XF(Rf)cc(n)
x, u(7)cc(Rf)x.

a2cmc(Rf)x 、 H2C−C(F)X 、 
nf2cmc(p)x 。
a2cmc(Rf)x, H2C-C(F)x,
nf2cmc(p)x.

Rr(R)c−c(p)x 、 Rf2cmc(u)x
 、 Rr(R)c−c(u)x (式中、Rはアルキ
ル基、Rfは含フッ素アルキル基、Xは塩素、臭素、ヨ
ウ素原子のいずれかを示す。)であられされる含フッ素
1−あるいは2−ノ・ロダン化アルケン類、さらには、
F(R)C−C(R)XXRf(F)C−C(Rf)X
Rr(R)cc(p)x, Rf2cmc(u)x
, Rr(R)c-c(u)x (wherein, R is an alkyl group, Rf is a fluorine-containing alkyl group, and X is a chlorine, bromine, or iodine atom). - or 2-no-rhodanated alkenes, and further,
F(R)CC(R)XXRf(F)CC(Rf)X
.

Rf2cmc(Rr)x、 Rr(R)c−c(a)x
XR2cmc(Rf)x。
Rf2cmc(Rr)x, Rr(R)cc(a)x
XR2cmc(Rf)x.

Rf2cmc(R)xXRf(R)c−c(Rf)x、
  R(p)c−c(Rf)x。
Rf2cmc(R)xXRf(R)cc(Rf)x,
R(p)cc(Rf)x.

Rf(r)c−c(R)x、  Rf(a)c−c(R
r)xXRr(a)c−c(a)x。
Rf(r)cc(R)x, Rf(a)cc(R
r)xXRr(a)c-c(a)x.

R(H)C−C(Rf)X (式中、Rはアルキル基、
Rfは含フッ素アルキル基、Xは塩素、臭素、ヨウ素原
子のいずれかを示す。)であられされるR及びRfの多
置換体などが使用可能である。但し、含フッ素ノ・ロダ
ン化アルケンの溶媒に対する溶解性を考慮すればアルキ
ル基又は含フッ素アルキル基の炭素数は20以下である
ことが好ましい。また、含フッ素アルキル基はトリフル
オロメチル基と類似の置換基効果を有するものであれば
使用可能であるが、特に直鎖又は分岐鎖を有するペルフ
ルオロ又はポリフルオロ脂肪族基であることが好ましい
R(H)C-C(Rf)X (wherein, R is an alkyl group,
Rf is a fluorine-containing alkyl group, and X is a chlorine, bromine, or iodine atom. ), polysubstituted forms of R and Rf, etc. can be used. However, in consideration of the solubility of the fluorine-containing rhodanated alkene in a solvent, the number of carbon atoms in the alkyl group or fluorine-containing alkyl group is preferably 20 or less. Further, any fluorine-containing alkyl group can be used as long as it has a substituent effect similar to that of a trifluoromethyl group, but a perfluoro- or polyfluoroaliphatic group having a straight or branched chain is particularly preferred.

本発明において反応に際し、有機溶媒中の二酸化炭素の
濃度は、0.3モル/l以上である事が必要である。二
酸化炭素濃度が、0.3モル/l以下では、本発明の目
的とする高収率が達成できない。
In the present invention, during the reaction, the concentration of carbon dioxide in the organic solvent must be 0.3 mol/l or more. If the carbon dioxide concentration is less than 0.3 mol/l, the high yield targeted by the present invention cannot be achieved.

尚、二酸化炭素濃度の上限は、実際上5モル/lで充分
である。5モル/l以上になると、収率を更に向上させ
る効果が著しく小さくなる。
Incidentally, the upper limit of the carbon dioxide concentration is actually sufficient at 5 mol/l. If it exceeds 5 mol/l, the effect of further improving the yield will be significantly reduced.

通常、有機溶媒中の二酸化炭素濃度は溶媒の毬類、温度
によって変化する。従って溶媒の選択あるいは反応温度
を変える事で上記濃度を得る事ができる。しかしながら
、より容易には、加圧反応装置(オートクレーブなど)
を用いて二酸化炭素圧力を常圧よシ高くする事によって
、溶媒、反応温度によらず、所定の濃度を得る事ができ
る。たとえば、ジメチルスルホキシド(以下DMS O
と記す)では、常圧下、0℃で二酸化炭素濃度は0.1
3モル/lであるが、加圧装置を用いて二酸化炭素圧を
5 kg/m” (絶対圧)とすることによシ、0.6
モル/l (35℃)とすることができる。またジメチ
ルホルムアミド(以下DMFと記す)では、常圧下20
℃で二酸化炭素濃度は0.23モル/lであるのに対し
加圧装置を使用すれば5ki7/ctn2(絶対圧)、
35℃で0.85モル/lとする事ができる。
Usually, the carbon dioxide concentration in an organic solvent changes depending on the type of solvent and temperature. Therefore, the above concentration can be obtained by changing the selection of solvent or reaction temperature. However, more easily pressurized reactors (such as autoclaves)
By increasing the carbon dioxide pressure above normal pressure using , a predetermined concentration can be obtained regardless of the solvent and reaction temperature. For example, dimethyl sulfoxide (DMSO
), the carbon dioxide concentration is 0.1 at 0°C under normal pressure.
3 mol/l, but by adjusting the carbon dioxide pressure to 5 kg/m" (absolute pressure) using a pressurizing device, it can be reduced to 0.6
mol/l (35°C). In addition, dimethylformamide (hereinafter referred to as DMF) has a temperature of 20% under normal pressure.
The carbon dioxide concentration at °C is 0.23 mol/l, but if a pressurizing device is used, the concentration is 5ki7/ctn2 (absolute pressure),
It can be set to 0.85 mol/l at 35°C.

上記反応の方法において、使用される亜鉛は、粉末状の
形態で用いる事ができ、その平均粒径は0.1μm〜1
00μmの範囲にある事が好ましい。
In the above reaction method, the zinc used can be used in the form of powder, the average particle size of which is 0.1 μm to 1 μm.
It is preferable that the thickness is in the range of 00 μm.

粒径が011μm以下では、反応後これを除去する際の
操作が煩雑となり又、100μm以上では反応中使用さ
れる有効面積が減少するためか反応収率が低下してくる
。反応収率、操作の点から平均粒径は1μm〜50μm
である事が特に好ましい。
If the particle size is 0.11 μm or less, the operation for removing it after the reaction becomes complicated, and if it is 100 μm or more, the reaction yield decreases, probably because the effective area used during the reaction decreases. From the viewpoint of reaction yield and operation, the average particle size is 1 μm to 50 μm.
It is particularly preferable that

市販の亜鉛粉末を処理しないままでも充分使用できるが
、予め亜鉛を表面処理することによってその使用量を減
することができる。表面処理方法は、ホーペン−ワイル
((Horben −WeyA ) + 13 (2a
 )。
Commercially available zinc powder can be used satisfactorily without treatment, but the amount used can be reduced by surface-treating the zinc in advance. The surface treatment method is Horben-WeyA + 13 (2a
).

570〜574頁及び815頁)の方法によシ、例えば
、予め酸処理剤(鉱酸あるいは酢酸など)で処理するこ
とによシ、また他の金属(例えば、一般には銅、鉛、カ
ドミウム、水銀等)との金属対を形成させるととによ)
処理し得る。
(pp. 570-574 and p. 815), for example, by pre-treatment with an acid treatment agent (such as mineral acid or acetic acid), or by treating with other metals (such as generally copper, lead, cadmium, to form a metal pair with mercury, etc.)
It can be processed.

亜鉛粉末は、含フッ素ハロゲン化アルケンに対して1〜
5当量の範囲で使用すればよいが、反応を再現性よく行
うために2〜5当量使用する事が好ましい。
Zinc powder has a ratio of 1 to 1 for fluorine-containing halogenated alkene.
It may be used in an amount of 5 equivalents, but it is preferable to use 2 to 5 equivalents in order to perform the reaction with good reproducibility.

本発明の方法で使用される溶媒としては、非プロトン性
極性溶媒が好ましく、これら溶媒の一例としては、DM
F 、 DMSO、N、N−ツメチルアセトアミド、テ
トラメチル尿素、ヘキサメチルホスホルアミド、スルホ
ラン、N−メチルピロリドン。
As the solvent used in the method of the present invention, aprotic polar solvents are preferred, and examples of these solvents include DM
F, DMSO, N,N-trimethylacetamide, tetramethylurea, hexamethylphosphoramide, sulfolane, N-methylpyrrolidone.

ニトロベンゼン、ニトロメタン、アセトニトリル。Nitrobenzene, nitromethane, acetonitrile.

炭酸、プロピレン、テトラヒドロフラン、ジオキサン、
エーテル、ジグライム、トリグライム、ピリジン等があ
る。反応収率の点から、このうちDMF 、 DMSO
、N−メチルピロリドン、 N、N−ツメチルアセトア
ミド、テトラメチル尿素、ヘキサメチルホスホルアミド
が好ましく、更にDMFが好ましい。
carbonic acid, propylene, tetrahydrofuran, dioxane,
These include ether, diglyme, triglyme, and pyridine. From the viewpoint of reaction yield, DMF, DMSO
, N-methylpyrrolidone, N,N-tmethylacetamide, tetramethylurea, and hexamethylphosphoramide are preferred, and DMF is more preferred.

本発明の反応は、広い温度範囲で行い得るが、通常は、
0〜150℃の温度範囲で行うことが望ましい。0℃未
満では、溶媒中の二酸化炭素濃度は高いものの、RfX
の転化率を高くするための反応時間が極めて長くなシ実
用的でない。又150℃よシ高温では、溶媒中の二酸化
炭素濃度を所定の値に保つために高圧が必要である上、
副反応の割合が増加するためカル?ン酸への選択率が著
しく低下してしまう。
The reaction of the present invention can be carried out over a wide temperature range, but typically
It is desirable to carry out at a temperature range of 0 to 150°C. At temperatures below 0°C, although the carbon dioxide concentration in the solvent is high, RfX
The reaction time required to increase the conversion rate is extremely long, which is not practical. Furthermore, at temperatures as high as 150°C, high pressure is required to maintain the carbon dioxide concentration in the solvent at a predetermined value.
Cal because the rate of side reactions increases? The selectivity to phosphoric acid decreases significantly.

反応は、上記した含フッ素ハロゲン化アルケンを有機溶
媒中、亜鉛の懸濁状態で、所定の温度の下、二酸化炭素
と接触させる事によシ行う事ができるが、本発明におい
ては、反応溶媒中の二酸化炭素の濃度が重要であること
から、反応の開始から終了までの間、常に二酸化炭素濃
度は、0.3モル/l以上を維持されていなくてはなら
ない。そのためには、反応によシ二酸化炭素が消費され
ても反応終了時に0.3モル/l以上の濃度が維持され
るよう反応開始時点で、二酸化炭素濃度を高く設定して
行うか、または反応の間消費される量に相当する二酸化
炭素をたえず、溶媒中に供給するかのいずれかの方法を
用いればよい。含フッ素ハロゲン化アルケンは、亜鉛及
び反応溶媒存在下に所定の2匿、所定の二酸化炭素濃度
に設定後、該系中に添加していく方法が望ましい。
The reaction can be carried out by contacting the above-mentioned fluorine-containing halogenated alkene with carbon dioxide at a predetermined temperature in an organic solvent with zinc suspended therein. Since the concentration of carbon dioxide in the reactor is important, the concentration of carbon dioxide must always be maintained at 0.3 mol/l or higher from the start to the end of the reaction. To do this, the carbon dioxide concentration must be set high at the start of the reaction so that the concentration is maintained at 0.3 mol/l or more at the end of the reaction even if the carbon dioxide is consumed during the reaction, or Either method may be used in which carbon dioxide equivalent to the amount consumed during this period is constantly supplied to the solvent. The fluorine-containing halogenated alkene is desirably added to the system after setting a predetermined concentration and carbon dioxide concentration in the presence of zinc and a reaction solvent.

添加する速度は、目的物の収率の点から遅い程よいが、
溶媒1jあ九F) 0.05 mo 1/hr 〜10
 mol/’hrの範囲にある事が望ましい。Q、 0
5 mol/hr未満であると添加時間が長くかかシす
ぎて実用的でない。又、10mol/hrを越えると目
的物の収率の低下が著しくなる。該添加方法を行々う場
合、反応時間は含フッ素ハロゲン化アルケンの添加終了
後、30分から10時間で充分である。但し含フッ素ハ
ロゲン化アルケンが固体であって、かつ反応溶媒への溶
解度が小さいため上記の添加方法がとれない場合には、
二酸化炭素雰囲気下にあらかじめ亜鉛と該ハロゲン化物
を混合した系に溶媒を加えて反応することもできる。該
尭″加方法を用いた場合、反応時間は、溶媒添加が終了
し所定の温度に設定後30分から10時間で充分である
The slower the addition rate, the better from the viewpoint of yield of the target product.
Solvent 1j A9F) 0.05 mo 1/hr ~10
It is desirable that it be in the range of mol/'hr. Q, 0
If it is less than 5 mol/hr, the addition time is too long to be practical. Moreover, if it exceeds 10 mol/hr, the yield of the target product will drop significantly. When carrying out this addition method, a reaction time of 30 minutes to 10 hours after the addition of the fluorine-containing halogenated alkene is completed is sufficient. However, if the fluorine-containing halogenated alkene is a solid and has low solubility in the reaction solvent, the above addition method cannot be used,
The reaction can also be carried out by adding a solvent to a system in which zinc and the halide are mixed in advance in a carbon dioxide atmosphere. When this addition method is used, a sufficient reaction time is 30 minutes to 10 hours after the addition of the solvent is completed and the temperature is set at a predetermined temperature.

以上のようにして含フッ素ハロゲン化アルケンを亜鉛存
在下に二酸化炭素と反応させた後、反応生成物を加水分
解する事によシ目的とする含フッ素α、β−不飽和カル
?ン酸を得る事ができる。加水分解は反応混合物を塩酸
、硫酸、硝酸等の鉱酸と接触させる事によシ容易に進行
する。
After reacting the fluorine-containing halogenated alkene with carbon dioxide in the presence of zinc as described above, the reaction product is hydrolyzed to obtain the desired fluorine-containing α,β-unsaturated alkene. You can obtain phosphoric acid. Hydrolysis easily proceeds by bringing the reaction mixture into contact with a mineral acid such as hydrochloric acid, sulfuric acid, or nitric acid.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、はとんど副生成物を生じる事な
く、含フッ素ハロゲン化アルケンをほぼ定蓋的に目的と
する含フッ素α、β−不飽和カルデン酸に変換する事が
できる。又、その結果未反応原料の回収操作が不要とな
シ、更に目的物の′N製工程も簡便となシ、単離操作が
容易となるなどの効果をもたらす。
According to the method of the present invention, a fluorine-containing halogenated alkene can be almost uniformly converted into the desired fluorine-containing α,β-unsaturated caldic acid without producing any by-products. . Furthermore, as a result, there is no need for an operation for recovering unreacted raw materials, and furthermore, the process for producing the target product is simplified, and the isolation operation is facilitated.

〔実施例〕〔Example〕

以下に実施例及び比較例によシ本発明を更に詳細に説明
するが、本発明はこれらに限定されるものではない。
The present invention will be explained in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited thereto.

実施例に 酸化炭素導入口及び31313− ) +)フルオロ−
2−ヨードプロペンの圧入口を備えつけた200CCの
電磁撹拌型オートクレーブ中に、予め0.5 Nの塩酸
水溶液で洗浄乾燥した19.6gの亜鉛粉末(平均粒径
約15μm)を加え、外部加温によりオートクレーブ内
を35℃とした。定圧装置を介して二酸化炭素圧を6.
0 kg/cm2(絶対圧)とし以後、反応終了までの
間、オートクレーブ内の二酸化炭素圧をこの圧力に保つ
ようにした。次いで1液送ポングを用い撹拌しつつオー
トクレーブ内に80MのDMFを加えた。DMFはオー
トクレーブ内に注入されると二酸化炭素を溶解しはじめ
、最終的に濃度は気相二酸化炭素圧6.o kg/α2
(絶対圧)における飽和溶解濃度(1mol/l)とな
る。次いで、22.2.9 (0,10mol )の3
.3.3− トリフルオロ−2−ヨードプロペンと10
TLlのDMFの混合物を液送ポンプによシオートクレ
ープ内に1時間かけて圧入した。同温度でさらに2時間
撹拌した後、オートクレーブ内の二酸化炭素の圧力を常
圧にもどし、反応を終了させた。
Examples include carbon oxide inlet and 31313-) +) fluoro-
19.6 g of zinc powder (average particle size: approximately 15 μm), which had been previously washed and dried with a 0.5 N hydrochloric acid aqueous solution, was added to a 200 CC electromagnetic stirring autoclave equipped with an injection port for 2-iodopropene, and heated externally. The temperature inside the autoclave was set at 35°C. 6. Carbon dioxide pressure via constant pressure device.
After setting the pressure to 0 kg/cm2 (absolute pressure), the carbon dioxide pressure inside the autoclave was maintained at this pressure until the end of the reaction. Next, 80M DMF was added into the autoclave while stirring using a one-liquid pump. When DMF is injected into the autoclave, it begins to dissolve carbon dioxide, and the final concentration reaches a gas phase carbon dioxide pressure of 6. o kg/α2
(absolute pressure) is the saturated solubility concentration (1 mol/l). Then 3 of 22.2.9 (0.10 mol)
.. 3.3-Trifluoro-2-iodopropene and 10
A mixture of TL1 and DMF was pressurized into the sciautocrape using a liquid feed pump over a period of 1 hour. After stirring for another 2 hours at the same temperature, the pressure of carbon dioxide in the autoclave was returned to normal pressure to terminate the reaction.

反応混合物から、ろ別によシ過剰の亜鉛13gを除去し
た後、次いで溶媒のDMF’の一部を蒸留によシ回収し
、ろ液を濃縮した。次いで該濃縮液を6N−塩酸水溶液
中に注ぎ、反応中間体を加水分解した。次いでジエチル
−エーテルで抽出し、抽出液を乾燥した。エーテルを留
去して、11.5Iのα−トリフルオロ−メチルアクリ
ル酸を得た(収率82チ)。生成物は、標準物質とのG
LC,IR。
After removing 13 g of excess zinc from the reaction mixture by filtration, a portion of the solvent DMF' was recovered by distillation, and the filtrate was concentrated. The concentrated solution was then poured into a 6N aqueous hydrochloric acid solution to hydrolyze the reaction intermediate. It was then extracted with diethyl ether and the extract was dried. The ether was distilled off to obtain 11.5I of α-trifluoro-methylacrylic acid (yield: 82I). The product is a G
L.C., I.R.

NMR等のスペクトルデータの比較により同定した、実
施例2〜4 二酸化炭素圧及び反応温度を表1に示すように設定し、
DMF′中の二酸化炭素濃度をかえた以外は、全て実施
例1と同様に行った。これらの結果を表1に示す。
Examples 2 to 4 identified by comparison of spectral data such as NMR Carbon dioxide pressure and reaction temperature were set as shown in Table 1,
Everything was carried out in the same manner as in Example 1, except that the carbon dioxide concentration in DMF' was changed. These results are shown in Table 1.

表1 実施例5〜7 DMFのかわりに弐2に示す溶媒を用いた他は、全て、
実施例1と同様にして行った結果を表2に示す。
Table 1 Examples 5 to 7 All except using the solvent shown in 2.2 instead of DMF.
Table 2 shows the results obtained in the same manner as in Example 1.

表2 実施例8 3.3.3− ) IJフルオロ−2−ヨードゾロペン
ツ化わりに3.3.3− )リフルオロ−2−ブロモゾ
ロペア (CF3BrC−CH2) 1フッ59 (0
,10net )を用いる他は全て実施例1と同様にし
て行いα−トリフルオロメチルアクリル酸8.4g(収
率60%)を得た。
Table 2 Example 8 3.3.3- ) Refluoro-2-bromozolopair (CF3BrC-CH2) 1F59 (0
, 10net) was carried out in the same manner as in Example 1 to obtain 8.4 g (yield: 60%) of α-trifluoromethylacrylic acid.

実施例9 市販品そのままの亜鉛23.0g(平均粒径15μm)
を使用する他は実施例1と同様な操作により行った結果
、α−トリフルオロメチルアクリル酸を80q6の収率
で得た。
Example 9 23.0 g of commercially available zinc (average particle size 15 μm)
As a result of carrying out the same operation as in Example 1 except that α-trifluoromethylacrylic acid was used, α-trifluoromethylacrylic acid was obtained in a yield of 80q6.

実施例10 5011L1!のDMFと10−の酢酸の混合溶液に、
0.6jiの酢酸鋼を加え40〜50℃に加熱し、これ
に19.6.9の市販品亜鉛粉末に加え、30分間撹拌
した。冷却後25mJのDMFで4回洗浄し亜鉛−銅対
を得た。実施例1に記される亜鉛粉末の代わシに、この
亜鉛−銅対を使用する以外は、実施例1と同様な操作に
よシ反応を行った結果、α−トリフルオロメチルアクリ
ル酸を80%の収率で得た。
Example 10 5011L1! In a mixed solution of DMF and 10-acetic acid,
0.6ji of acetic acid steel was added and heated to 40-50°C, and commercially available zinc powder of 19.6.9 was added thereto and stirred for 30 minutes. After cooling, it was washed four times with 25 mJ of DMF to obtain a zinc-copper pair. A reaction was carried out in the same manner as in Example 1 except that this zinc-copper pair was used in place of the zinc powder described in Example 1. As a result, α-trifluoromethylacrylic acid was % yield.

実施例11〜14 3.3+3− ) yフルオロ−2−ヨードプロペンの
代わシに、各9.10mo1の3.3.4.4,5,5
.6,6.6−ノナフルオロ−2−ヨードヘキセン、1
,2.2− )リフルオロ−1−ヨードエテン、1.2
−ジフルオロ−1−ヨード−3−メチルペンテンあるい
は2゜3.3,4,4,5,5,6,6,7,7,8,
8,9,9.9−へキサデカフルオロ−1−ヨード−ノ
ネンを用いる他は全て実施例1と同様にして行い、対広
するα、β−不飽和カルボン酸を得た。生成物はIR,
及びNMR等により同定した。結果を表3に示す。
Examples 11-14 3.3+3-) 9.10 mol each of 3.3, 4.4, 5, 5 instead of y-fluoro-2-iodopropene
.. 6,6.6-nonafluoro-2-iodohexene, 1
, 2.2-) refluoro-1-iodoethene, 1.2
-difluoro-1-iodo-3-methylpentene or 2°3.3,4,4,5,5,6,6,7,7,8,
The procedure was carried out in the same manner as in Example 1 except that 8,9,9.9-hexadecafluoro-1-iodo-nonene was used to obtain a widely distributed α,β-unsaturated carboxylic acid. The product is IR,
It was identified by NMR etc. The results are shown in Table 3.

宍3 比校例に 酸化炭素導入管9摘下ロート、還流冷却器(ドライアイ
ス−アセトン)及びかきまぜ機を備えつけた300−の
40フラスコに、予め0.5N塩酸水溶液で洗浄、乾燥
した19.6gの亜鉛粉末(平均粒径約15μm)及び
80mA’のDMFを加え、常圧下に、二酸化炭素を4
5 ml / minで30分間通気した (温度25
℃で、DMF′中の二酸化炭素濃度的0.2モル/l)
。次いで1.二酸化炭素を同じ流量で通気しながら、滴
下ロートより22.2 gの2〜ヨー)’−3,3,3
−トリフルオロゾロペンと10罰のDMF’との混合物
を1時間かけて滴下した。
19. In a 300-40 flask equipped with a carbon oxide inlet tube, 9 funnels, a reflux condenser (dry ice-acetone), and a stirrer, the 19. Add 6 g of zinc powder (average particle size about 15 μm) and 80 mA' of DMF, and add 4 g of carbon dioxide under normal pressure.
Aerated at 5 ml/min for 30 minutes (temperature 25
0.2 mol/l of carbon dioxide in DMF')
. Then 1. While aerating carbon dioxide at the same flow rate, 22.2 g of 2~yaw)'-3,3,3 was added through the dropping funnel.
- A mixture of trifluorozolopene and 10% DMF' was added dropwise over a period of 1 hour.

同温度でさらに4時間撹拌後反応混合物から過剰の亜鉛
を除去した後、実施例1に記した方法と同様にして、5
.6.!i2のα−トリフルオロメチルアクリル酸(収
率40%)を得た。
After stirring for an additional 4 hours at the same temperature and removing excess zinc from the reaction mixture, 5
.. 6. ! i2 α-trifluoromethylacrylic acid (yield 40%) was obtained.

比較例2 二酸化炭素でオートクレーブ内の圧力を6kVrrL2
とするかわシに、二酸化炭素と窒素の混合ガス(二酸化
炭素15.7vo1%)で6 kg7cm”とした他は
全て実施例1と同様に行った。DMF中の二酸化炭素の
濃度は0.16 molAであった。α−トリフルオロ
メチルアクリル酸の収率は42q6であった。
Comparative Example 2 Increase the pressure inside the autoclave to 6kVrrL2 with carbon dioxide
The process was carried out in the same manner as in Example 1, except that a mixed gas of carbon dioxide and nitrogen (carbon dioxide 15.7 vol. mol A. The yield of α-trifluoromethylacrylic acid was 42q6.

Claims (5)

【特許請求の範囲】[Claims] (1)一般式;R_1(R_2)C=C(R_3)X(
但し、式中R_1、R_2、R_3は水素原子、フッ素
原子、アルキル基、含フッ素アルキル基のいずれかで、
かつ少なくとも一つはフッ素原子あるいは含フッ素アル
キル基、Xは塩素原子、臭素原子、ヨウ素原子のいずれ
かを示す。)で表わされる含フッ素ハロゲン化アルケン
を、有機溶媒中、亜鉛の存在下二酸化炭素と反応させ、
次いで反応生成物を加水分解し、一般式;R_1(R_
2)C=C(R_3)CO_2Hで表わされる含フッ素
α,β−不飽和カルボン酸を生成する方法において、有
機溶媒中の二酸化炭素の濃度を0.3モル/l以上にし
て反応を行うことを特徴とする含フッ素α,β−不飽和
カルボン酸の製造方法
(1) General formula; R_1(R_2)C=C(R_3)X(
However, in the formula, R_1, R_2, and R_3 are any one of a hydrogen atom, a fluorine atom, an alkyl group, and a fluorine-containing alkyl group,
and at least one is a fluorine atom or a fluorine-containing alkyl group, and X is a chlorine atom, a bromine atom, or an iodine atom. ) is reacted with carbon dioxide in the presence of zinc in an organic solvent,
The reaction product is then hydrolyzed to give the general formula; R_1(R_
2) In the method of producing a fluorine-containing α,β-unsaturated carboxylic acid represented by C=C(R_3)CO_2H, the reaction is carried out at a concentration of carbon dioxide in the organic solvent of 0.3 mol/l or more. A method for producing a fluorine-containing α,β-unsaturated carboxylic acid characterized by
(2)含フッ素アルキル基が、炭素数1〜20の直鎖又
は分岐鎖を有するペルフルオロ又はポリフルオロ脂肪族
基である特許請求の範囲第(1)項記載の方法
(2) The method according to claim (1), wherein the fluorine-containing alkyl group is a linear or branched perfluoro or polyfluoroaliphatic group having 1 to 20 carbon atoms.
(3)有機溶媒中の二酸化炭素の濃度が0.3〜5モル
/lの範囲である特許請求の範囲第(1)項又は第(2
)項に記載の方法
(3) Claim (1) or (2) wherein the concentration of carbon dioxide in the organic solvent is in the range of 0.3 to 5 mol/l.
) method described in section
(4)あらかじめ活性化処理した、又は処理していない
該亜鉛を、含フッ素ハロゲン化アルケンに対して1〜5
当量使用する特許請求の範囲第(1)項ないし第(3)
項のいずれかに記載の方法
(4) Preliminarily activated or untreated zinc is added to the fluorine-containing halogenated alkene to
Claims (1) to (3) using equivalent amounts
The method described in any of the sections
(5)該反応を0〜150℃の温度範囲で行う特許請求
の範囲第(1)項ないし第(4)項のいずれかに記載の
方法
(5) The method according to any one of claims (1) to (4), in which the reaction is carried out at a temperature range of 0 to 150°C.
JP26907885A 1985-05-27 1985-11-29 Production of fluorine-containing alpha,beta-unsaturated carboxylic acid Pending JPS62129242A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26907885A JPS62129242A (en) 1985-11-29 1985-11-29 Production of fluorine-containing alpha,beta-unsaturated carboxylic acid
EP86304021A EP0204494B1 (en) 1985-05-27 1986-05-27 Process for producing fluorine-containing aliphatic carboxylic acids
DE8686304021T DE3673245D1 (en) 1985-05-27 1986-05-27 METHOD FOR THE PRODUCTION OF FLUORINE-CONTAINING ALIPHATIC CARBONIC ACIDS.
US07/222,302 US5004567A (en) 1985-05-27 1988-07-22 Process for producing fluorine-containing aliphatic carboxylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26907885A JPS62129242A (en) 1985-11-29 1985-11-29 Production of fluorine-containing alpha,beta-unsaturated carboxylic acid

Publications (1)

Publication Number Publication Date
JPS62129242A true JPS62129242A (en) 1987-06-11

Family

ID=17467356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26907885A Pending JPS62129242A (en) 1985-05-27 1985-11-29 Production of fluorine-containing alpha,beta-unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JPS62129242A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973681A (en) * 1988-10-05 1990-11-27 Showa Sangyo Co., Ltd. Process for stabilizing polyol fatty acid polyesters
JP2001288138A (en) * 2000-04-04 2001-10-16 Kanto Denka Kogyo Co Ltd METHOD FOR PRODUCING FLUORINE-CONTAINING alpha,beta-UNSATURATED CARBOXYLIC ACID

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271245A (en) * 1985-05-27 1986-12-01 Toyo Soda Mfg Co Ltd Production of fluoro aliphatic carboxylic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271245A (en) * 1985-05-27 1986-12-01 Toyo Soda Mfg Co Ltd Production of fluoro aliphatic carboxylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973681A (en) * 1988-10-05 1990-11-27 Showa Sangyo Co., Ltd. Process for stabilizing polyol fatty acid polyesters
JP2001288138A (en) * 2000-04-04 2001-10-16 Kanto Denka Kogyo Co Ltd METHOD FOR PRODUCING FLUORINE-CONTAINING alpha,beta-UNSATURATED CARBOXYLIC ACID

Similar Documents

Publication Publication Date Title
US3711549A (en) Process for manufacturing cyclopropylamine
JPH11508251A (en) Synthesis of N-acyl-N-alkyl carboxylate
EP0252766B1 (en) A method for preparing fluorine containing alpha,beta-unsaturated carboxylic acids
CN108530301B (en) Synthetic method of 2,4, 6-trifluorobenzylamine
JPS62129242A (en) Production of fluorine-containing alpha,beta-unsaturated carboxylic acid
EP0204494B1 (en) Process for producing fluorine-containing aliphatic carboxylic acids
JPS6121455B2 (en)
WO1999054281A1 (en) Process for producing dimethylacetamide
JP3845977B2 (en) Method for producing 4,4&#39;-bischloromethylbiphenyl
KR100296737B1 (en) The Process of Aceclofenac
HU199122B (en) Process for producing trifluormethyl pyridine derivatives
JPH04164057A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
JPS62153241A (en) Production of aliphatic fluorinated dicarboxylic acid
US6452046B2 (en) Process for producing 2,3,5,6-tetrachloro-1,4-benzenedicarboxylic acid
JPH1072419A (en) Production of tertiary-leucine
US4391991A (en) Process for the preparation of para-fluoroaniline
JPH0635419B2 (en) Method for producing fluoroaliphatic carboxylic acid
KR0127251B1 (en) Process for preparing of 4,4&#39;-bischloro-methylbiphenyl
JPH04112862A (en) Production of 3-cyano-3,5,5-trimethylcyclohexanone
JP3998076B2 (en) Demethylation of podophyllotoxin
JPH07247246A (en) 1-phenyl-3-butyne derivative and its production
JPS5829735A (en) Preparation of enzaldehydes
JPH01261360A (en) Production of perchloromethyl mercatpan
JPS6317869A (en) Production of 2-lower alkyl-4-amino-5-formylpyrimidine
JPS6212741A (en) Production of 2-perfluoroalkylacrylic acid