JPH05331158A - Production of n-benzyloxycarbonyl-l-aspartic acid anhydride - Google Patents
Production of n-benzyloxycarbonyl-l-aspartic acid anhydrideInfo
- Publication number
- JPH05331158A JPH05331158A JP4134000A JP13400092A JPH05331158A JP H05331158 A JPH05331158 A JP H05331158A JP 4134000 A JP4134000 A JP 4134000A JP 13400092 A JP13400092 A JP 13400092A JP H05331158 A JPH05331158 A JP H05331158A
- Authority
- JP
- Japan
- Prior art keywords
- anhydride
- zasp
- reaction
- benzyloxycarbonyl
- aspartic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、N−ベンジルオキシカ
ルボニル−L−アスパラギン酸からその無水物であるN
−ベンジルオキシカルボニル−L−アスパラギン酸無水
物を製造する方法に関する。The present invention relates to N-benzyloxycarbonyl-L-aspartic acid which is an anhydride of N-benzyloxycarbonyl-L-aspartic acid.
-A method for producing benzyloxycarbonyl-L-aspartic anhydride.
【0002】[0002]
【従来の技術】本発明の目的化合物N−ベンジルオキシ
カルボニル−L−アスパラギン酸無水物(以下ZASP
無水物と略す。)は、ペプチド合成時の中間体として重
要な化合物である。とりわけ近年その高い甘味度並びに
良質な甘味特性からその需要が著しく伸長しているα−
L−アスパルチル−L−フェニルアラニンメチルエステ
ル(アスパルテーム)製造時の中間体として重要な化合
物である。The object compound of the present invention N-benzyloxycarbonyl-L-aspartic acid anhydride (hereinafter referred to as ZASP)
Abbreviated as anhydrous. ) Is an important compound as an intermediate during peptide synthesis. Particularly, in recent years, the demand for α- has been remarkably increased due to its high degree of sweetness and high-quality sweetness characteristics.
It is an important compound as an intermediate in the production of L-aspartyl-L-phenylalanine methyl ester (aspartame).
【0003】このα−L−アスパルチル−L−フェニル
アラニンメチルエステルを製造する方法としてこれまで
に種々の方法が開示されている。一般的には、N−保護
アスパラギン酸無水物とL−フェニルアラニンメチルエ
ステルとを反応させてN−保護α−L−アスパルチル−
L−フェニルアラニンメチルエステルを製造し、続いて
N−保護基を脱離する方法が工業的な製造法として適し
ている。しかし、α−L−アスパルチル−L−フェニル
アラニンメチルエステルが熱並びに酸、アルカリに不安
定な化合物であることから、N−保護α−L−アスパル
チル−L−フェニルアラニンメチルエステルのN−保護
基の脱離工程には自ずから制約があり、中性且つ温和な
条件下で行えるものが望ましい。その意味から、水添反
応にて脱離することができるベンジルオキシカルボニル
基が工業的に適したN−保護基であり、この保護基を用
いたα−L−アスパルチル−L−フェニルアラニンメチ
ルエステルの改良製造法が種々提案されてきている。Various methods have been disclosed so far for producing the α-L-aspartyl-L-phenylalanine methyl ester. Generally, N-protected aspartic anhydride and L-phenylalanine methyl ester are reacted to form N-protected α-L-aspartyl-
The method of producing L-phenylalanine methyl ester and subsequently removing the N-protecting group is suitable as an industrial production method. However, since α-L-aspartyl-L-phenylalanine methyl ester is a compound that is unstable to heat, acid, and alkali, the N-protecting group of N-protected α-L-aspartyl-L-phenylalanine methyl ester is removed. The separation step is naturally limited, and it is desirable that the separation step can be performed under neutral and mild conditions. In that sense, a benzyloxycarbonyl group that can be eliminated by a hydrogenation reaction is an industrially suitable N-protecting group, and α-L-aspartyl-L-phenylalanine methyl ester using this protecting group Various improved manufacturing methods have been proposed.
【0004】従来ZASP無水物は、N−ベンジルオキ
シカルボニル−L−アスパラギン酸(以下ZASPと略
す。)を溶媒中或いは無溶媒で無水酢酸を作用させるこ
とにより製造する方法が知られている。古くは大過剰の
無水酢酸と加熱反応させて無水物化した後、過剰の無水
酢酸を留去させ、石油エーテル等の溶媒を添加し、ZA
SP無水物を結晶として単離して次工程に使用してい
た。しかし、この様な方法では操作が煩雑化し、更に単
離する際に母液へのロス等を生じることから、必ずしも
工業的な製造法とは言い難い。工業的にはZASP無水
物を単離することなく、反応液をそのままL−フェニル
アラニンメチルエステルと反応させることが望ましい。
しかし、ZASPを無水物化した後に、あまりに多量の
無水酢酸が残存すると、次のL−フェニルアラニンメチ
ルエステルとの反応収率が低下するために好ましくな
い。この方法では、無水物化剤として使用する無水酢酸
を無水物化後の反応液中に殆ど残存させない工夫が必要
であり、その為にはできるだけ理論量の無水酢酸を使用
して、且つ高収率でZASP無水物を製造する必要があ
る。Conventionally, there is known a method for producing ZASP anhydride by reacting N-benzyloxycarbonyl-L-aspartic acid (hereinafter abbreviated as ZASP) with acetic anhydride in a solvent or without solvent. In the old days, it was heated to react with a large excess of acetic anhydride to form an anhydride, and then the excess acetic anhydride was distilled off, and a solvent such as petroleum ether was added, and ZA was added.
The SP anhydride was isolated as crystals and used in the next step. However, such a method complicates the operation and further causes a loss to the mother liquor during isolation, so that it is not necessarily an industrial production method. Industrially, it is desirable to directly react the reaction solution with L-phenylalanine methyl ester without isolating ZASP anhydride.
However, if a large amount of acetic anhydride remains after the ZASP is anhydridized, the reaction yield with the subsequent L-phenylalanine methyl ester will decrease, which is not preferable. In this method, it is necessary to devise a method in which acetic anhydride used as an anhydride-forming agent is hardly left in the reaction solution after the anhydride, and for that purpose, the theoretical amount of acetic anhydride is used as much as possible, and the yield is high. It is necessary to produce ZASP anhydride.
【0005】ZASPと理論量程度の無水酢酸を作用さ
せてZASP無水物を製造する方法は、例えば酢酸中均
一系にてこの無水物化反応を行っても、反応完結までに
は長い反応時間を必要とする。一方、反応時間を短縮す
るために反応温度を高くすると、ZASP及びZASP
無水物が分解し、結果的に反応収率の低下を招くために
好ましくない。The method for producing ZASP anhydride by reacting ZASP with a theoretical amount of acetic anhydride requires a long reaction time until the reaction is completed even if this anhydride reaction is carried out in a homogeneous system in acetic acid. And On the other hand, if the reaction temperature is increased to shorten the reaction time, ZASP and ZASP
It is not preferable because the anhydride decomposes, resulting in a decrease in reaction yield.
【0006】また、ZASPの無水物化反応の反応速度
を高め、且つ高収率にてZASP無水物を製造する方法
としてこれまでに幾つかの触媒が提案されている。一つ
は特開昭58−167578に見られるように解離定数
5×10-2以上の酸触媒の存在下で行う方法、更にもう
一つは特開昭58−167577に見られる金属の酸化
物・水酸化物・塩もしくは有機塩基触媒の存在下で行う
方法である。事実、これらの先行技術に記載されている
触媒は、この無水物化反応の触媒として効果が認められ
る。Several catalysts have been proposed so far as a method for increasing the reaction rate of ZASP anhydride reaction and producing ZASP anhydride in a high yield. One is a method which is carried out in the presence of an acid catalyst having a dissociation constant of 5 × 10 -2 or more as seen in JP-A-58-167578, and the other is a metal oxide disclosed in JP-A-58-167577. -This method is carried out in the presence of a hydroxide / salt or an organic base catalyst. In fact, the catalysts described in these prior art are found to be effective as catalysts for this dehydration reaction.
【0007】[0007]
【課題を解決するための手段】本発明者は、これら従来
公知の技術以外に工業的に更に有用なZASP無水物の
製造法を見出す必要があると考え、ZASPと無水酢酸
とからZASP無水物を製造する方法において、更に生
産性の向上をはかり、且つ目的のZASP無水物を短時
間で高収率且つ高品質で製造する方法について鋭意検討
した。The present inventor believes that it is necessary to find an industrially more useful process for producing ZASP anhydride in addition to these conventionally known techniques, and ZASP and acetic anhydride are used to produce ZASP anhydride. In the method for producing (1), the inventors have earnestly studied a method for further improving the productivity and producing the desired ZASP anhydride in a high yield and high quality in a short time.
【0008】その結果、ZASPを無水酢酸で無水物化
する際、当該目的に適した新規な触媒として金属錯体を
見出し、実質的に理論量ないしはその近傍量の無水酢酸
で短時間に高収率でZASP無水物を製造できることを
見出すと同時に、そのZASP無水物を単離すること無
くL−フェニルアラニンメチルエステルと反応させ、得
られるN−ベンジルオキシルボニル−α−L−アスパル
チル−L−フェニルアラニンメチルエステルの収率、品
質に何ら問題ないことを見出し、本発明を完成するに至
った。[0008] As a result, when ZASP is anhydrateized with acetic anhydride, a metal complex was found as a novel catalyst suitable for the purpose, and a theoretical amount or a near amount thereof was used in a short time with a high yield. It was found that ZASP anhydride can be produced, and at the same time, the ZASP anhydride is reacted with L-phenylalanine methyl ester without isolation to give N-benzyloxylvonyl-α-L-aspartyl-L-phenylalanine methyl ester. They have found that there are no problems in yield and quality, and have completed the present invention.
【0009】即ち、本発明は、ZASPと無水酢酸とか
らZASP無水物を製造する方法において、ZASPと
無水酢酸を各種金属錯体の存在下で反応させることを特
徴とするZASP無水物の製造法である。That is, the present invention is a method for producing ZASP anhydride from ZASP and acetic anhydride, which comprises reacting ZASP and acetic anhydride in the presence of various metal complexes. is there.
【0010】本発明の方法は、ZASPと無水酢酸とか
らZASP無水物を製造する方法において、実質的に理
論量ないしはその近傍量の無水酢酸を用いて短時間に高
収率のZASP無水物を製造することを目的とするZA
SP無水物の製造法である。The method of the present invention is a method for producing ZASP anhydride from ZASP and acetic anhydride, and a high yield of ZASP anhydride is obtained in a short time by using acetic anhydride in a substantially theoretical amount or in the vicinity thereof. ZA for the purpose of manufacturing
This is a method for producing SP anhydrous.
【0011】本発明は、通常は有機溶媒中で実施され
る。使用される溶媒は、原料及び生成物に不活性なもの
であれば特に制約はない。具体的には、アセトン、メチ
ルエチルケトン等のケトン類、ジエチルエーテル、テト
ラヒドロフラン、ジオキサン等のエーテル類、アセトニ
トリル等のニトリル類、酢酸エチル、プロピオン酸メチ
ル等のエステル類、ギ酸、酢酸、プロピオン酸等のカル
ボン酸類、クロロホルム、ジクロロメタン、エチレンジ
クロリド等のハロゲン化炭化水素類、トルエン、キシレ
ン、ヘキサン、シクロヘキサン等の炭化水素類、ジメチ
ルホルムアミド等のアミド類、ジメチルスルホキシド、
γ−ブチロラクトン、ニトロメタンなどを挙げることが
できる。これらの溶媒は、通常単独で使用されるが、2
種以上の溶媒を併用することも何ら問題ない。The present invention is usually practiced in organic solvents. The solvent used is not particularly limited as long as it is inert to the raw materials and products. Specifically, acetone, ketones such as methyl ethyl ketone, ethers such as diethyl ether, tetrahydrofuran, dioxane, nitriles such as acetonitrile, esters such as ethyl acetate and methyl propionate, carboxylic acids such as formic acid, acetic acid and propionic acid. Acids, halogenated hydrocarbons such as chloroform, dichloromethane and ethylene dichloride, hydrocarbons such as toluene, xylene, hexane and cyclohexane, amides such as dimethylformamide, dimethyl sulfoxide,
Examples include γ-butyrolactone and nitromethane. These solvents are usually used alone, but
There is no problem in using more than one solvent together.
【0012】本発明においてはZASPに無水酢酸を作
用させてZASP無水物を製造するに際して、触媒量の
金属錯体が使用される。使用される金属錯体を具体的に
例示すれば、マグネシウム、カルシウム等の周期表1A
族元素、スカンジウム等の3B族元素、チタン、ジルコ
ニウム等の4B族元素、バナジウム等の5B族元素、ク
ロム、モリブデン等の6B元素、マンガン等の7B族元
素、鉄、コバルト、ニッケル等の8B族元素、銅等の1
B族元素、亜鉛等の2B族元素、アルミニウム等の3A
族元素、ケイ素、スズ等の4A族元素等各種金属の錯体
である。また、これら錯体の配位子としてアセチルアセ
トン、アセト酢酸低級アルキルエステル、ベンゾイルト
リフロロアセトン、ジピバロイルメタン、フロイルトリ
フロロアセトン、ヘキサフロロ及びトリフロロアセチル
アセトン、3−フェニルアセチルアセトン等の1,3−
ジカルボニル化合物、或いはグリシン、アラニン、バリ
ン、ロイシン、セリン、フェニルアラニン等のα−アミ
ノ酸が有効である。In the present invention, a catalytic amount of a metal complex is used in the production of ZASP anhydride by reacting ZASP with acetic anhydride. Specific examples of the metal complexes used include magnesium, calcium, etc. in the periodic table 1A.
Group elements, 3B group elements such as scandium, 4B group elements such as titanium and zirconium, 5B group elements such as vanadium, 6B elements such as chromium and molybdenum, 7B group elements such as manganese, 8B group such as iron, cobalt and nickel Element, 1 such as copper
Group B elements, 2B group elements such as zinc, 3A such as aluminum
It is a complex of various metals such as group 4 elements, 4A group elements such as silicon and tin. Further, as ligands for these complexes, 1,3-acetylacetone, lower acetoacetic acid lower alkyl ester, benzoyltrifluoroacetone, dipivaloylmethane, furoyltrifluoroacetone, hexafluoro and trifluoroacetylacetone, 3-phenylacetylacetone, etc.
Dicarbonyl compounds or α-amino acids such as glycine, alanine, valine, leucine, serine and phenylalanine are effective.
【0013】金属錯体の使用量は通常触媒量でよいが、
極端に少なすぎるとその触媒効果は小さくなり、また多
すぎても経済的に好ましくない。通常はZASPに対し
て0.001〜10モル%、好ましくは0.005〜5
モル%の範囲で使用される。本発明を工業的に実施する
場合に存在させるこれらの化合物の適量は、当業者であ
れば事前の予備実験により容易に見出すことができる。
又、その添加方法は一般的には無水物化反応の開始時に
添加するが、実際には反応中に反応系内に金属錯体が存
在するような形をとれば問題はない。The amount of the metal complex used is usually a catalytic amount,
If it is too small, the catalytic effect will be small, and if it is too large, it is not economically preferable. Usually from 0.001 to 10 mol% with respect to ZASP, preferably from 0.005 to 5
Used in the mol% range. Appropriate amounts of these compounds to be present when the present invention is industrially carried out can be easily found by those skilled in the art by preliminary preliminary experiments.
In addition, the addition method is generally added at the start of the anhydride reaction, but in practice, there is no problem if the metal complex is present in the reaction system during the reaction.
【0014】本発明の方法において、無水酢酸の使用量
は、ZASPに対して0.9〜1.1モル比であり、好
ましくは0.95〜1.05モル比の範囲で使用され
る。無水酢酸をZASPに対して著しく過剰に用いても
ZASPの無水物化反応に限っては特に問題ないが、こ
の反応液をそのままL−フェニルアラニンメチルエステ
ルとの反応に用いる関係上、過剰の無水酢酸の存在はN
−ベンジルオキシカルボニル−α−L−アスパルチル−
L−フェニルアラニンメチルエステルの収率低下を招き
好ましくない。In the method of the present invention, the amount of acetic anhydride used is in the range of 0.9 to 1.1 mol ratio, preferably 0.95 to 1.05 mol ratio, based on ZASP. Even if acetic anhydride is used in a remarkably excessive amount relative to ZASP, there is no particular problem only in the ZASP anhydride reaction. However, since this reaction solution is directly used in the reaction with L-phenylalanine methyl ester, excess acetic anhydride is used. Existence is N
-Benzyloxycarbonyl-α-L-aspartyl-
This is not preferable because it causes a decrease in the yield of L-phenylalanine methyl ester.
【0015】本発明の方法において具体的な実施方法を
示せば、例えばZASPを溶解又は懸濁させた有機溶媒
液中に金属錯体を所定量加え、更に所定量の無水酢酸を
装入して反応させる方法を挙げることができる。しか
し、原料の装入順序はこれに限定されるものでなく、い
かなる順序でも良い。The method of the present invention will be described in detail. For example, a predetermined amount of a metal complex is added to an organic solvent solution in which ZASP is dissolved or suspended, and then a predetermined amount of acetic anhydride is charged to carry out the reaction. The method of making it possible can be mentioned. However, the order of charging the raw materials is not limited to this, and any order may be used.
【0016】反応温度は、余りに低すぎると反応速度が
遅く、高すぎると反応速度は著しく高まるものの、ZA
SP並びにZASP無水物の分解反応が起こり、逆にZ
ASP無水物の収率及び品質低下を招くことから、20
〜100℃、好ましくは30〜80℃の範囲が良い。反
応時間は触媒量並びに反応温度により一義的に決まるも
のではないが、通常は10時間以内に反応が完結し、高
収率でZASP無水物が得られる。If the reaction temperature is too low, the reaction rate is slow, and if it is too high, the reaction rate remarkably increases.
The decomposition reaction of SP and ZASP anhydride occurs, and conversely Z
Since the yield and quality of ASP anhydrous are deteriorated, 20
The range of -100 ° C, preferably 30-80 ° C is good. The reaction time is not uniquely determined by the amount of catalyst and the reaction temperature, but usually the reaction is completed within 10 hours and ZASP anhydride is obtained in high yield.
【0017】このように本発明方法によれば、工業上極
めて有用なN−ベンジルオキシカルボニル−α−L−ア
スパルチル−L−フェニルアラニンメチルエステルの原
料であるZASP無水物をN−ベンジルオキシルボニル
−L−アスパラギン酸から短時間且つ高収率で得ること
ができる。しかも得られたZASP無水物は反応系から
単離することなく、そのまま次のL−フェニルアラニン
メチルエステルと反応させることができる。それ故、工
業的に極めて価値の高いZASP無水物の製造法であ
る。As described above, according to the method of the present invention, ZASP anhydride, which is a raw material of N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester, which is extremely useful in industry, is treated with N-benzyloxylvonyl-L. It can be obtained from aspartic acid in a short time and in high yield. Moreover, the obtained ZASP anhydride can be directly reacted with the following L-phenylalanine methyl ester without being isolated from the reaction system. Therefore, it is an industrially extremely valuable method for producing ZASP anhydride.
【0018】[0018]
【実施例】以下、実施例により本発明を更に説明する
が、本発明はその要旨を越えない限り、以下の実施例に
限定させるものではない。又、ZASP無水物は、反応
液にアニリンを加えアニリドとし、HPLC内部標準法
で定量した。EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. The ZASP anhydride was quantified by HPLC internal standard method by adding aniline to the reaction solution to give anilide.
【0019】実施例1 ZASP26.7g(0.100モル)を酢酸51gに
溶解させ、攪拌下温度を60℃に保ち、鉄(III)ト
リスアセチルアセトナート1.06g(0.003モ
ル)及び無水酢酸10.5g(0.103モル)を加
え、1時間反応を行った。得られた溶液の一部をHPL
Cで分析した結果、ZASP無水物を純度換算収率9
2.5%で得た。Example 1 26.7 g (0.100 mol) of ZASP was dissolved in 51 g of acetic acid, the temperature was maintained at 60 ° C. with stirring, and 1.06 g (0.003 mol) of iron (III) trisacetylacetonate and anhydrous 10.5 g (0.103 mol) of acetic acid was added and the reaction was carried out for 1 hour. Part of the obtained solution is HPL
As a result of analysis by C, the yield of ZASP anhydride was 9 in terms of purity.
Obtained at 2.5%.
【0020】実施例2 鉄(III)トリスアセチルアセトナート0.10g
(0.0003モル)を用いて実施例1と同様に行う
と、ZASP無水物を純度換算収率90.2%で得た。Example 2 0.10 g of iron (III) trisacetylacetonate
(0.0003 mol) was carried out in the same manner as in Example 1 to obtain ZASP anhydride in a purity conversion yield of 90.2%.
【0021】実施例3〜13 表1に種々の金属錯体を用いた結果を示す。反応条件及
び操作方法は、実施例1と同様に行った。Examples 3 to 13 Table 1 shows results using various metal complexes. The reaction conditions and the operating method were the same as in Example 1.
【0022】[0022]
【表1】 [Table 1]
【0023】比較例 触媒を加えずに、実施例1と同様に反応を行うと、ZA
SP無水物を純度換算収率32.6%で得た。Comparative Example When the reaction was carried out in the same manner as in Example 1 without adding a catalyst, ZA was obtained.
SP anhydrous was obtained in a purity conversion yield of 32.6%.
【0024】[0024]
【発明の効果】本発明の方法は、常に高収率でZASP
無水物を得る方法として、工業的に極めて有用な方法で
あるといえる。INDUSTRIAL APPLICABILITY The method of the present invention always produces ZASP with high yield.
It can be said that this method is industrially extremely useful as a method for obtaining an anhydride.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三田 隆一 福岡県大牟田市浅牟田町30 三井東圧化学 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryuichi Mita 30 Asamuta-cho, Omuta-shi, Fukuoka Mitsui Toatsu Chemical Co., Ltd.
Claims (3)
スパラギン酸と無水酢酸を金属錯体存在下で反応させる
ことを特徴とするN−ベンジルオキシカルボニル−L−
アスパラギン酸無水物の製造法。1. N-benzyloxycarbonyl-L-aspartic acid and acetic anhydride are reacted in the presence of a metal complex.
Method for producing aspartic anhydride.
ニル化合物錯体を用いる請求項1記載の方法。2. The method according to claim 1, wherein a metal 1,3-dicarbonyl compound complex is used as the metal complex.
を用いる請求項1記載の方法。3. The method according to claim 1, wherein a metal α-amino acid complex is used as the metal complex.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4134000A JPH05331158A (en) | 1992-05-26 | 1992-05-26 | Production of n-benzyloxycarbonyl-l-aspartic acid anhydride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4134000A JPH05331158A (en) | 1992-05-26 | 1992-05-26 | Production of n-benzyloxycarbonyl-l-aspartic acid anhydride |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05331158A true JPH05331158A (en) | 1993-12-14 |
Family
ID=15118042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4134000A Pending JPH05331158A (en) | 1992-05-26 | 1992-05-26 | Production of n-benzyloxycarbonyl-l-aspartic acid anhydride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05331158A (en) |
-
1992
- 1992-05-26 JP JP4134000A patent/JPH05331158A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910009350B1 (en) | Process for the preparation of n-formylaspartic anhydride | |
JPH05331158A (en) | Production of n-benzyloxycarbonyl-l-aspartic acid anhydride | |
JPH05320151A (en) | Production of n-benzyloxycarbonyl-l-aspartic acid anhydride | |
EP1318142B1 (en) | T-butoxycarbonylaminoethylamine for the synthesis of pna monomer units, amino acid derivatives, intermediates thereof, and processes for productions of them | |
JPH05331159A (en) | Production of n-benzyloxycarbonyl-l-aspartic acid anhydride | |
FR2547816A1 (en) | PROCESS FOR THE SYNTHESIS OF ASPARTAME | |
JPH05331160A (en) | Production of n-benzyloxycarbonyl-l-asparticl acid anhydride | |
JP2788495B2 (en) | Method for producing N-carbobenzoxy-L-aspartic anhydride | |
JPS60172963A (en) | Production of 2,2,6,6-tetramethyl-4-oxopiperidine | |
JP2788496B2 (en) | Method for producing N-carbobenzoquine-L-aspartic anhydride | |
JPH05230049A (en) | Production of n-benzyloxycarbonyl-l-aspartic anhydride | |
JP4519564B2 (en) | Method for purifying and producing 1-aminocyclopropanecarboxylic acid | |
JP2688214B2 (en) | Process for producing N-carbobenzoxy-L-aspartic anhydride | |
EP0297560B1 (en) | Imides; a process for their production and a process for the production of dipeptides using them | |
WO2020258709A1 (en) | Synthesis method for zp-1609 | |
US8178722B2 (en) | Method for producing theanine | |
JP2598470B2 (en) | Method for producing N-benzyloxycarbonyl-α-L-aspartyl-L-phenylalanine methyl ester | |
JP2688213B2 (en) | Process for producing N-carbobenzoxy-L-aspartic anhydride | |
WO1998035934A1 (en) | η-OXO-HOMOPHENYLALANINE DERIVATIVES AND PROCESS FOR PRODUCING HOMOPHENYLALANINE DERIVATIVES BY REDUCING THE SAME | |
JPH05213925A (en) | Production of n-benzyloxycarbonyl-l-aspartic acid anhydride | |
JP2698372B2 (en) | Method for producing N-protected aspartic anhydride | |
JPH07638B2 (en) | Process for producing N-formyl-α-L-aspartyl-L-phenylalanine methyl ester | |
CN114436881A (en) | Method for producing amide compound | |
JPH1072419A (en) | Production of tertiary-leucine | |
US6294692B1 (en) | Process for producing N-formylleucine of high purity |