JPH053138A - Manufacture method of solid electrolytic capacitor - Google Patents

Manufacture method of solid electrolytic capacitor

Info

Publication number
JPH053138A
JPH053138A JP3295534A JP29553491A JPH053138A JP H053138 A JPH053138 A JP H053138A JP 3295534 A JP3295534 A JP 3295534A JP 29553491 A JP29553491 A JP 29553491A JP H053138 A JPH053138 A JP H053138A
Authority
JP
Japan
Prior art keywords
polyaniline
film
oxide film
acid
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3295534A
Other languages
Japanese (ja)
Other versions
JP3213994B2 (en
Inventor
Hideji Doi
秀二 土居
Toshihiro Onishi
敏博 大西
Tatsuo Tateno
辰男 舘野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP29553491A priority Critical patent/JP3213994B2/en
Publication of JPH053138A publication Critical patent/JPH053138A/en
Application granted granted Critical
Publication of JP3213994B2 publication Critical patent/JP3213994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To provide the title manufacturing method of solid electrolytic capacitor having the excellent dielectric characteristics and excellent bond properties of dielectric oxide film onto the polyaniline solid electrolyte in high yield. CONSTITUTION:The title solid electrolytic capacitor is manufactured by a method wherein a tantalum oxide film to be a dielectric by anode-oxidizing tantalum is provided on the tantalum and then said film is coated with the mixed solution of polyaniline and an aromatic polyamyl acid to be dried up, next the film is processed with polystyrene sulfonic acid water solution so that said polyaniline may be doped with sulfonic acid ions to be turned into a conductive film and finally, a terminal is provided on the film to manufacture the title solid electrolytic capacitor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電性ポリアニリンを電
解質として用いた固体電解コンデンサの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a solid electrolytic capacitor using conductive polyaniline as an electrolyte.

【0002】[0002]

【従来の技術】従来、固体電解コンデンサは、金属電極
とそれに積層された誘電体である金属酸化膜上に二酸化
マンガン等の電解質の層を設け、その上に電極を形成す
ることにより製造されている。また、最近において電解
酸化重合により得られるポリピロール、ポリアニリン等
の導電性高分子を固体電解コンデンサの電解質として用
いることが特開昭60−244017号、同60−23
15号および同63−173313号公報において提案
されている。それらにおいては表面が多孔質化された金
属酸化膜を有する金属電極上でピロールやアニリンの重
合体薄膜を電解酸化により作成し、導電性高分子の電解
質としている。
2. Description of the Related Art Conventionally, solid electrolytic capacitors have been manufactured by providing an electrode layer of manganese dioxide or the like on a metal electrode and a metal oxide film, which is a dielectric layered on the metal electrode, and forming an electrode thereon. There is. Recently, it has been proposed to use a conductive polymer such as polypyrrole or polyaniline obtained by electrolytic oxidation polymerization as an electrolyte of a solid electrolytic capacitor. JP-A-60-244017 and 60-23.
No. 15 and 63-173313. In them, a polymer thin film of pyrrole or aniline is prepared by electrolytic oxidation on a metal electrode having a metal oxide film whose surface is made porous, and used as an electrolyte of a conductive polymer.

【0003】[0003]

【発明が解決しようとする課題】上記の方法で絶縁体で
ある酸化物膜上に導電性高分子電解質を電解重合で作成
するためには、予め該酸化物膜の上に化学重合で薄く導
電層を形成することが必要であった。また、個々のコン
デンサ素子上に重合する必要があり、工業的な量産性に
問題があった。このような実情から高導電性電解質とし
て使用できる導電性高分子膜のより簡便で、品質的にも
良好な固体電解コンデンサを与える工業的に有利な製造
方法が求められていた。また、本発明者らの検討による
と、塗布法により金属酸化膜上に形成したポリアニリン
膜をド−ピング処理すると剥離が生ずることが多々見ら
れ、また、低容量や高損失のコンデンサが得られること
があった。したがって該酸化物膜と固体電解質は密着性
が良いことが必要であり、悪い場合、生産における製品
の品質の劣化や均一性等に問題が生じ、製造上歩留りが
低下したり、また使用における耐久性に問題が生じる。
本発明者らは鋭意検討の結果、ポリアニリンに高分子バ
インダーを加えることによりコンデンサとしての性能を
損なうことなく、金属酸化膜上に形成したポリアニリン
膜の密着性が向上することを見出した。
In order to form a conductive polymer electrolyte on an oxide film, which is an insulator, by electrolytic polymerization by the above method, a thin conductive film is previously formed on the oxide film by chemical polymerization. It was necessary to form layers. Further, there is a problem in industrial mass productivity because it is necessary to polymerize on each capacitor element. From such circumstances, there has been a demand for an industrially advantageous manufacturing method for providing a solid electrolytic capacitor which is simpler and has good quality of a conductive polymer film that can be used as a highly conductive electrolyte. Further, according to the study by the present inventors, it is often seen that the polyaniline film formed on the metal oxide film by the coating method causes delamination, and a capacitor having a low capacity and a high loss can be obtained. was there. Therefore, it is necessary that the oxide film and the solid electrolyte have good adhesiveness. In the case of poor adhesion, problems such as deterioration of product quality and uniformity in production may occur, resulting in reduced production yield and durability during use. There is a problem with sex.
As a result of intensive studies, the present inventors have found that adding a polymer binder to polyaniline improves the adhesion of the polyaniline film formed on the metal oxide film without impairing the performance as a capacitor.

【0004】[0004]

【課題を解決するための手段】本発明は、金属電極の表
面を化成処理して形成した誘電体である金属酸化膜上に
固体電解質の層を形成し、次いでその上に電極を形成し
て固体電解コンデンサを製造する方法において、ポリア
ニリンに対して高分子バインダーを1〜25重量%を含
む溶液より該金属酸化膜上にポリアニリンと高分子バイ
ンダーの混合膜を形成し、次いで該ポリアニリンに陰イ
オンを添加することにより固体電解質の層を形成するこ
とを特徴とする固体電解コンデンサの製造方法を提供す
るものである。
According to the present invention, a solid electrolyte layer is formed on a metal oxide film which is a dielectric formed by subjecting the surface of a metal electrode to chemical conversion treatment, and then an electrode is formed thereon. In the method for producing a solid electrolytic capacitor, a mixed film of polyaniline and a polymer binder is formed on the metal oxide film from a solution containing 1 to 25% by weight of a polymer binder with respect to polyaniline, and then the polyaniline is anionic. The present invention provides a method for producing a solid electrolytic capacitor, which comprises forming a layer of a solid electrolyte by adding

【0005】本発明は、固体電解コンデンサの導電性高
分子電解質膜の製造法について鋭意検討の結果、ポリア
ニリンを有機溶媒に溶解した溶液と高分子バインダーと
の混合溶液を用いて誘電体となる金属の酸化被膜の上に
ポリアニリン膜を作成し、陰イオンを添加することによ
り、優れた電解質となり、しかも、該酸化膜と良好な密
着性を有し、特性の良好な固体電解コンデンサを歩留り
よく製造できることを見い出し達成されたものである。
As a result of extensive studies on a method for producing a conductive polymer electrolyte membrane of a solid electrolytic capacitor, the present invention uses a mixed solution of a solution of polyaniline dissolved in an organic solvent and a polymer binder to form a dielectric metal. By making a polyaniline film on the oxide film and adding anion, it becomes an excellent electrolyte, and also has good adhesion with the oxide film, and manufactures solid electrolytic capacitors with good characteristics with good yield. It was achieved by finding what was possible.

【0006】以下、本発明について詳述する。本発明に
おいて用いる金属電極は誘電体酸化皮膜を形成できるも
のであればよく、タンタル、アルミニウムまたはアルミ
ニウム合金、ニオブ、チタニウムが例示される。表面に
誘電体である酸化被膜を形成する方法としては、公知の
方法、例えば陽極酸化法または空気酸化法が使用でき
る。表面積の大きい多孔質膜を得るには陽極酸化法が好
ましい。陽極酸化の前に有効な表面積を大きくするため
には、金属表面を電解エッチングする方法、金属粉を焼
結する方法など、公知の方法を利用することができる。
The present invention will be described in detail below. The metal electrode used in the present invention may be any one capable of forming a dielectric oxide film, and examples thereof include tantalum, aluminum or an aluminum alloy, niobium, and titanium. As a method for forming an oxide film as a dielectric on the surface, a known method such as an anodic oxidation method or an air oxidation method can be used. The anodic oxidation method is preferable for obtaining a porous film having a large surface area. In order to increase the effective surface area before anodizing, known methods such as a method of electrolytically etching a metal surface and a method of sintering metal powder can be used.

【0007】本発明に用いるポリアニリンの合成方法と
しては、酸化剤で酸化重合する方法(以下化学酸化重
合)、または電極を用いて電気化学的に重合する方法
(以下電解酸化重合)など公知の方法が採用できる。化
学酸化重合においてはポリアニリンの合成はアニリンの
酸性溶液と酸化剤とを混合することにより行なわれる。
用いる酸化剤は標準水素電極(NHE)に対する酸化還
元電位が0.6V以上のものを用いると重合収率や特性
の良好なアニリンを得ることができるので好ましい。こ
れ以下ではアニリンが重合しない。また、あまり電位が
高いとアニリンの分解が生じるのでNHEに対して2.
5V以上のものは好ましくない。
As a method for synthesizing the polyaniline used in the present invention, known methods such as a method of oxidative polymerization with an oxidizing agent (hereinafter chemical oxidative polymerization) or a method of electrochemical polymerization with an electrode (hereinafter electrolytic oxidative polymerization) are used. Can be adopted. In chemical oxidative polymerization, polyaniline is synthesized by mixing an acidic solution of aniline with an oxidizing agent.
It is preferable to use an oxidant having an oxidation-reduction potential of 0.6 V or more with respect to the standard hydrogen electrode (NHE) because aniline having excellent polymerization yield and characteristics can be obtained. Below this, aniline will not polymerize. Also, if the potential is too high, the decomposition of aniline occurs, so 2.
A voltage of 5 V or higher is not preferable.

【0008】酸化剤の例としては、第二鉄塩、過硫酸
塩、過酸化水素、重クロム酸塩などを用いることができ
る。具体的には、第二鉄塩としては過塩素酸第二鉄、過
ヨウ素酸第二鉄、ホウフッ化第二鉄、ヘキサフルオロリ
ン酸第二鉄、硫酸第二鉄、硝酸第二鉄、塩化第二鉄等
が、過硫酸塩としては過硫酸アンモニウム、過硫酸ナト
リウム、過硫酸カリウムが、また重クロム酸塩としては
重クロム酸カリウム、重クロム酸ナトリウムが例示され
るが、これらに限定されるものではない。またこれらの
酸化剤のなかで過塩素酸第二鉄、過ヨウ素酸第二鉄、ホ
ウフッ化第二鉄、ヘキサフルオロリン酸第二鉄、過硫酸
アンモニウム、過酸化水素が良好な結果を与えるので特
に好ましい。これらの酸化剤は単独で用いてもよいし、
2種類以上混合して用いても良い。金属酸化膜を被覆す
るためには溶解性の優れたポリアニリンが必要であり、
用いる酸化剤の量はアニリンに対してモル数で0.1倍
〜5倍が好ましく、0.1倍〜2倍がより好ましく、
0.5倍〜2倍が特に好ましい。これらの過酸化水素以
外の酸化剤の陰イオンあるいは酸化反応後に生成する陰
イオンはポリアニリンに取り込まれるが、溶解する際に
除くので、特に制限はない。
As examples of the oxidizing agent, ferric salts, persulfates, hydrogen peroxide, dichromates and the like can be used. Specifically, as ferric salts, ferric perchlorate, ferric periodate, ferric borofluoride, ferric hexafluorophosphate, ferric sulfate, ferric nitrate, chloride Examples include ferric iron, ammonium persulfate, sodium persulfate and potassium persulfate as the persulfate, and potassium dichromate and sodium dichromate as the dichromate, but are not limited thereto. Not a thing. Among these oxidizers, ferric perchlorate, ferric periodate, ferric borofluoride, ferric hexafluorophosphate, ammonium persulfate, and hydrogen peroxide give good results. preferable. These oxidizing agents may be used alone,
You may use it in mixture of 2 or more types. In order to coat the metal oxide film, polyaniline with excellent solubility is required,
The amount of the oxidizing agent used is preferably 0.1 times to 5 times, more preferably 0.1 times to 2 times, the molar number of aniline.
0.5 times to 2 times is particularly preferable. The anions of these oxidizing agents other than hydrogen peroxide or the anions formed after the oxidation reaction are incorporated into the polyaniline, but are not particularly limited because they are excluded when dissolved.

【0009】電解酸化重合でポリアニリンを合成するに
は、電解条件で安定な酸の存在下でアニリンを電解重合
すれば良い。アニリンの酸性水溶液を用いて電解酸化重
合する方法として種々の方法を用いることができる。具
体的には定電流法、定電位法、定電圧法、電位走査法、
電位ステップ法を挙げることができるが、通電電気量を
制御するためには定電流法、定電位法が好ましい。電解
酸化重合における電流密度は、アニリン濃度、酸濃度、
重合温度によっても異なるが、通常0.001〜500
mA/cm2 の範囲である。特に、0.01〜50mA
/cm2 が好ましく、より好ましくは0.1〜20mA
/cm2 の範囲が特に好ましい。定電位法、定電圧法で
は電流密度が前記範囲に入るように条件を選べばよい。
例えば、定電位法の場合はAg/AgCl電極に対して
0.8〜10Vが好ましく、0.8〜2.0Vが特に好
ましい。
To synthesize polyaniline by electrolytic oxidation polymerization, aniline may be electrolytically polymerized in the presence of a stable acid under electrolysis conditions. Various methods can be used as a method for electrolytic oxidative polymerization using an acidic aqueous solution of aniline. Specifically, constant current method, constant potential method, constant voltage method, potential scanning method,
Although a potential step method can be mentioned, a constant current method and a constant potential method are preferable in order to control the amount of electricity supplied. Current density in electrolytic oxidative polymerization is aniline concentration, acid concentration,
Although it varies depending on the polymerization temperature, usually 0.001 to 500
It is in the range of mA / cm 2 . Particularly, 0.01 to 50 mA
/ Cm 2 is preferable, and more preferably 0.1 to 20 mA.
A range of / cm 2 is particularly preferred. In the constant potential method and the constant voltage method, the conditions may be selected so that the current density falls within the above range.
For example, in the case of the constant potential method, 0.8 to 10 V is preferable, and 0.8 to 2.0 V is particularly preferable, with respect to the Ag / AgCl electrode.

【0010】上記の両方法において、重合に用いられる
酸としては、アニリンの化学酸化重合や電解酸化重合下
で安定であり、アニリンと塩を形成し、アニリンを水溶
液中に溶解させるものであればいずれの酸でもよい。具
体的には過塩素酸、ホウフッ化水素酸、ヘキサフルオロ
リン酸、過ヨウ素酸、硫酸、塩酸、硝酸、p−トルエン
スルホン酸、メタンスルホン酸等が例示されるが、過塩
素酸、ホウフッ化水素酸、ヘキサフルオロリン酸、過ヨ
ウ素酸が良好な結果を与えるので好ましい。これらの酸
の濃度は用いるアニリンの当量以上使用すればよく、通
常は0.1規定以上で用いればよい。
In both of the above methods, the acid used for polymerization is stable as long as it is stable under the chemical oxidative polymerization or electrolytic oxidative polymerization of aniline, forms a salt with aniline and dissolves aniline in an aqueous solution. Any acid may be used. Specific examples thereof include perchloric acid, fluoroboric acid, hexafluorophosphoric acid, periodic acid, sulfuric acid, hydrochloric acid, nitric acid, p-toluenesulfonic acid and methanesulfonic acid. Hydrogenic acid, hexafluorophosphoric acid, and periodic acid are preferable because they give good results. The concentration of these acids may be equal to or more than the equivalent of the aniline used, and is usually 0.1 N or more.

【0011】反応に用いるアニリン濃度には特に限定は
ない。上限は、通常酸性溶液に溶解する濃度であるが、
反応によりアニリンは酸化されてポリアニリンとして析
出するため、溶解濃度以上用いても反応中に溶解し、反
応するために特に問題はない。下限も特に限定はない
が、あまり低濃度では効率的でないので通常は0.1モ
ル/リットル以上で用いるのが好ましい。使用されるア
ニリンの純度は特に限定されないが、95%以上のもの
が好ましい。反応はアニリンを含む酸性溶液、またはア
ニリン塩のスラリーを含む液を、化学酸化重合では酸化
剤をそのまま、あるいは酸化剤を含む溶液を加えて撹拌
すればよく、一方、電解酸化重合では上記の液を、電極
を有する電解槽に投入し、電解すればよい。反応温度、
反応時間には特に制限はないが、通常はアニリンを含む
溶液の凝固点以上沸点以下で行うが、溶解性の高いポリ
アニリンを得るためには50℃以下、より好ましくは4
0℃以下で反応するのがよい。反応時間は特に制限され
ず、用いる酸化剤や通電電流量を考慮して適宜決めるこ
とができるが、一般には5分から100時間の範囲であ
り、より好ましくは10分から50時間の範囲が実際的
である。
The concentration of aniline used in the reaction is not particularly limited. The upper limit is usually a concentration that dissolves in an acidic solution,
Since aniline is oxidized and precipitated as polyaniline by the reaction, there is no particular problem because the aniline is dissolved during the reaction and reacts even if it is used in a concentration higher than the dissolution concentration. The lower limit is also not particularly limited, but it is usually used at 0.1 mol / liter or more because it is not efficient at a too low concentration. The purity of aniline used is not particularly limited, but 95% or more is preferable. For the reaction, an acidic solution containing aniline or a solution containing a slurry of aniline salt may be stirred as it is in the oxidative chemical polymerization, or a solution containing the oxidant may be added and stirred, while in electrolytic oxidative polymerization, the above solution may be stirred. May be placed in an electrolytic cell having an electrode and electrolyzed. Reaction temperature,
The reaction time is not particularly limited, but it is usually carried out at a temperature not lower than the freezing point and not higher than the boiling point of the solution containing aniline, but 50 ° C. or lower, more preferably 4 ° C. or lower to obtain highly soluble polyaniline.
It is better to react at 0 ° C or lower. The reaction time is not particularly limited and can be appropriately determined in consideration of the oxidizing agent used and the amount of energizing current, but it is generally in the range of 5 minutes to 100 hours, and more preferably in the range of 10 minutes to 50 hours. is there.

【0012】これらの合成方法の中では、溶解性の優れ
たポリアニリンがより容易に得られるということから化
学酸化重合が好ましい。重合して得たポリアニリンは反
応に用いた酸化剤あるいは酸から由来する陰イオンを取
り込んでおり、溶解性を上げるために溶解前に陰イオン
を取り除くことが好ましい。陰イオンを取り除く方法と
しては、ポリアニリン骨格と反応しないアルカリ性化合
物を接触させればよい。用いるアルカリとしては例え
ば、重合で得たポリアニリンを投入後に、溶液のpHが
11以上になるようなものであれば、特に制限はない
が、水酸化ナトリウム、水酸化カリウム、水酸化リチウ
ム、アンモニア水、ヒドラジン、アルキルアミンなどが
挙げられる。このようにして得られたポリアニリンは一
般に平均的には下記の繰り返し単位を主たる構造として
いると言われている。
Of these synthetic methods, chemical oxidative polymerization is preferable because polyaniline having excellent solubility can be easily obtained. The polyaniline obtained by polymerization incorporates anions derived from the oxidizing agent or acid used in the reaction, and it is preferable to remove the anions before dissolution in order to increase the solubility. As a method for removing anions, an alkaline compound that does not react with the polyaniline skeleton may be contacted. The alkali used is not particularly limited as long as the pH of the solution becomes 11 or more after the polyaniline obtained by the polymerization is added, but it is not particularly limited, but sodium hydroxide, potassium hydroxide, lithium hydroxide, aqueous ammonia is used. , Hydrazine, and alkylamines. The polyaniline thus obtained is generally said to have, on average, the following repeating units as the main structure.

【0013】[0013]

【化1】 (0≦m≦1、0≦n≦1、m+n=1)[Chemical 1] (0 ≦ m ≦ 1, 0 ≦ n ≦ 1, m + n = 1)

【0014】ポリアニリンを溶かす溶媒としては、ポリ
アニリンを十分に溶解させることのできるものであれ
ば、特に制限はない。具体的にはN,N−ジメチルホル
ムアミド、N,N−ジメチルアセトアミド、ジメチルス
ルホキシド、プロピレンカーボネート、γ−ブチロラク
トン、N−メチル−2−ピロリドン、1,3−ジメチル
−2−イミダゾリジノンが例示されるが、溶解性の大き
なN,N−ジメチルホルムアミド、N,N−ジメチルア
セトアミド、N−メチル−2−ピロリドン、1,3−ジ
メチル−2−イミダゾリジノンが好ましい。溶解時にポ
リアニリンが完全に溶解せず不溶分がある場合には、そ
れを分離した方が好ましいが、必ずしも分離する必要は
ない。このとき、溶解したポリアニリンの濃度は、ポリ
アニリン膜成形時に形状を保つのに十分な粘度を持つよ
うな範囲であればよく、ポリアニリンの合成法と溶媒の
種類にもよるが、通常は0.1〜20重量%の範囲であ
り、好ましくは0.5〜15重量%、より好ましくは、
1〜10重量%である。
The solvent for dissolving polyaniline is not particularly limited as long as it can sufficiently dissolve polyaniline. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, propylene carbonate, γ-butyrolactone, N-methyl-2-pyrrolidone, and 1,3-dimethyl-2-imidazolidinone. However, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and 1,3-dimethyl-2-imidazolidinone, which have high solubility, are preferable. When the polyaniline is not completely dissolved at the time of dissolution and there is an insoluble matter, it is preferable to separate it, but it is not always necessary to separate it. At this time, the concentration of the dissolved polyaniline may be within a range such that the polyaniline film has a sufficient viscosity to maintain its shape during the formation of the polyaniline film. To 20% by weight, preferably 0.5 to 15% by weight, more preferably
It is 1 to 10% by weight.

【0015】本発明において高分子バインダーとは、ポ
リアニリンに用いる溶媒に可溶であり、酸化膜と親和性
を持ち、ポリアニリンと良く混ざって、層にしたとき極
端に相分離しない、比較的親和性のある高分子物質を意
味する。このような高分子物質としては上記の性質を有
するものであれば、特に限定されるものではなく、例え
ば公知の芳香族ポリアミック酸(以下ポリアミック酸と
略す。)、可溶性の芳香族ポリイミド(以下可溶性ポリ
イミドと略す。)、ポリエチレングリコ−ル、ポリプロ
ピレングリコール等のポリアルキレングリコール類、ビ
ニル化合物の重合体等が例示される。具体的にはポリア
ミック酸としては、下記化2
In the present invention, the polymer binder is soluble in a solvent used for polyaniline, has an affinity with an oxide film, is well mixed with polyaniline, and does not undergo phase separation extremely when formed into a layer, and has a relatively affinity. Means a polymer substance having The polymer substance is not particularly limited as long as it has the above properties, and examples thereof include known aromatic polyamic acid (hereinafter abbreviated as polyamic acid), soluble aromatic polyimide (hereinafter soluble). Abbreviated as polyimide), polyalkylene glycols such as polyethylene glycol and polypropylene glycol, and polymers of vinyl compounds. Specifically, as the polyamic acid,

【0016】[0016]

【化2】 (Arは4価の芳香族基、Ar’2価の芳香族基を示
す。)で表される繰り返し単位を有するものであり、A
rとしては、下記化3で表される
[Chemical 2] (Ar represents a tetravalent aromatic group or an Ar ′ divalent aromatic group.)
r is represented by the following chemical formula 3.

【0017】[0017]

【化3】 等の4価の芳香族基が、Ar’としては、下記化4で表
される
[Chemical 3] And the like, a tetravalent aromatic group such as Ar ′ is represented by the following chemical formula 4.

【0018】[0018]

【化4】 等の2価の芳香族基が例示され、また、可溶性ポリイミ
ドとしては下記化5
[Chemical 4] And divalent aromatic groups such as

【0019】[0019]

【化5】 (Arは上記と同じものを意味し、Ar" は複素環を有
する2価の芳香族基を示す。)で表される繰り返し単位
を有するポリイミドであり、Ar"としては下記化6で
表される
[Chemical 5] (Ar means the same as the above, and Ar ″ represents a divalent aromatic group having a heterocycle.), Which is a polyimide having a repeating unit represented by the following Chemical Formula 6 Ru

【0020】[0020]

【化6】 等の複素環を有する2価の芳香族基が挙げられる。な
お、Ar、Ar’、Ar"は上記芳香環に置換基を有し
ていてもよい。上記ポリアミック酸および可溶性ポリイ
ミドの重合度は特に限定されないが、通常10〜100
00の範囲、好ましくは20〜1000の範囲から適宜
選べばよい。また、ビニル化合物の重合体としてはポリ
メチルメタクリレート、ポリメチルアクリレート等のア
クリル系樹脂が例示される。これらの高分子バインダー
の中では良好な密着性を与える分子量300〜10,0
00のポリエチレングリコ−ル、あるいはポリアミック
酸や可溶性ポリイミドが好ましく、さらに好ましくはポ
リエチレングリコ−ルあるいはポリアミック酸である。
高分子バインダーの量は少なすぎると密着性改善に十分
な効果がなく、また多すぎると得られる電解コンデンサ
の誘電特性に悪影響を及ぼすので好ましくない。高分子
バインダーの種類にもよるが、ポリアニリンに対して1
〜25重量%混合すればよく、より好ましくは2〜15
重量%であり、さらに好ましくは3〜10重量%であ
る。
[Chemical 6] And a divalent aromatic group having a heterocycle. Ar, Ar ′, and Ar ″ may have a substituent on the aromatic ring. The polyamic acid and the soluble polyimide are not particularly limited in polymerization degree, but are usually 10 to 100.
00, preferably 20-1000. Examples of the vinyl compound polymer include acrylic resins such as polymethyl methacrylate and polymethyl acrylate. Among these polymer binders, a molecular weight of 300 to 10,0 which gives good adhesiveness
No. 00 polyethylene glycol, polyamic acid or soluble polyimide is preferable, and polyethylene glycol or polyamic acid is more preferable.
If the amount of the polymer binder is too small, there is not a sufficient effect for improving the adhesiveness, and if it is too large, the dielectric properties of the obtained electrolytic capacitor are adversely affected, which is not preferable. 1 for polyaniline, depending on the type of polymer binder
˜25 wt% may be mixed, more preferably 2 to 15
%, More preferably 3 to 10% by weight.

【0021】得られた溶液から金属酸化被膜上にポリア
ニリンと上記高分子バインダーとの混合物の膜(以後ポ
リアニリン膜と略称する場合がある。)を形成する方法
としては、特に限定はないが、ポリアニリンと高分子バ
インダーとの混合溶液を金属酸化被膜上に塗布する方法
の他、キャスト法、ディッピング法などが用いられる。
これらの方法を1回または2回以上行って十分な厚さの
ポリアニリン膜を得ることができる。次いで溶媒を除い
て膜を形成するため乾燥するが、その方法としては公知
の方法が採用でき、例えば不活性雰囲気下で加熱乾燥す
る方法、減圧下で加熱乾燥する方法が一般的である。沸
点の高い溶媒を用いた場合、水、メタノール、アセトン
等の低沸点の溶媒で置換した後に加熱乾燥しても良い。
このようにして作成されるポリアニリンの膜厚は厚すぎ
ると膜内部への陰イオンの添加が困難となり、薄過ぎる
と強度が不足するため、0.1〜1000μmの範囲が
好ましく、0.5〜100μmの範囲がより好ましい。
The method for forming a film of a mixture of polyaniline and the above-mentioned polymer binder (hereinafter sometimes abbreviated as polyaniline film) on the metal oxide film from the obtained solution is not particularly limited, but polyaniline is used. In addition to the method of coating a mixed solution of a polymer binder with a metal oxide film on the metal oxide film, a casting method, a dipping method, or the like is used.
By performing these methods once or twice or more, a polyaniline film having a sufficient thickness can be obtained. Then, the solvent is removed and the film is dried to form a film. As the method, a known method can be adopted. For example, a method of heating and drying under an inert atmosphere and a method of heating and drying under reduced pressure are common. When a solvent having a high boiling point is used, the solvent may be replaced with a solvent having a low boiling point such as water, methanol or acetone and then dried by heating.
If the film thickness of the polyaniline thus prepared is too thick, it becomes difficult to add anions to the inside of the film, and if it is too thin, the strength is insufficient. The range of 100 μm is more preferable.

【0022】得られたポリアニリン膜に陰イオンを添加
する方法、すなわち陰イオンをドープする方法として
は、加えたい陰イオンからなる酸の溶液にポリアニリン
膜を浸漬し、反応させる方法が例示される。この場合、
陰イオンは重合時のものと同一であることは必要なく、
他の陰イオンに交換してもよい。用いる酸は金属の酸化
被膜を容易に腐食せず、ポリアニリン膜に十分な導電性
を与えるものであり、pKaが4以下のプロトン酸が好
ましい。具体的には過塩素酸、ホウ弗化水素酸、硫酸、
硝酸、p−トルエンスルホン酸、メタンスルホン酸、ト
リフルオロメタンスルホン酸、ポリスチレンスルホン
酸、ポリビニルスルホン酸等が例示されるが、硫酸、p
−トルエンスルホン酸、メタンスルホン酸、ポリスチレ
ンスルホン酸が良好な結果を与えるので好ましい。ポリ
アニリン膜を付けた金属をこれらの溶液に浸漬すること
により、陰イオンをポリアニリンに添加できる。このと
きの温度、時間に特に制限はないが、通常1分以上、1
00時間以内、好ましくは5分以上24時間以内であ
り、温度は使用する溶液が凝固しない温度以上であり、
溶液の沸点以下である。例えば、水の場合は0℃から1
00℃である。酸処理の後は余分の酸を除去することが
金属電極を腐食させないことから好ましい。
An example of a method of adding anions to the obtained polyaniline film, that is, a method of doping anions, is a method of immersing the polyaniline film in a solution of an acid containing the anion to be added and reacting it. in this case,
The anion does not have to be the same as at the time of polymerization,
It may be exchanged for another anion. The acid used does not easily corrode the metal oxide film and gives sufficient conductivity to the polyaniline film, and a protic acid having a pKa of 4 or less is preferable. Specifically, perchloric acid, borofluoric acid, sulfuric acid,
Nitric acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, polystyrenesulfonic acid, polyvinylsulfonic acid, etc. are exemplified, but sulfuric acid, p
-Toluenesulfonic acid, methanesulfonic acid, polystyrenesulfonic acid are preferred because they give good results. Anions can be added to polyaniline by immersing the metal with the polyaniline film in these solutions. The temperature and time at this time are not particularly limited, but usually 1 minute or more, 1
00 hours or less, preferably 5 minutes or more and 24 hours or less, the temperature is above the temperature at which the solution used does not solidify,
It is below the boiling point of the solution. For example, 0 ℃ to 1 for water
It is 00 ° C. It is preferable to remove excess acid after the acid treatment because it does not corrode the metal electrode.

【0023】ヒドラジンなどの還元性のアルカリ化合物
で脱イオン処理を行ったポリアニリンからポリアニリン
膜を作成した場合、陰イオン添加に加えて酸化を行う方
が高い導電性が得られるので好ましい。酸化方法には特
に制限はないが、化学酸化法、電解酸化法が例示され
る。具体的には、第二鉄塩、過硫酸塩、過酸化水素、重
クロム酸塩などの酸化剤による酸化、酸化電位以上での
電解酸化、空気による酸化が例示される。これらの方法
のうち、酸化剤による方法が実際的で好ましい。酸化剤
としては、過塩素酸第二鉄、ホウフッ化第二鉄、硝酸第
二鉄、硫酸第二鉄、過硫酸アンモニウム、過硫酸カリウ
ムが好ましい。酸化は、成膜後随時行うことができる
が、十分な電導度を得るためにはポリアニリンへの陰イ
オン追加の前、または同時に行うことが好ましい。
When a polyaniline film is prepared from polyaniline which has been deionized with a reducing alkali compound such as hydrazine, it is preferable to carry out oxidation in addition to addition of anions because high conductivity can be obtained. The oxidation method is not particularly limited, but examples thereof include a chemical oxidation method and an electrolytic oxidation method. Specific examples include oxidation with ferric salts, persulfates, hydrogen peroxide, dichromates and the like, electrolytic oxidation at oxidation potential or higher, and oxidation with air. Of these methods, the method using an oxidizing agent is practical and preferable. As the oxidizing agent, ferric perchlorate, ferric borofluoride, ferric nitrate, ferric sulfate, ammonium persulfate and potassium persulfate are preferable. The oxidation can be performed at any time after the film formation, but it is preferable to perform the oxidation before or at the same time as the addition of an anion to the polyaniline in order to obtain a sufficient conductivity.

【0024】このようにして得られたポリアニリン膜は
10-2〜102 S/cmの電導度を示し、固体電解コン
デンサの電解質として優れた特性を示す。このポリアニ
リン膜に、カーボンペーストや銀ペーストなどの一般的
に使用される導電性ペーストで端子を形成し、電極 (対
極) とする。また、常法に従い、エポキシ樹脂等の高分
子封止材で封止、または金属容器に封入することにより
コンデンサとする。
The polyaniline film thus obtained exhibits an electric conductivity of 10 -2 to 10 2 S / cm and exhibits excellent characteristics as an electrolyte of a solid electrolytic capacitor. A terminal is formed on this polyaniline film with a commonly used conductive paste such as carbon paste or silver paste to form an electrode (counter electrode). Further, according to a conventional method, a capacitor is obtained by sealing with a polymer sealing material such as epoxy resin or enclosing it in a metal container.

【実施例】以下に実施例及び比較例により本発明をより
具体的に説明するが、本発明はこれらにより限定される
ものではない。
EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited thereto.

【0025】参考例1(アニリンの重合) 0.015モルのアニリンを1規定の過塩素酸水溶液3
0mlに溶解させた。これに0.015モルの過硫酸ア
ンモニウムを20mlの1規定過塩素酸水溶液に溶かし
たものをゆっくりと滴下し、氷冷で1 時間反応させた。
生成した沈澱を濾過して水洗した。この沈澱を1規定水
酸化ナトリウム水溶液に添加して陰イオンを除く処理を
行った。処理後、十分に水洗、メタノール洗浄した。処
理されたポリアニリンを減圧乾燥機に入れ、60℃で6
時間真空乾燥して粉末状ポリアニリンを得た。得られた
粉末状ポリアニリンのうち0.08gを3.92gのN
−メチル−2−ピロリドンに溶解させた。その際、9
8.5%以上が溶解した。
Reference Example 1 (Polymerization of aniline) 0.015 mol of aniline was used as a 1N aqueous solution of perchloric acid 3
It was dissolved in 0 ml. A solution prepared by dissolving 0.015 mol of ammonium persulfate in 20 ml of a 1N aqueous solution of perchloric acid was slowly added dropwise thereto, and the mixture was allowed to react with ice for 1 hour.
The precipitate formed was filtered and washed with water. The precipitate was added to a 1N aqueous sodium hydroxide solution to remove anions. After the treatment, it was thoroughly washed with water and methanol. The treated polyaniline was placed in a vacuum dryer and placed at 60 ° C for 6 hours.
After vacuum drying for a period of time, powdery polyaniline was obtained. Of the powdery polyaniline obtained, 0.08 g was replaced with 3.92 g of N 2.
-Dissolved in methyl-2-pyrrolidone. At that time, 9
8.5% or more was dissolved.

【0026】実施例1 p−フェニレンジアミン0.005モルと4,4’−ビ
フタル酸二無水物0.005モルをN−メチル−2−ピ
ロリドン (NMP)に溶かして20.00gの溶液とし
た。この溶液を窒素雰囲気下、0℃で8時間攪拌し、反
応させてポリアミック酸のNMP溶液を得た。次にこの
ポリアミック酸溶液を参考例1で得られたポリアニリン
の溶液にポリアミック酸がポリアニリンに対して5重量
%となるように混合した。
Example 1 0.005 mol of p-phenylenediamine and 0.005 mol of 4,4'-biphthalic dianhydride were dissolved in N-methyl-2-pyrrolidone (NMP) to give a solution of 20.00 g. .. This solution was stirred at 0 ° C. for 8 hours in a nitrogen atmosphere and reacted to obtain an NMP solution of polyamic acid. Next, this polyamic acid solution was mixed with the solution of polyaniline obtained in Reference Example 1 so that the polyamic acid content was 5% by weight with respect to polyaniline.

【0027】250μm厚のアルミニウム板を用いホウ
酸アンモニウム水溶液を電解浴として化成処理を行って
形成した厚さ0.12μmの誘電体酸化被膜上に得られ
たポリアニリンとポリアミック酸混合膜を作成し、一部
(面積0.123cm2 )を1規定硫酸水溶液で3分間
処理して、酸処理を行った。水洗後、減圧乾燥し、カ−
ボンペ−ストで端子を取り、コンデンサを作成した。こ
の電解コンデンサの特性をLCRメーター(横河ヒュー
レットパッカード社製4274A)で測定したところ、
120Hzで静電容量が65nF/cm2 、tanδが
5.1%であり、1kHzで静電容量が62nF/cm
2 、tanδが3.2%であった。酸化膜とポリアニリ
ン膜の密着性は良好であり、セロハン粘着テ−プによる
剥離を調べたが、酸処理後でも殆ど剥離は見られなかっ
た。
A polyaniline / polyamic acid mixed film obtained was formed on a dielectric oxide film having a thickness of 0.12 μm formed by performing a chemical conversion treatment using an aqueous solution of ammonium borate as an electrolytic bath using an aluminum plate having a thickness of 250 μm. Part (area 0.123 cm 2 ) was treated with a 1N aqueous sulfuric acid solution for 3 minutes to perform acid treatment. After washing with water and vacuum drying,
The terminals were taken with a bomb paste to create a capacitor. The characteristics of this electrolytic capacitor were measured with an LCR meter (Yokogawa Hewlett Packard 4274A).
At 120 Hz, the capacitance is 65 nF / cm 2 , tan δ is 5.1%, and at 1 kHz, the capacitance is 62 nF / cm.
2 , tan δ was 3.2%. The adhesion between the oxide film and the polyaniline film was good, and the peeling with a cellophane adhesive tape was examined, but almost no peeling was observed even after the acid treatment.

【0028】実施例2 実施例1と同様に、0.12μmの誘電体酸化被膜を有
する250μm厚のアルミニウム板にポリアニリン−ポ
リアミック酸膜を形成し、一部(面積0.144cm
2 )を1規定ポリスチレンスルホン酸水溶液で3分間処
理した。水洗後、減圧乾燥し、カ−ボンペーストで端子
を取り、コンデンサを作成した。この電解コンデンサの
特性を測定したところ、120Hzで静電容量が71n
F/cm2 、tanδが3.6%であり、1kHzで静
電容量が66nF/cm 2 、tanδが7.5%であっ
た。なお、ポリアニリン−ポリアミック酸膜にセロハン
粘着テープを貼合後引き剥がしたが、該膜の剥離は見ら
れなかった。
Example 2 As in Example 1, a dielectric oxide film of 0.12 μm was formed.
On a 250 μm thick aluminum plate
A realic acid film is formed, and a part (area 0.144 cm
2 ) Is treated with 1N polystyrene sulfonic acid aqueous solution for 3 minutes.
I understood After washing with water, dry under reduced pressure, and then use carbon paste for terminals.
Then, a capacitor was created. Of this electrolytic capacitor
When the characteristics were measured, the electrostatic capacity was 71 n at 120 Hz.
F / cm2 , Tan δ is 3.6% and static at 1 kHz
Capacitance is 66 nF / cm 2 , Tan δ is 7.5%
It was It should be noted that the polyaniline-polyamic acid film should be coated with cellophane.
The adhesive tape was attached and then peeled off, but no peeling of the film was observed.
I couldn't.

【0029】実施例3 厚さ50μm、純度99.99%のタンタル板(2cm
×5cm)に常法の陽極酸化法に従い、1vol%のリ
ン酸水溶液を電解浴として、3mA/cm2 で100V
まで定電流化成処理し、その後定電圧化成処理を60分
行い、0.12μm厚の酸化被膜を形成した。この酸化
被膜を有するタンタル板上にポリアニリン溶液を流延
し、60℃で6時間真空乾燥した。参考例1で得たポリ
アニリン溶液にポリエチレングリコ−ル(和光純薬
(株)製、分子量2000)をポリアニリンに対して5
重量%混合して、タンタル板の酸化被膜上に形成したポ
リアニリン膜の一部(面積0.172cm2 )を、1規
定ポリスチレンスルホン酸水溶液で5分間処理してポリ
スチレンスルホン酸イオンを添加した後、水洗し、減圧
乾燥した。この処理により、ポリアニリン膜のドープ部
分は黒緑色になり電導度1.1×10-1S/cmの導体
となったが、ドープされていない部分は10-9S/cm
以下の絶縁体のままであった。次いで、カーボンペース
トでポリアニリン膜のドープされた部分上に端子を形成
し、コンデンサを作成した。この電解コンデンサの特性
を測定したところ、120Hzで静電容量が162nF
/cm2 、tanδが1.4%であり、1kHzで静電
容量が162nF/cm2 、tanδが1.3%であっ
た。酸化膜とポリアニリン膜の密着性は良好であり、実
施例1と同様にセロハン粘着テ−プによる剥離を調べた
が、ポリエチレングリコ−ル混合物薄膜では酸処理後で
も殆ど剥離は見られなかった。
Example 3 A tantalum plate (2 cm) having a thickness of 50 μm and a purity of 99.99%
× 5 cm) according to a conventional anodic oxidation method, using a 1 vol% phosphoric acid aqueous solution as an electrolytic bath, and 100 V at 3 mA / cm 2 .
Constant current chemical conversion treatment, and then constant voltage chemical conversion treatment for 60 minutes to form an oxide film having a thickness of 0.12 μm. The polyaniline solution was cast on the tantalum plate having this oxide film, and vacuum dried at 60 ° C. for 6 hours. In the polyaniline solution obtained in Reference Example 1, polyethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., molecular weight 2000) was added to the polyaniline at 5%.
After mixing by weight%, a part (area: 0.172 cm 2 ) of the polyaniline film formed on the oxide film of the tantalum plate was treated with a 1N polystyrenesulfonic acid aqueous solution for 5 minutes to add polystyrenesulfonate ion, It was washed with water and dried under reduced pressure. By this treatment, the doped portion of the polyaniline film turned black green and became a conductor having an electric conductivity of 1.1 × 10 -1 S / cm, but the undoped portion was 10 -9 S / cm.
It remained the following insulator. Next, a terminal was formed on the doped portion of the polyaniline film with carbon paste to form a capacitor. When the characteristic of this electrolytic capacitor was measured, the electrostatic capacity was 162 nF at 120 Hz.
/ Cm 2 and tan δ were 1.4%, the electrostatic capacity was 162 nF / cm 2 and tan δ was 1.3% at 1 kHz. The adhesion between the oxide film and the polyaniline film was good, and the peeling by the cellophane adhesive tape was examined in the same manner as in Example 1, but the polyethylene glycol mixture thin film showed almost no peeling even after the acid treatment.

【0030】実施例4 参考例1で得たポリアニリン溶液と実施例1で得たポリ
アミック酸溶液を混合した溶液を用い、実施例3と同様
にしてタンタル板の酸化被膜上にポリアニリン−ポリア
ミック酸混合膜を形成した。ポリアミック酸の混合割合
はポリアニリンに対して5重量%であった。この膜を1
規定ポリスチレンスルホン酸水溶液で5分間処理してポ
リスチレンスルホン酸イオンを添加した後、水洗し、減
圧乾燥した。次いで、カーボンペーストでポリアニリン
膜のドープされた部分上に端子を形成し、コンデンサを
作成した。この電解コンデンサの特性を測定したとこ
ろ、120Hzで静電容量が159nF/cm2 、ta
nδが6.5%であり、1kHzで静電容量が153n
F/cm2 、tanδが2.9%であった。酸化膜とポ
リアニリン膜の密着性は良好であり、実施例1と同様に
セロハン粘着テ−プによる剥離は見られなかった。
Example 4 Using the solution prepared by mixing the polyaniline solution obtained in Reference Example 1 and the polyamic acid solution obtained in Example 1, a polyaniline-polyamic acid mixture was formed on the oxide film of the tantalum plate in the same manner as in Example 3. A film was formed. The mixing ratio of polyamic acid was 5% by weight with respect to polyaniline. This film 1
After treatment with a specified polystyrene sulfonic acid aqueous solution for 5 minutes to add polystyrene sulfonate ion, the product was washed with water and dried under reduced pressure. Next, a terminal was formed on the doped portion of the polyaniline film with carbon paste to form a capacitor. When the characteristics of this electrolytic capacitor were measured, the electrostatic capacity was 159 nF / cm 2 , ta at 120 Hz.
nδ is 6.5% and the electrostatic capacity is 153n at 1 kHz.
F / cm 2 and tan δ were 2.9%. Adhesion between the oxide film and the polyaniline film was good, and peeling due to the cellophane adhesive tape was not seen as in Example 1.

【0031】実施例5 200μm厚のチタニウム板を用い、ホウ酸アンモニウ
ムのエチレングリコール溶液を電解浴として75Vで化
成処理して形成した厚さ0.17μmの誘電体酸化被膜
上に、参考例1で得たポリアニリン溶液と、ポリエチレ
ングリコ−ル(和光純薬(株)製、分子量2000)を
ポリアニリンに対して5重量%混合して、ポリアニリン
−ポリエチレングリコ−ル混合膜を形成した。この一部
を、1規定ポリスチレンスルホン酸水溶液で5分間処理
してポリスチレンスルホン酸イオンを添加した後、水洗
し、減圧した。次にカーボンペーストでポリアニリン−
ポリエチレングリコ−ル膜上に端子を形成し、コンデン
サを作成した。この電解コンデンサの特性を測定したと
ころ、120Hzで静電容量が289nF/cm2、t
anδが3.3%であり、1kHzで静電容量が292
nF/cm2 、tanδが21%であった。酸化膜とポ
リアニリン膜の密着性は良好であり、実施例1と同様に
セロハン粘着テ−プによる剥離は見られなかった。
Example 5 Using a 200 μm thick titanium plate, a 0.17 μm thick dielectric oxide film formed by chemical conversion treatment of an ethylene glycol solution of ammonium borate as an electrolytic bath at 75 V was carried out in Reference Example 1. The obtained polyaniline solution and polyethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., molecular weight 2000) were mixed in an amount of 5% by weight with respect to polyaniline to form a polyaniline-polyethylene glycol mixed film. A portion of this was treated with a 1N polystyrene sulfonic acid aqueous solution for 5 minutes to add polystyrene sulfonate ions, washed with water, and depressurized. Next, use carbon paste for polyaniline-
A terminal was formed on the polyethylene glycol film to prepare a capacitor. When the characteristics of this electrolytic capacitor were measured, the electrostatic capacity was 289 nF / cm 2 , t at 120 Hz.
anδ is 3.3%, and the capacitance is 292 at 1 kHz.
The nF / cm 2 and tan δ were 21%. Adhesion between the oxide film and the polyaniline film was good, and peeling due to the cellophane adhesive tape was not seen as in Example 1.

【0032】実施例6 実施例5と同様に、チタニウム板の酸化被膜上に参考例
1で得たポリアニリン溶液と実施例1で得たポリアミッ
ク酸溶液を混合した溶液を用いて、ポリアニリン−ポリ
アミック酸混合膜を形成した。ポリアミック酸の混合割
合はポリアニリンに対して5重量%であった。この膜を
1規定ポリスチレンスルホン酸水溶液で5分間処理して
ポリスチレンスルホン酸イオンを添加した後、水洗し、
減圧乾燥した。次いで、カーボンペーストでポリアニリ
ン膜のドープされた部分上に端子を形成し、コンデンサ
を作成した。この電解コンデンサの特性を測定したとこ
ろ、120Hzで静電容量が267nF/cm2 、ta
nδが24%であり、1kHzで静電容量が250nF
/cm2 、tanδが6.7%であった。酸化チタニウ
ム膜とポリアニリン膜の密着性は良好であり、実施例1
と同様にセロハン粘着テ−プによる剥離は見られなかっ
た。
Example 6 In the same manner as in Example 5, polyaniline-polyamic acid was prepared by using a solution prepared by mixing the polyaniline solution obtained in Reference Example 1 and the polyamic acid solution obtained in Example 1 on the oxide film of a titanium plate. A mixed film was formed. The mixing ratio of polyamic acid was 5% by weight with respect to polyaniline. This membrane was treated with a 1N polystyrene sulfonic acid aqueous solution for 5 minutes to add polystyrene sulfonate ions, and then washed with water,
It was dried under reduced pressure. Next, a terminal was formed on the doped portion of the polyaniline film with carbon paste to form a capacitor. When the characteristics of this electrolytic capacitor were measured, the electrostatic capacity at 120 Hz was 267 nF / cm 2 , ta
nδ is 24% and the capacitance is 250 nF at 1 kHz
/ Cm 2 and tan δ were 6.7%. Adhesion between the titanium oxide film and the polyaniline film was good, and Example 1
No peeling due to cellophane adhesive tape was observed as in the above.

【0033】比較例1 実施例1で得た厚さ0.12μmの誘電体酸化被膜を有する
アルミニウム板上に、参考例1で得たポリアニリン溶液
を用い、実施例1と同様にしてポリアニリン膜を形成
し、一部(面積0.144cm2)を1規定硫酸水溶液で3分間
処理した。ポリアニリン膜の一部が剥離していた。剥離
していない部分にカーボンペーストでポリアニリン上に
端子を形成し、コンデンサを作成した。この電解コンデ
ンサの特性を測定したところ、120Hzで静電容量が
71nF/cm2 、tanδが8.8%であり、1kH
zで静電容量が66nF/cm2 、tanδが7.1%
であった。酸化チタニウム膜とポリアニリン膜の密着性
は良くなく、セロハン粘着テ−プによる剥離が起こっ
た。
Comparative Example 1 A polyaniline film was formed in the same manner as in Example 1 by using the polyaniline solution obtained in Reference Example 1 on an aluminum plate having a dielectric oxide film with a thickness of 0.12 μm obtained in Example 1. Then, a part (area 0.144 cm 2) was treated with a 1N sulfuric acid aqueous solution for 3 minutes. A part of the polyaniline film was peeled off. A terminal was formed on the polyaniline with a carbon paste in a portion which was not peeled off to prepare a capacitor. When the characteristics of this electrolytic capacitor were measured, the electrostatic capacity was 71 nF / cm 2 , tan δ was 8.8% at 120 Hz, and it was 1 kHz.
z has a capacitance of 66 nF / cm 2 and tan δ of 7.1%
Met. The adhesion between the titanium oxide film and the polyaniline film was not good, and peeling occurred due to the cellophane adhesive tape.

【0034】比較例2 実施例3で得た酸化被膜を有するタンタル板上に参考例
1で得たポリアニリン溶液を流延し、60℃で6時間真
空乾燥した。得られたポリアニリン膜の一部(面積0.
127cm2 )を、1規定硫酸水溶液で5分間処理して
硫酸イオンを添加した後、水洗し、減圧乾燥した。この
処理により、ポリアニリン膜のドープ部分は黒緑色にな
り電導度1.1×10-1S/cmの導体となったが、ド
ープされていない部分は10-9S/cm以下の絶縁体の
ままであった。次いで、カーボンペーストでポリアニリ
ン膜のドープされた部分上に端子を形成し、コンデンサ
を作成した。この電解コンデンサの特性を測定したとこ
ろ、120Hzで静電容量が142nF/cm2 、ta
nδが3.4%であり、1kHzで静電容量が137n
F/cm2 、tanδが2.9%であった。酸化膜とポ
リアニリン膜の密着性を、セロハン粘着テ−プによる剥
離により調べたが、所々に剥離が見られた。
Comparative Example 2 The polyaniline solution obtained in Reference Example 1 was cast on the tantalum plate having an oxide film obtained in Example 3 and vacuum dried at 60 ° C. for 6 hours. Part of the obtained polyaniline film (area: 0.
127 cm 2 ) was treated with a 1N sulfuric acid aqueous solution for 5 minutes to add sulfate ions, washed with water, and dried under reduced pressure. By this treatment, the doped portion of the polyaniline film turned black green and became a conductor having an electric conductivity of 1.1 × 10 -1 S / cm, but the undoped portion was made of an insulator of 10 -9 S / cm or less. It remained. Next, a terminal was formed on the doped portion of the polyaniline film with carbon paste to form a capacitor. When the characteristics of this electrolytic capacitor were measured, the electrostatic capacity at 120 Hz was 142 nF / cm 2 , ta
nδ is 3.4% and the capacitance is 137n at 1 kHz.
F / cm 2 and tan δ were 2.9%. The adhesion between the oxide film and the polyaniline film was examined by peeling with a cellophane adhesive tape, but peeling was observed in some places.

【0035】比較例3 実施例3で得た0.12μm厚の酸化被膜を有するタン
タル板上に参考例1で得たポリアニリン溶液を流延し、
60℃で6時間真空乾燥した。この膜を1規定ポリスチ
レンスルホン酸水溶液で5分間処理してポリスチレンス
ルホン酸イオンを添加した後、水洗し、減圧乾燥した。
その過程で、 酸化被膜からの一部のポリアニリン膜の
剥がれが見られた。カーボンペーストで剥離の無いポリ
アニリン膜部分上に端子を形成し、コンデンサを作成し
た。この電解コンデンサの特性を測定したところ、12
0Hzで静電容量が125nF/cm2、tanδが
5.2%であり、1kHzで静電容量が121nF/c
2 、tanδが2.9%であった。酸化膜とポリアニ
リン膜の密着性を、セロハン粘着テ−プによる剥離によ
り調べたが、所々に剥離が見られた。
Comparative Example 3 The polyaniline solution obtained in Reference Example 1 was cast on the tantalum plate having a 0.12 μm thick oxide film obtained in Example 3,
It was vacuum dried at 60 ° C. for 6 hours. This membrane was treated with a 1N polystyrene sulfonic acid aqueous solution for 5 minutes to add polystyrene sulfonate ions, then washed with water and dried under reduced pressure.
In the process, part of the polyaniline film was peeled from the oxide film. A terminal was formed on the polyaniline film portion which was not peeled off with the carbon paste, and a capacitor was prepared. When the characteristics of this electrolytic capacitor were measured, 12
The capacitance is 125 nF / cm 2 and tan δ is 5.2% at 0 Hz, and the capacitance is 121 nF / c at 1 kHz.
m 2 and tan δ were 2.9%. The adhesion between the oxide film and the polyaniline film was examined by peeling with a cellophane adhesive tape, but peeling was observed in some places.

【0036】比較例4 ポリアニリンへのポリアミック酸の混合割合を30重量
%とした他は、実施例4と同様にしてタンタル板の酸化
被膜上にポリアニリンとポリアミック酸の混合膜を形成
した。この膜を1規定ポリスチレンスルホン酸水溶液で
5分間処理してポリスチレンスルホン酸イオンを添加し
た後、水洗し、減圧乾燥した。次いで、カーボンペース
トでポリアニリン膜のドープされた部分上に端子を形成
し、コンデンサを作成した。この電解コンデンサの特性
を測定したところ、120Hzで静電容量が179nF
/cm2 、tanδが36.9%であり、1kHzで静
電容量が40nF/cm2 、tanδが147%で、t
anδが非常に劣っていた。なお、酸化膜とポリアニリ
ン膜の密着性は良好であった。
Comparative Example 4 A mixed film of polyaniline and polyamic acid was formed on an oxide film of a tantalum plate in the same manner as in Example 4 except that the mixing ratio of polyamic acid to polyaniline was 30% by weight. This membrane was treated with a 1N polystyrene sulfonic acid aqueous solution for 5 minutes to add polystyrene sulfonate ions, then washed with water and dried under reduced pressure. Next, a terminal was formed on the doped portion of the polyaniline film with carbon paste to form a capacitor. When the characteristic of this electrolytic capacitor was measured, the electrostatic capacity was 179 nF at 120 Hz.
/ Cm 2 , tan δ is 36.9%, the electrostatic capacitance is 40 nF / cm 2 , tan δ is 147% at 1 kHz, and t
The an δ was very poor. The adhesion between the oxide film and the polyaniline film was good.

【0037】比較例5 実施例6と同様に、チタニウム板の酸化被膜上に参考例
1で得たポリアニリン溶液と実施例1で得たポリアミッ
ク酸溶液を混合し、それらの混合膜を形成した。ポリア
ミック酸の混合割合はポリアニリンに対して30重量%
であった。この膜を1規定ポリスチレンスルホン酸水溶
液で5分間処理してポリスチレンスルホン酸イオンを添
加した後、水洗し、室温で72時間乾燥した。次いで、
カーボンペーストでポリアニリン膜のドープされた部分
上に端子を形成し、コンデンサを作成した。この電解コ
ンデンサの特性を測定したところ、120Hzで静電容
量が237nF/cm2 、tanδが61%であり、1
kHzで静電容量が39nF/cm 2 、tanδが17
5%であり、tanδが非常に劣っていた。なお、チタ
ニウム酸化膜とポリアニリン膜の密着性は良好であっ
た。
Comparative Example 5 As in Example 6, a reference example was formed on the oxide film of the titanium plate.
The polyaniline solution obtained in 1 and the polyamiline obtained in Example 1
The citric acid solutions were mixed to form a mixed film thereof. Polia
Mixing ratio of Mic acid is 30% by weight with respect to polyaniline
Met. This membrane is a 1N polystyrene sulfonic acid aqueous solution
Treat with liquid for 5 minutes and add polystyrene sulfonate ion
After adding, it was washed with water and dried at room temperature for 72 hours. Then
Doped part of polyaniline film with carbon paste
The terminal was formed on the top and the capacitor was created. This electrolytic
When the characteristics of the capacitor are measured, the capacitance at 120Hz
The amount is 237nF / cm2 , Tan δ is 61%, 1
Capacitance of 39 nF / cm at kHz 2 , Tan δ is 17
It was 5%, and tan δ was very poor. In addition,
The adhesion between the aluminum oxide film and the polyaniline film is good.
It was

【0038】[0038]

【発明の効果】本発明によれば、誘電特性が良好で、誘
電体酸化膜とポリアニリン固体電解質との密着性が良好
な固体電解コンデンサを簡便で歩留りよく製造すること
ができ、工業的に極めて有用である。
According to the present invention, a solid electrolytic capacitor having good dielectric properties and good adhesion between a dielectric oxide film and a polyaniline solid electrolyte can be produced simply and with high yield, and is industrially extremely useful. It is useful.

Claims (1)

【特許請求の範囲】 【請求項1】金属電極の表面を化成処理して形成した誘
電体である金属酸化膜上に固体電解質の層を形成し、次
いでその上に電極を形成して固体電解コンデンサを製造
する方法において、ポリアニリンに対して高分子バイン
ダーを1〜25重量%を含む溶液より該金属酸化膜上に
ポリアニリンと高分子バインダーの混合膜を形成し、次
いで該ポリアニリンに陰イオンを添加することにより固
体電解質の層を形成することを特徴とする固体電解コン
デンサの製造方法。
Claim: What is claimed is: 1. A solid electrolyte layer is formed on a metal oxide film, which is a dielectric formed by subjecting the surface of a metal electrode to chemical conversion treatment, and then an electrode is formed on the solid electrolyte layer. In a method of manufacturing a capacitor, a mixed film of polyaniline and a polymer binder is formed on a metal oxide film from a solution containing 1 to 25% by weight of a polymer binder with respect to polyaniline, and then an anion is added to the polyaniline. A method of manufacturing a solid electrolytic capacitor, which comprises forming a layer of a solid electrolyte by
JP29553491A 1990-11-13 1991-11-12 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP3213994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29553491A JP3213994B2 (en) 1990-11-13 1991-11-12 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30834790 1990-11-13
JP2-308347 1990-11-13
JP29553491A JP3213994B2 (en) 1990-11-13 1991-11-12 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH053138A true JPH053138A (en) 1993-01-08
JP3213994B2 JP3213994B2 (en) 2001-10-02

Family

ID=26560309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29553491A Expired - Fee Related JP3213994B2 (en) 1990-11-13 1991-11-12 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3213994B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436796A (en) * 1993-09-09 1995-07-25 Nitto Denko Corporation Solid electrolytic capacitor and process for producing the same
EP0758671A3 (en) * 1995-08-10 1997-02-26 Eastman Kodak Company Electrically conductive composition and elements containing solubilized polyaniline complex
US5959832A (en) * 1994-11-25 1999-09-28 Nec Corporation Solid electrolytic capacitor with heat resisting polyaniline and method of manufacturing same
US6328874B1 (en) 1998-01-05 2001-12-11 Mcdonnell Douglas Corporation Anodically formed intrinsically conductive polymer-aluminum oxide composite as a coating on aluminum
US6381121B1 (en) 1999-05-24 2002-04-30 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor
JP2007180260A (en) * 2005-12-28 2007-07-12 Showa Denko Kk Manufacturing method of solid electrolytic capacitor
JP2008311639A (en) * 2007-05-15 2008-12-25 Panasonic Corp Solid electrolytic capacitor and method of manufacturing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436796A (en) * 1993-09-09 1995-07-25 Nitto Denko Corporation Solid electrolytic capacitor and process for producing the same
US5959832A (en) * 1994-11-25 1999-09-28 Nec Corporation Solid electrolytic capacitor with heat resisting polyaniline and method of manufacturing same
EP0758671A3 (en) * 1995-08-10 1997-02-26 Eastman Kodak Company Electrically conductive composition and elements containing solubilized polyaniline complex
US5716550A (en) * 1995-08-10 1998-02-10 Eastman Kodak Company Electrically conductive composition and elements containing solubilized polyaniline complex and solvent mixture
US5910385A (en) * 1995-08-10 1999-06-08 Eastman Kodak Company Electrically conductive composition and elements containing solubilized polyaniline complex
US6818118B2 (en) 1998-01-05 2004-11-16 Mcdonnell Douglas Corporation Anodically formed intrinsically conductive polymer-aluminum oxide composite as a coating on aluminum
US6328874B1 (en) 1998-01-05 2001-12-11 Mcdonnell Douglas Corporation Anodically formed intrinsically conductive polymer-aluminum oxide composite as a coating on aluminum
US6381121B1 (en) 1999-05-24 2002-04-30 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor
US6783703B2 (en) 1999-05-24 2004-08-31 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor and method for producing the same
US7060205B2 (en) 1999-05-24 2006-06-13 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor and method for producing the same
JP2007180260A (en) * 2005-12-28 2007-07-12 Showa Denko Kk Manufacturing method of solid electrolytic capacitor
JP2008311639A (en) * 2007-05-15 2008-12-25 Panasonic Corp Solid electrolytic capacitor and method of manufacturing the same
JP2013058793A (en) * 2007-05-15 2013-03-28 Panasonic Corp Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP3213994B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JP5191171B2 (en) Dispersant and dopant for conductive polymer synthesis, conductive polymer synthesized using the same, conductive composition containing the conductive polymer, dispersion of the conductive polymer or conductive composition, and the above Application of conductive polymer or conductive composition
JP2002524593A (en) Preparation of conductive polymer from stabilized precursor solution
JPS63158829A (en) Solid electrolytic capacitor
JP5062738B2 (en) Conductive composition, method for producing the same, dispersion of conductive composition, and application of conductive composition
JP4776338B2 (en) Conductive polymer dopant solution, conductive polymer oxidant / dopant, conductive composition, solid electrolytic capacitor and method for producing the same
JP3906071B2 (en) Conductive polyaniline composition, film thereof, and production method thereof
JP3213994B2 (en) Method for manufacturing solid electrolytic capacitor
JP3478987B2 (en) Method for manufacturing solid electrolytic capacitor
JP2909544B2 (en) Method for producing solution of water-soluble conductive organic polymer composition
JP2907131B2 (en) Conductive polymer, solid electrolytic capacitor using the same, and method of manufacturing the same
JPH01238110A (en) Method of impregnating electrolytic capacitor with tetracyanoquinodimethanate
JPH0583167B2 (en)
JPH03155110A (en) Manufacture of solid electrolytic capacitor
JPH0346214A (en) Manufacture of solid electrolytic capacitor
JPH1036667A (en) Conductive polyaniline composition and solid electrolyte capacitor using the same as solid electrolyte
JP3092512B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0645195A (en) Manufacture of solid-state electrolytic capacitor
JPH09148193A (en) Manufacture of solid electrolytic capacitor
JPH036217A (en) Production of solid electrolytic capacitor
JP2991408B2 (en) Method for producing polyaniline and method for producing solid electrolytic capacitor
JP2003022937A (en) Solid electrolytic capacitor and method of manufacturing the same
JP3299608B2 (en) Method for producing conductive organic polymer and method for producing solid electrolytic capacitor using the same
JPH0298915A (en) Solid electrolytic capacitor
JP3453191B2 (en) Method for producing conductive organic polymer and method for producing solid electrolytic capacitor using the same
JPH07118371A (en) Production of copolymer and of solid electrolytic capacitor

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees