JPH0338581A - Production of n-carbobenzoxy-l-aspartic anhydride - Google Patents

Production of n-carbobenzoxy-l-aspartic anhydride

Info

Publication number
JPH0338581A
JPH0338581A JP17192289A JP17192289A JPH0338581A JP H0338581 A JPH0338581 A JP H0338581A JP 17192289 A JP17192289 A JP 17192289A JP 17192289 A JP17192289 A JP 17192289A JP H0338581 A JPH0338581 A JP H0338581A
Authority
JP
Japan
Prior art keywords
carbobenzoxy
aspan
anhydride
reaction
acetic anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17192289A
Other languages
Japanese (ja)
Other versions
JP2788496B2 (en
Inventor
Takeshi Oura
剛 大浦
Toshio Kato
敏雄 加藤
Chojiro Higuchi
長二郎 樋口
Masanobu Ajioka
正伸 味岡
Teruhiro Yamaguchi
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP17192289A priority Critical patent/JP2788496B2/en
Publication of JPH0338581A publication Critical patent/JPH0338581A/en
Application granted granted Critical
Publication of JP2788496B2 publication Critical patent/JP2788496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the subject compound useful as an intermediate for an edulcorant in high yield without addition of the third material by reacting N-carbobenzoxy-L-aspartic acid with acetic anhydride in the presence of N- carbobenzoxy-L-aspartic anhydride. CONSTITUTION:N-carbobenzoxy-L-aspartic acid is reacted with acetic anhydride at 0-80 deg.C in the presence of N-carbobenzoxy-L-aspartic anhydride in an amount of preferably 0.1-50wt.% (based on N-carbobenzoxy-L-aspartic acid) to afford the objective compound. The acetic anhydride is preferably used in 0.9-1.05 molar ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、N−カルボベンゾキシ−L−アスパラギン酸
(以下、Z−L−Aspと略記する)からN−カルボベ
ンゾキシ−L−アスパラギン酸無水物(以下、Z−L−
AspAnと略記する)を製造する方法に関するもので
ある。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to the production of N-carbobenzoxy-L-asparagine from N-carbobenzoxy-L-aspartic acid (hereinafter abbreviated as Z-L-Asp). Acid anhydride (hereinafter referred to as Z-L-
The present invention relates to a method for producing AspAn).

Z−L−AspAnは、甘味料として使用されるα−L
−アスパルチルーL−フェニルアラニン低級アルキルエ
ステル(以下、α−APEと略記する)の中間体として
重要な化合物である。例えば、特公昭57−25538
号公報にはZ−L−AspAnとL−フェニルアラニン
低級アルキルエステルとを反応せしめた後、接触還元に
より保護基であるカルボベンゾキシ基を脱離することに
よって、α−APRが得られることが示されている。
Z-L-AspAn is α-L used as a sweetener.
It is an important compound as an intermediate for -aspartyl-L-phenylalanine lower alkyl ester (hereinafter abbreviated as α-APE). For example, Tokuko Sho 57-25538
The publication discloses that α-APR can be obtained by reacting Z-L-AspAn and L-phenylalanine lower alkyl ester and then removing the carbobenzoxy group, which is a protective group, by catalytic reduction. has been done.

特に、α−APEの中のメチルエステル体であるα−L
・−アスパルチル−し−フェニルアラニンメチルエステ
ルは、ジペプチド系の甘味料として広く知られており、
良質な甘味特性ならびに蔗糖の200倍近い高甘味度を
有し、ダイエツト甘味剤としてその需要が大きく伸長し
ているものである。
In particular, α-L, which is a methyl ester in α-APE,
-Aspartyl-phenylalanine methyl ester is widely known as a dipeptide sweetener.
It has good sweetness characteristics and a sweetness level nearly 200 times that of sucrose, and its demand as a dietary sweetener is growing rapidly.

〔従来の技術及び解決しようとする課題〕従来、Z−L
−AspAnを製造する方法として、Z−L−Aspを
大過剰の無水酢酸に溶解させ、減圧下に過剰の無水酢酸
との反応によって生成した酢酸を留去し、さらに残香に
有a溶剤を添加して残存する酢酸を除去した後、Z−L
−AspAnを得る方法(ジャーナル・オブ・アメリカ
ン・ケミカル・ソサエティー鉦、167〜173(19
59)が公知である。
[Conventional technology and problems to be solved] Conventionally, Z-L
-As a method for producing AspAn, Z-L-Asp is dissolved in a large excess of acetic anhydride, the acetic acid produced by the reaction with the excess acetic anhydride is distilled off under reduced pressure, and an alkaline solvent is added to the residual aroma. After removing the remaining acetic acid, Z-L
- Method of obtaining AspAn (Journal of American Chemical Society, 167-173 (19
59) is known.

また、Z−L−Aspを無水酢酸中、スラリーとし反応
を50°C以下で行い、冷却後、エーテルと石油エーテ
ルの混合液を添加して目的物を得る方法(特開昭46−
1370号公報)、あるいはZ−L−Aspと無水酢酸
との反応を芳香族炭化水素の存在下に行う方法(特開昭
48−75542号公報)が知られている。
Alternatively, Z-L-Asp is slurried in acetic anhydride, the reaction is carried out at 50°C or less, and after cooling, a mixture of ether and petroleum ether is added to obtain the desired product (Japanese Unexamined Patent Application Publication No. 46-111).
1370) or a method in which Z-L-Asp and acetic anhydride are reacted in the presence of an aromatic hydrocarbon (Japanese Unexamined Patent Publication No. 75542/1982).

しかしながら、いずれの方法においても無水酢酸を大過
剰用いるために経済的でなく、さらに目的物を単離する
ため減圧下で過剰の無水酢酸および酢酸を留去するか、
溶解度を下げるために引火点の低い有機溶剤を添加しな
ければならないなど工業的に実施するには満足できる方
法ではなかった。
However, in either method, it is not economical because acetic anhydride is used in large excess, and in order to further isolate the target product, excess acetic anhydride and acetic acid are distilled off under reduced pressure.
This method was not satisfactory for industrial implementation, as it required the addition of an organic solvent with a low flash point to reduce solubility.

一般にN−保護−L−アスパラギン酸無水物を工業的に
製造する場合、N−保護−L−アスパラギン酸無水物を
単離することなく、次いでL−フェニルアラニン低級ア
ルキルエステル類と縮合反応させることが操作上望まし
い。
Generally, when N-protected-L-aspartic acid anhydride is produced industrially, it is possible to perform a condensation reaction with L-phenylalanine lower alkyl esters without isolating the N-protected-L-aspartic anhydride. Operationally desirable.

しかしながら、脱水剤として無水酢酸を過剰に用いて反
応を行った場合、次のL−フェニルアラニン低級アルキ
ルエステル類との縮合においてNアセチル−L−フェニ
ルアラニン低級アルキルエステル類が生じる。そのため
、無水酢酸の使用量を極力抑え、無水物化の反応率を高
める製造法が望まれていた。
However, when the reaction is carried out using an excess of acetic anhydride as a dehydrating agent, N-acetyl-L-phenylalanine lower alkyl esters are produced in the subsequent condensation with L-phenylalanine lower alkyl esters. Therefore, a production method that minimizes the amount of acetic anhydride used and increases the reaction rate of anhydride conversion has been desired.

特開昭58−167577号公報には、Z−L−Asp
と無水酢酸との反応を各種金属の酸化物、水酸化物もし
くは塩または有機塩基化合物の存在下に行う方法が示さ
れている。
In JP-A-58-167577, Z-L-Asp
and acetic anhydride in the presence of various metal oxides, hydroxides or salts or organic basic compounds.

上記の方法においては、原料、生成物、溶媒、無水酢酸
以外の第三物質の添加を行っている。そのため、後工程
に影響を及ぼす可能性があり、影響を考慮する必要があ
る。
In the above method, a third substance other than the raw material, product, solvent, and acetic anhydride is added. Therefore, there is a possibility that it will affect the subsequent process, and it is necessary to consider the effect.

このように従来公知のZ−L−AspAnの製造方法は
それぞれ欠点を有し、工業的製造法とするには必ずしも
満足できる方法ではない。
As described above, the conventionally known methods for producing Z-L-AspAn each have their own drawbacks, and are not necessarily satisfactory for industrial production.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、Z−L−AspAnの製造法に於いて上
記のような従来法の欠点がなく、しかも高収率・短時間
に目的化合物Z−L−AspAnを得る方法を鋭意検討
の結果、本無水物化反応において、あらかじめZ−L−
AspAnを添加すれば反応速度が著しく増大し、短時
間に高収率で目的化合物Z−L−AspAnを得ること
ができることを見出し、本発明を完成した。
The present inventors have conducted extensive studies to find a method for producing Z-L-AspAn that does not have the drawbacks of the conventional methods as described above and that can obtain the target compound Z-L-AspAn in a high yield and in a short time. As a result, in this anhydration reaction, Z-L-
The present invention was completed based on the discovery that the addition of AspAn significantly increases the reaction rate and allows the target compound Z-L-AspAn to be obtained in a short period of time and in high yield.

すなわち、本発明はN−カルボベンゾキシ−しアスパラ
ギン酸と無水酢酸をZ−L−AspAnの存在下に反応
せしめることを特徴とするN−カルボベンゾキシ−L−
アスパラギン酸無水物の製造方法である。
That is, the present invention is characterized in that N-carbobenzoxy-L-aspartic acid and acetic anhydride are reacted in the presence of Z-L-AspAn.
This is a method for producing aspartic acid anhydride.

あらかじめ添加するZ−L−AspAnの添加量は、溶
媒の種類により幾分異にするが、@量共存すれば良く、
例えば、実施例3に示す如く、Z−AspAnの添加量
はZ−L−Aspに対し、0.1重量%であり、このよ
うにafl共存しても有効な触媒作用を示すことがわか
る0本発明を工業的に実施する場合に存在せしめるこの
化合物の量は、Z−L−Aspに対する重量%で0.0
1以上あれば良く、好ましくは0.1%以上であり、上
限は特にないが、経済上重量%で50以下が望ましい。
The amount of Z-L-AspAn added in advance varies somewhat depending on the type of solvent, but it is sufficient that the amount coexists.
For example, as shown in Example 3, the amount of Z-AspAn added was 0.1% by weight with respect to Z-L-Asp, and it can be seen that even when afl coexists in this way, it exhibits an effective catalytic action. The amount of this compound present when carrying out the invention industrially is 0.0% by weight relative to Z-L-Asp.
It is sufficient if it is 1 or more, preferably 0.1% or more, and there is no particular upper limit, but it is preferably 50 or less in terms of weight from an economical point of view.

又、添加法としてはZ−AspAnを固体状態で添加す
る以外に、溶媒に溶解もしくは懸濁させて添加を行った
り、あるいは、Z−L−Aspの無水物化の反応マスを
そのまま一部残存させたり、種々の添加法で行うことが
可能である。すなわち添加法の違いは本発明の本質を損
なうものではなく、いかなる添加法も可能である。
In addition, as an addition method, in addition to adding Z-AspAn in a solid state, it may be added by dissolving or suspending it in a solvent, or by leaving a part of the reaction mass of Z-L-Asp anhydride as it is. Alternatively, various addition methods can be used. That is, the difference in the addition method does not impair the essence of the present invention, and any addition method is possible.

本発明において用いられる溶媒としては、反応物び生成
物に特に活性なものでなければ、いかなる溶媒も用いる
ことができる。アセトン、メチルエチルケトンの如きケ
トン類、ジエチルエーテル、テトラヒドロフラン、ジオ
キサンの如きエーテル類、アセトニトリルの如きニトリ
ル類、酢酸エチル、プロピオン酸メチルの如きエステル
類、キ酸、酢酸、プロピオン酸の如きカルボン酸類、ク
ロロホルム、ジクロルメタン、エチレンジクロリドの如
きハロゲン化炭化水素類、トルエン、キシレン、ヘキサ
ン、シクロヘキサンの如き炭化水素類、その他ジメチル
ホルムアξドの如きアミド類、ジメチルスルホキシド、
γ−ブチロラクトン、ニトロメタンなど、およびこれら
のうちの任意の2種以上からなる混合溶媒が代表的なも
のである。
As the solvent used in the present invention, any solvent can be used as long as it is not particularly active against the reactants and products. Ketones such as acetone and methyl ethyl ketone, ethers such as diethyl ether, tetrahydrofuran and dioxane, nitriles such as acetonitrile, esters such as ethyl acetate and methyl propionate, carboxylic acids such as chloroform, acetic acid and propionic acid, chloroform, Halogenated hydrocarbons such as dichloromethane and ethylene dichloride, hydrocarbons such as toluene, xylene, hexane, and cyclohexane, amides such as dimethylformamide, dimethyl sulfoxide,
Typical examples include γ-butyrolactone, nitromethane, etc., and mixed solvents consisting of any two or more of these.

又、本発明において使用される無水酢酸量は、Z−L−
Aspに対して0.5モル比以上2モル比以下が好まし
い、特に好ましくは、0.9モル比以上1.05モル比
以下である。一方、反応温度は生成物のラセミ化を抑制
する観点より 100″C以下−lO°C以上、好まし
くは80°C以下0“C以上である。
Moreover, the amount of acetic anhydride used in the present invention is ZL-
The molar ratio to Asp is preferably 0.5 to 2 molar ratio, particularly preferably 0.9 to 1.05 molar ratio. On the other hand, from the viewpoint of suppressing racemization of the product, the reaction temperature is 100°C or lower - lO°C or higher, preferably 80°C or lower and 0"C or higher.

〔実施例〕〔Example〕

以下、実施例、比較例により本発明をさらに詳細に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 Z−L−As p67.0g (0,25モル)とZ−
LA s p A n O,67g (2,69xlO
−3モル)をトルエン129.4 gに懸濁し、無水酢
酸(純度93X) 26.9 gを添加し、反応温度5
5℃で3時間反応を行った。
Example 1 Z-L-As p67.0g (0.25 mol) and Z-
LA sp A n O, 67g (2,69xlO
-3 mol) was suspended in 129.4 g of toluene, 26.9 g of acetic anhydride (purity 93X) was added, and the reaction temperature was increased to 5.
The reaction was carried out at 5°C for 3 hours.

得られた反応液より適量分取し、5重量パーセントのト
リエチルアミンを含むメタノール液に溶解せしめ、Z−
L−AspAnとメタノールの反応により生成したα及
びβのN−カルボベンゾキシ−L−アスパラギン酸メチ
ルエステルと残存するZ−L−Aspを高速液体クロマ
トグラフィーにより定量した。定量した値よりZ−L−
AspAnの反応収率を算出した。
An appropriate amount was taken from the obtained reaction solution, dissolved in a methanol solution containing 5% by weight of triethylamine, and Z-
α and β N-carbobenzoxy-L-aspartic acid methyl esters produced by the reaction of L-AspAn and methanol and remaining Z-L-Asp were quantified by high performance liquid chromatography. From the quantified value, Z-L-
The reaction yield of AspAn was calculated.

反応収率 92.6  % 比較例 Z −L−A s p67.0g (0,25モル)を
トルエン129.4 gに懸濁し、無水酢酸(純度93
χ) 26.9 gを添加し、反応温度55℃で3時間
反応を行った。
Reaction yield 92.6% Comparative example Z
χ) 26.9 g was added, and the reaction was carried out at a reaction temperature of 55° C. for 3 hours.

得られた反応液より適量分取し、5重量パーセントのト
リエチルアミンを含むメタノール液に熔解せしめ、Z−
L−AspAnとメタノールの反応により生成したα及
びβのN−カルボベンゾキシ−L−アスパラギン酸メチ
ルエステルと残存するZ−L−Aspを高速液体クロマ
トグラフィーにより定量した。定量した値よりZ−L−
AspAnの反応収率を算出した。
An appropriate amount was taken from the obtained reaction solution and dissolved in a methanol solution containing 5% by weight of triethylamine.
α and β N-carbobenzoxy-L-aspartic acid methyl esters produced by the reaction of L-AspAn and methanol and remaining Z-L-Asp were quantified by high performance liquid chromatography. From the quantified value, Z-L-
The reaction yield of AspAn was calculated.

反応収率 42.3  % 実施例2〜5 溶媒を変える以外の反応条件は、実施例1と同様に行っ
た。
Reaction yield: 42.3% Examples 2 to 5 The reaction conditions were the same as in Example 1 except for changing the solvent.

実施例6〜7 無水酢酸の添加量を変える以外の反応条件は、実施例1
と同様に行った。
Examples 6-7 Reaction conditions other than changing the amount of acetic anhydride were as in Example 1.
I did the same thing.

実施例8〜lO あらかじめ添加するZ−AspAnの添加量以外の反応
条件は、実施例1と同様に行った。
Example 8-IO The reaction conditions were the same as in Example 1 except for the amount of Z-AspAn added in advance.

実施例2〜lOの結果を表−■に示す。The results of Examples 2 to 1O are shown in Table-■.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原料、生成物、溶媒、無水酢酸以外の
第三物質を添加することなく、工業上極めて有用なα−
APRの原料化合物であるZ、−L−AspAnを短時
間でしかも高収率で得ることができる。
According to the present invention, industrially extremely useful α-
Z, -L-AspAn, which is a raw material compound for APR, can be obtained in a short time and in high yield.

Claims (1)

【特許請求の範囲】[Claims] 1)N−カルボベンゾキシ−L−アスパラギン酸と無水
酢酸をN−カルボベンゾキシ−L−アスパラギン酸無水
物の存在下に反応せしめることを特徴とするN−カルボ
ベンゾキシ−L−アスパラギン酸無水物の製造方法。
1) N-carbobenzoxy-L-aspartic anhydride, which is obtained by reacting N-carbobenzoxy-L-aspartic acid and acetic anhydride in the presence of N-carbobenzoxy-L-aspartic anhydride. How things are manufactured.
JP17192289A 1989-07-05 1989-07-05 Method for producing N-carbobenzoquine-L-aspartic anhydride Expired - Lifetime JP2788496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17192289A JP2788496B2 (en) 1989-07-05 1989-07-05 Method for producing N-carbobenzoquine-L-aspartic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17192289A JP2788496B2 (en) 1989-07-05 1989-07-05 Method for producing N-carbobenzoquine-L-aspartic anhydride

Publications (2)

Publication Number Publication Date
JPH0338581A true JPH0338581A (en) 1991-02-19
JP2788496B2 JP2788496B2 (en) 1998-08-20

Family

ID=15932338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17192289A Expired - Lifetime JP2788496B2 (en) 1989-07-05 1989-07-05 Method for producing N-carbobenzoquine-L-aspartic anhydride

Country Status (1)

Country Link
JP (1) JP2788496B2 (en)

Also Published As

Publication number Publication date
JP2788496B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
SU628812A3 (en) Organic compound producing method
JPH0684332B2 (en) Method for optical resolution of a-isopropyl-p-chlorophenylacetic acid
KR930004054B1 (en) Process for producing n-formyl-alpha-l-aspartyl-l-phenylalanine methyl ester
JPH0338581A (en) Production of n-carbobenzoxy-l-aspartic anhydride
US6696590B2 (en) Process for the synthesis of aliphatic, cycloaliphatic or araliphatic chloroformates
CA2083108A1 (en) Process for the production of .alpha.-hydroxy-.beta.-aminocarboxylic acids
CN112272665B (en) Process for preparing ritalst
JP2788495B2 (en) Method for producing N-carbobenzoxy-L-aspartic anhydride
KR20040043184A (en) Process for the preparation of highly pure cefuroxime axetil
JP2688214B2 (en) Process for producing N-carbobenzoxy-L-aspartic anhydride
JP2688213B2 (en) Process for producing N-carbobenzoxy-L-aspartic anhydride
WO2004018408A1 (en) Synthesis and purification of nateglinide
EP0437567B1 (en) Phenyl-glycine derivatives
JPH05331159A (en) Production of n-benzyloxycarbonyl-l-aspartic acid anhydride
JPH0314029B2 (en)
US4904802A (en) Imides
KR20020040911A (en) Method for production of benzofuranone oximes
US7049459B2 (en) 1-[(4-methyl thio)phenyl]-2-(phenyl acetoxy)-1-ethanone and a process for preparing the same
EP0643056B1 (en) Process for the stereospecific preparation of 1,3-dioxan-4,6-dion derivatives, precursors of chiral tetramic acids derivatives
JPH0347271B2 (en)
JPH05230049A (en) Production of n-benzyloxycarbonyl-l-aspartic anhydride
JPH05331160A (en) Production of n-benzyloxycarbonyl-l-asparticl acid anhydride
US20040069208A1 (en) Process for crystallizing enantiomerically enriched 2-acetylthio-3-phenylpropionic acid
JPH10182544A (en) Production of p-acylalkylbenzene derivative
JPH05213925A (en) Production of n-benzyloxycarbonyl-l-aspartic acid anhydride