JP2788496B2 - Method for producing N-carbobenzoquine-L-aspartic anhydride - Google Patents

Method for producing N-carbobenzoquine-L-aspartic anhydride

Info

Publication number
JP2788496B2
JP2788496B2 JP17192289A JP17192289A JP2788496B2 JP 2788496 B2 JP2788496 B2 JP 2788496B2 JP 17192289 A JP17192289 A JP 17192289A JP 17192289 A JP17192289 A JP 17192289A JP 2788496 B2 JP2788496 B2 JP 2788496B2
Authority
JP
Japan
Prior art keywords
aspan
reaction
anhydride
acetic anhydride
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17192289A
Other languages
Japanese (ja)
Other versions
JPH0338581A (en
Inventor
剛 大浦
敏雄 加藤
長二郎 樋口
正伸 味岡
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP17192289A priority Critical patent/JP2788496B2/en
Publication of JPH0338581A publication Critical patent/JPH0338581A/en
Application granted granted Critical
Publication of JP2788496B2 publication Critical patent/JP2788496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、N−カルボベンゾキシ−L−アスパラギン
酸(以下、Z−L−Aspと略記する)からN−カルボベ
ンゾキシ−L−アスパラギン酸無水物(以下、Z−L−
AspAnと略記する)を製造する方法に関するものであ
る。
The present invention relates to N-carbobenzoxy-L-aspartic acid (hereinafter abbreviated as ZL-Asp). Acid anhydride (hereinafter, ZL-
(Abbreviated as AspAn).

Z−L−AspAnは、甘味料として使用されるα−L−
アスパルチル−L−フェニルアラニン低級アルキルエス
テル(以下、α−APEと略記する)の中間体として重要
な化合物である。例えば、特公昭57−25538号公報には
Z−L−AspAnとL−フェニルアラニン低級アルキルエ
ステルとを反応せしめた後、接触還元により保護基であ
るカルボベンゾキシ基を脱離することによって、α−AP
Eが得られることが示されている。
Z-L-AspAn is α-L- used as a sweetener.
It is an important compound as an intermediate of aspartyl-L-phenylalanine lower alkyl ester (hereinafter abbreviated as α-APE). For example, Japanese Patent Publication No. 57-25538 discloses that after reacting Z-L-AspAn with a lower alkyl ester of L-phenylalanine, the carbobenzoxy group as a protecting group is eliminated by catalytic reduction to obtain α-. AP
It is shown that E is obtained.

特に、α−APEの中のメチルエステル体であるα−L
−アスパルチル−L−フェニルアラニンメチルエステル
は、ジペプチド系の甘味料として広く知られており、良
質な甘味特性ならびに蔗糖の200倍近い高甘味度を有
し、ダイエット甘味剤としてその需要が大きく伸長して
いるものである。
In particular, α-L which is a methyl ester in α-APE
-Aspartyl-L-phenylalanine methyl ester is widely known as a dipeptide-based sweetener, has good sweetness characteristics and a high sweetness nearly 200 times higher than that of sucrose, and its demand as a diet sweetener has greatly increased. Is what it is.

〔従来の技術及び解決しようとする課題〕[Conventional technology and problems to be solved]

従来、Z−L−AspAnを製造する方法として、Z−L
−Aspを大過剰の無水酢酸に溶解させ、減圧下に過剰の
無水酢酸との反応によって生成した酢酸を留去し、さら
に残査に有機溶剤を添加して残存する酢酸を除去した
後、Z−L−AspAnを得る方法(ジャーナル・オブ・ア
メリカン・ケミカル・ソサエティー81,167〜173(195
9)が公知である。
Conventionally, ZL has been used as a method for producing ZL-AspAn.
-Asp is dissolved in a large excess of acetic anhydride, the acetic acid generated by the reaction with the excess acetic anhydride is distilled off under reduced pressure, and an organic solvent is added to the residue to remove the remaining acetic acid. -Method for obtaining L-AspAn (Journal of American Chemical Society 81 , 167-173 (195
9) is known.

また、Z−L−Aspを無水酢酸中、スラリーとし反応
を50℃以下で行い、冷却後、エーテルと石油エーテルの
混合液を添加して目的物を得る方法(特開昭46−1370号
公報)、あるいはZ−L−Aspと無水酢酸との反応を芳
香族炭化水素の存在下に行う方法(特開昭48−75542号
公報)が知られている。
Also, a method is disclosed in which a slurry is prepared from ZL-Asp in acetic anhydride, the reaction is carried out at 50 ° C. or lower, and after cooling, a mixture of ether and petroleum ether is added to obtain the desired product (Japanese Patent Application Laid-Open No. 46-1370). ) Or a method in which the reaction between ZL-Asp and acetic anhydride is carried out in the presence of an aromatic hydrocarbon (JP-A-48-75542).

しかしながら、いずれの方法においても無水酢酸を大
過剰用いるために、経済的でなく、さらに目的物を単離
するため減圧下で過剰の無水酢酸および酢酸を留去する
か、溶解度を下げるために引火点の低い有機溶剤を添加
しなければならないなど工業的に実施するには満足でき
る方法ではなかった。
However, in any of the methods, acetic anhydride is used in a large excess, which is not economical.In addition, excess acetic anhydride and acetic acid are distilled off under reduced pressure to isolate the target substance, or flash is used to reduce the solubility. It was not a satisfactory method for industrial implementation, such as the necessity of adding an organic solvent having a low point.

一般にN−保護−L−アスパラギン酸無水物を工業的
に製造する場合、N−保護−L−アスパラギン酸無水物
を単離することなく、次いでL−フェニルアラニン低級
アルキルエステル類と縮合反応させることが操作上望ま
しい。
Generally, when N-protected-L-aspartic anhydride is industrially produced, it is possible to carry out a condensation reaction with L-phenylalanine lower alkyl esters without isolating the N-protected-L-aspartic anhydride. Operationally desirable.

しかしながら、脱水剤として無水酢酸を過剰に用いて
反応を行った場合、次のL−フェニルアラニン低級アル
キルエステル類との縮合においてN−アセチル−L−フ
ェニルアラニン低級アルキルエステル類を生じる。その
ため、無水酢酸の使用量を極力抑え、無水物化の反応率
を高める製造法が望まれていた。
However, when the reaction is carried out using acetic anhydride in excess as a dehydrating agent, N-acetyl-L-phenylalanine lower alkyl esters are generated in the subsequent condensation with L-phenylalanine lower alkyl esters. For this reason, there has been a demand for a production method in which the amount of acetic anhydride used is suppressed as much as possible to increase the reaction rate of anhydride conversion.

特開昭58−167577号公報には、Z−L−Aspと無水酢
酸との反応を各種金属の酸化物、水酸化物もしくは塩ま
たは有機塩基化合物の存在下に行う方法が示されてい
る。
JP-A-58-167577 discloses a method in which a reaction between ZL-Asp and acetic anhydride is carried out in the presence of an oxide, hydroxide or salt of various metals or an organic base compound.

上記の方法においては、原料、生成物、溶媒、無水酢
酸以外の第三物質の添加を行っている。そのため、後工
程に影響を及ぼす可能性があり、影響を考慮する必要が
ある。
In the above method, a third substance other than a raw material, a product, a solvent, and acetic anhydride is added. Therefore, there is a possibility of affecting the subsequent process, and it is necessary to consider the influence.

このように従来公知のZ−L−AspAnの製造方法はそ
れぞれ欠点を有し、工業的製造法とするには必ずしも満
足できる方法ではない。
As described above, the conventionally known methods for producing ZL-AspAn have disadvantages, and are not always satisfactory methods for industrial production.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、Z−L−AspAnの製造法に於いて上記
のような従来法の欠点がなく、しかも高収率・短時間に
目的化合物Z−L−AspAnを得る方法を鋭意検討の結
果、本無水物化反応において、あらかじめZ−L−AspA
nを添加すれば反応速度が著しく増大し、短時間に高収
率で目的化合物Z−L−AspAnを得ることができること
見出し、本発明を完成した。
The present inventors have intensively studied a method for obtaining the target compound ZL-AspAn in a method for producing ZL-AspAn which does not have the above-mentioned disadvantages of the conventional method in a method for producing ZL-AspAn, and which has a high yield and a short time. As a result, in this anhydride conversion reaction, ZL-AspA
It has been found that the addition of n significantly increases the reaction rate, and that the desired compound ZL-AspAn can be obtained in a short time and with high yield, thus completing the present invention.

すなわち、本発明はN−カルボベンゾキシ−L−アス
パラギン酸と無水酢酸をZ−L−AspAnの存在下に反応
せしめることを特徴とするN−カルボベンゾキシ−L−
アスパラギン酸無水物の製造方法である。
That is, the present invention is characterized in that N-carbobenzoxy-L-aspartic acid and acetic anhydride are reacted in the presence of ZL-AspAn.
This is a method for producing aspartic anhydride.

あらかじめ添加するZ−L−AspAnの添加量は、溶媒
の種類により幾分異にするが、微量共存すれば良く、例
えば、実施例3に示す如く、Z−AspAnの添加量はZ−
L−Aspに対し、0.1重量%であり、このように微量共存
しても有効な触媒作用を示すことがわかる。本発明を工
業的に実施する場合に存在せしめるこの化合物の量は、
Z−L−Aspに対する重量%で0.01以上あれば良く、好
ましくは0.1以上であり、上限は特にないが、経済上重
量%で50以下が望ましい。
The amount of ZL-AspAn to be added in advance slightly varies depending on the type of the solvent, but it is sufficient that a small amount coexist. For example, as shown in Example 3, the amount of Z-AspAn added is Z-AspAn.
It is 0.1% by weight with respect to L-Asp, and it can be seen that an effective catalytic action is exhibited even in such a small amount. The amount of this compound present when the present invention is practiced industrially is
It is sufficient that the content is 0.01% or more, preferably 0.1% or more in terms of% by weight with respect to ZL-Asp, and there is no particular upper limit.

又、添加法としてはZ−AspAnを固体状態で添加する
以外に、溶媒に溶解もしくは懸濁させて添加を行った
り、あるいは、Z−L−Aspの無水物化の反応マスをそ
のまま一部残存させたり、種々の添加法で行うことが可
能である。すなわち添加法の違いは本発明の本質を損な
うものではなく、いかなる添加法も可能である。
In addition, as an addition method, in addition to adding Z-AspAn in a solid state, adding it by dissolving or suspending it in a solvent, or leaving a part of the reaction mass of anhydride of ZL-Asp as it is Or by various addition methods. That is, the difference in the addition method does not impair the essence of the present invention, and any addition method is possible.

本発明において用いられる溶媒としては、反応物び生
成物に特に活性なものでなければ、いかなる溶媒も用い
ることができる。アセトン、メチルエチルケトンの如き
ケトン類、ジエチルエーテル、テトラヒドロフラン、ジ
オキサンの如きエーテル類、アセトニトリルの如きニト
リル類、酢酸エチル、プロピオン酸メチルの如きエステ
ル類、ギ酸、酢酸、プロピオン酸の如きカルボン酸類、
クロロホルム、ジクロルメタン、エチレンジクロリドの
如きハロゲン化炭化水素類、トルエン、キシレン、ヘキ
サン、シクロヘキサンの如き炭化水素類、その他ジメチ
ルホルムアミドの如きアミド類、ジメチルスルホキシ
ド、γ−ブチロラクトン、ニトロメタンなど、およびこ
れらのうちの任意の2種以上からなる混合溶媒が代表的
なものである。
As the solvent used in the present invention, any solvent can be used unless it is particularly active in reactants and products. Acetone, ketones such as methyl ethyl ketone, ethers such as diethyl ether, tetrahydrofuran, dioxane, nitriles such as acetonitrile, esters such as ethyl acetate and methyl propionate, carboxylic acids such as formic acid, acetic acid and propionic acid,
Chloroform, dichloromethane, halogenated hydrocarbons such as ethylene dichloride, toluene, xylene, hexane, hydrocarbons such as cyclohexane, amides such as dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, nitromethane, and the like A mixture of two or more arbitrary solvents is typical.

又、本発明において使用される無水酢酸量は、Z−L
−Aspに対して0.5モル比以上2モル比以下が好ましい。
特に好ましくは、0.9モル比以上1.05モル比以下であ
る。一方、反応温度は生成物のラセミ化を抑制する観点
より100℃以下−10℃以上、好ましくは80℃以下0℃以
上である。
The amount of acetic anhydride used in the present invention is ZL
The molar ratio is preferably 0.5 mol or more and 2 mol or less with respect to -Asp.
Particularly preferably, the molar ratio is from 0.9 mole ratio to 1.05 mole ratio. On the other hand, the reaction temperature is 100 ° C or lower and -10 ° C or higher, preferably 80 ° C or lower and 0 ° C or higher from the viewpoint of suppressing racemization of the product.

〔実施例〕〔Example〕

以下、実施例、比較例により本発明をさらに詳細に説
明する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1 Z−L−Asp67.0g(0.25モル)とZ−L−AspAn0.67g
(2.69x10−3モル)をトルエン129.4gに懸濁し、無水
酢酸(純度93%)26.9gを添加し、反応温度55℃で3時
間反応を行った。得られた反応液より適量分取し、5重
量パーセントのトリエチルアミンを含むメタノール溶液
に溶解せしめ、Z−L−AspAnとメタノールの反応によ
り生成したα及びβのN−カルボベンゾキシ−L−アス
パラギン酸メチルエステルと残存するZ−L−Aspを高
速液体クロマトグラフィーにより定量した。定量した値
よりZ−L−AspAnの反応収率を算出した。
Example 1 ZL-Asp 67.0 g (0.25 mol) and ZL-AspAn 0.67 g
(2.69 × 10 −3 mol) was suspended in 129.4 g of toluene, 26.9 g of acetic anhydride (purity 93%) was added, and the reaction was carried out at a reaction temperature of 55 ° C. for 3 hours. An appropriate amount was taken from the obtained reaction solution, dissolved in a methanol solution containing 5% by weight of triethylamine, and N-carbobenzoxy-L-aspartic acid of α and β generated by the reaction of ZL-AspAn with methanol The methyl ester and the remaining ZL-Asp were quantified by high performance liquid chromatography. The reaction yield of ZL-AspAn was calculated from the quantified value.

反応収率 92.6% 比較例 Z−L−Asp67.0g(0.25モル)をトルエン129.4gに懸
濁し、無水酢酸(純度93%)26.9gを添加し、反応温度5
5℃で3時間反応を行った。得られた反応液より適量分
取し、5重量パーセントのトリエチルアミンを含むメタ
ノール溶液に溶解せしめ、Z−L−AspAnとメタノール
の反応により生成したα及びβのN−カルボベンゾキシ
−L−アスパラギン酸メチルエステルと残存するZ−L
−Aspを高速液体クロマトグラフィーによって定量し
た。定量した値よりZ−L−AspAnの反応収率を算出し
た。
Reaction yield 92.6% Comparative example ZL-Asp 67.0 g (0.25 mol) was suspended in toluene 129.4 g, and acetic anhydride (purity 93%) 26.9 g was added.
The reaction was performed at 5 ° C. for 3 hours. An appropriate amount was taken from the obtained reaction solution, dissolved in a methanol solution containing 5% by weight of triethylamine, and N-carbobenzoxy-L-aspartic acid of α and β generated by the reaction of ZL-AspAn with methanol Methyl ester and remaining ZL
-Asp was quantified by high performance liquid chromatography. The reaction yield of ZL-AspAn was calculated from the quantified value.

反応収率 42.3% 実施例2〜5 溶媒を変える以外の反応条件は、実施例1と同様に行
った。
Reaction yield 42.3% Examples 2 to 5 The reaction conditions were the same as in Example 1 except for changing the solvent.

実施例6〜7 無水酢酸の添加量を変える以外の反応条件は、実施例
1と同様に行った。
Examples 6 to 7 The reaction conditions were the same as in Example 1 except that the amount of acetic anhydride was changed.

実施例8〜10 あらかじめ添加するZ−AspAnの添加量以外の反応条
件は、実施例1と同様に行った。
Examples 8 to 10 The reaction conditions were the same as in Example 1 except for the amount of Z-AspAn added in advance.

実施例2〜10の結果を表−1に示す。 Table 1 shows the results of Examples 2 to 10.

〔発明の効果〕 本発明によれば、原料、生成物、溶媒、無水酢酸以外
の第三物質を添加することなく、工業上極めて有用なα
−APEの原料化合物であるZ−L−AspAnを短時間でしか
も高収率で得ることができる。
[Effects of the Invention] According to the present invention, raw materials, products, solvents, without adding a third substance other than acetic anhydride, an industrially useful α
It is possible to obtain ZL-AspAn, which is a starting compound of -APE, in a short time and at a high yield.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C07D 307/66 C07K 5/06 - 5/078──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) C07D 307/66 C07K 5/06-5/078

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】N−カルボベンゾキシ−L−アスパラギン
酸と無水酢酸をN−カルボベンゾキシ−L−アスパラギ
ン酸無水物の存在下に反応せしめることを特徴とするN
−カルボベンゾキシ−L−アスパラギン酸無水物の製造
方法。
(1) N-carbobenzoxy-L-aspartic acid is reacted with acetic anhydride in the presence of N-carbobenzoxy-L-aspartic anhydride.
-A method for producing carbobenzoxy-L-aspartic anhydride.
JP17192289A 1989-07-05 1989-07-05 Method for producing N-carbobenzoquine-L-aspartic anhydride Expired - Lifetime JP2788496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17192289A JP2788496B2 (en) 1989-07-05 1989-07-05 Method for producing N-carbobenzoquine-L-aspartic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17192289A JP2788496B2 (en) 1989-07-05 1989-07-05 Method for producing N-carbobenzoquine-L-aspartic anhydride

Publications (2)

Publication Number Publication Date
JPH0338581A JPH0338581A (en) 1991-02-19
JP2788496B2 true JP2788496B2 (en) 1998-08-20

Family

ID=15932338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17192289A Expired - Lifetime JP2788496B2 (en) 1989-07-05 1989-07-05 Method for producing N-carbobenzoquine-L-aspartic anhydride

Country Status (1)

Country Link
JP (1) JP2788496B2 (en)

Also Published As

Publication number Publication date
JPH0338581A (en) 1991-02-19

Similar Documents

Publication Publication Date Title
US5284973A (en) Method of preparing an acid additional salt of delta-aminolevulinic acid
JP2788496B2 (en) Method for producing N-carbobenzoquine-L-aspartic anhydride
JPH0680075B2 (en) Process for producing N-formyl-α-L-aspartyl-L-phenylalanine methyl ester
JP2788495B2 (en) Method for producing N-carbobenzoxy-L-aspartic anhydride
US6696590B2 (en) Process for the synthesis of aliphatic, cycloaliphatic or araliphatic chloroformates
JPH04986B2 (en)
CA2083108A1 (en) Process for the production of .alpha.-hydroxy-.beta.-aminocarboxylic acids
US4803300A (en) Process for separation of N-protected-α-L-aspartyl-L-phenylalanines
JP2688214B2 (en) Process for producing N-carbobenzoxy-L-aspartic anhydride
JP2688213B2 (en) Process for producing N-carbobenzoxy-L-aspartic anhydride
JP2579383B2 (en) Method for producing mono-t-butyl malonate
JP2003514809A (en) Method for producing benzofuranone oxime
JPH05331159A (en) Production of n-benzyloxycarbonyl-l-aspartic acid anhydride
EP0652213B1 (en) Method for producing alkyl 3-phthalidylideneacetate
JPH05230049A (en) Production of n-benzyloxycarbonyl-l-aspartic anhydride
EP0297560B1 (en) Imides; a process for their production and a process for the production of dipeptides using them
JP2995101B2 (en) Method for producing N-protected aspartic anhydride
JPH05213925A (en) Production of n-benzyloxycarbonyl-l-aspartic acid anhydride
US4539159A (en) Process for reaction of mercaptophenols with vinyl compounds
HU190527B (en) Process for preparing thiazole derivatives
JPH0314029B2 (en)
JPH0347271B2 (en)
JPH05320151A (en) Production of n-benzyloxycarbonyl-l-aspartic acid anhydride
JPH05331158A (en) Production of n-benzyloxycarbonyl-l-aspartic acid anhydride
JPH05331160A (en) Production of n-benzyloxycarbonyl-l-asparticl acid anhydride