JPH03155110A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH03155110A
JPH03155110A JP29529789A JP29529789A JPH03155110A JP H03155110 A JPH03155110 A JP H03155110A JP 29529789 A JP29529789 A JP 29529789A JP 29529789 A JP29529789 A JP 29529789A JP H03155110 A JPH03155110 A JP H03155110A
Authority
JP
Japan
Prior art keywords
pyrrole
oxidizing agent
solid electrolytic
dielectric
deviative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29529789A
Other languages
Japanese (ja)
Inventor
Masaharu Sato
正春 佐藤
Kunihiko Imanishi
邦彦 今西
Masaomi Tanaka
征臣 田中
Yutaka Yasuda
裕 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP29529789A priority Critical patent/JPH03155110A/en
Publication of JPH03155110A publication Critical patent/JPH03155110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To improve high frequency characteristics and to reduce leakage current by introducing alcohol solution of oxidizing agent to the surface of deviative of a porous formed body, by bringing it into contact with water solution of pyrrole or pyrrole deviate and by forming a solid electrolyte through oxidation polymerization. CONSTITUTION:Oxidizing agent alcohol solution is introduced to the surface of deviative of a porous formed body; thereafter, it is brought into contact with water solution of pyrrole or pyrrole deviative and oxidation and polymerization are carried out; and then, a solid electrolytic layer which consists of highly conductive polypyrrole or dielectric thereof is formed on a surface of a dielectric inside a fine hole. Since oxidization agent is alcohol solution, it penetrates well inside the fine hole to cover a surface thereof. Since it is brought into contact with water solution of pyrrole or dielectric of pyrrole in the state, pyrrole or dielectric of pyrrole also penetrate well inside the fine hole and come into contact with oxidizing agent. Thereby, a solid electrolytic layer consisting of polymer of uniform and highly conductive polypyrrole or pyrrole deviative is formed on the surface of deviative inside the fine hole in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電性高分子化合物を固体電解質とする固体
電解コンデンサの製造に利用され、特に、酸化カチオン
重合により合成した高導電性の導電性高分子化合物を固
体電解質とする、高周波特性に優れた固体電解コンデン
サの製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is utilized for manufacturing a solid electrolytic capacitor using a conductive polymer compound as a solid electrolyte. The present invention relates to a method for manufacturing a solid electrolytic capacitor with excellent high frequency characteristics, using a polymer compound as a solid electrolyte.

〔概要〕〔overview〕

本発明は、皮膜形成金属多孔質成形体の表面酸化皮膜を
誘電体とし、導電性高分子化合物を固体電解質とする固
体電解コンデンサの製造方法において、 酸化剤のアルコール溶液を前記多孔質成形体の誘電体表
面に導入し、しかる後にピロールまたはピロール誘導体
の水溶液に接触させて酸化重合せしめることにより、前
記固体電解質を形成し、良好な高周波特性と低い漏れ電
流とを有する固体電解コンデンサを製造できるようにし
たものである。
The present invention provides a method for manufacturing a solid electrolytic capacitor in which a surface oxide film of a film-forming metal porous molded body is used as a dielectric and a conductive polymer compound is used as a solid electrolyte, in which an alcohol solution of an oxidizing agent is applied to the porous molded body. The solid electrolyte is introduced onto the surface of a dielectric material and then brought into contact with an aqueous solution of pyrrole or a pyrrole derivative for oxidative polymerization, thereby making it possible to manufacture a solid electrolyte capacitor having good high frequency characteristics and low leakage current. This is what I did.

〔従来の技術〕[Conventional technology]

従来、固体電解コンデンサはタンタルおよびアルミニウ
ム等の皮膜形成金属の多孔質成形体を第一の電極(陽極
)とし、その表面酸化皮膜を誘電体、二酸化マンガンや
7.7.8.8−テトラシアノキノジメタン錯塩等の固
体電解質を第二の電極(陰極)の一部とする構造を有し
ている。この場合、固体電解質には多孔質成形体内部の
誘電体表面の全面と電極リード間を電気的に接続する機
能が要求されるが、従来の固体電解質は導電率が小さい
ためにコンデンサのESR(等価直列抵抗)が大きく、
高周波特性が不十分であった。
Conventionally, solid electrolytic capacitors use a porous molded body of a film-forming metal such as tantalum or aluminum as the first electrode (anode), and the surface oxide film is used as a dielectric material such as manganese dioxide or 7,7,8,8-tetracyano. It has a structure in which a solid electrolyte such as a quinodimethane complex salt is part of the second electrode (cathode). In this case, the solid electrolyte is required to have the ability to electrically connect the entire surface of the dielectric inside the porous molded body and the electrode leads, but because conventional solid electrolytes have low conductivity, the ESR of the capacitor ( (equivalent series resistance) is large,
High frequency characteristics were insufficient.

一方、高分子の分野でも新しい材料の開発が進み、その
結果ポリアセチレン、ポリバラフェニレン、ポリピロー
ル等の共役系ポリマー、あるいはこれらに電子供与性や
電子吸引性化合物を添加(ドープ)した導電性高分子が
開発されている。導電性高分子の導電率はその種類と合
成法にもよるが酸化カチオン重合法で合成したもので数
十〜数百3/cm、電解酸化重合法で合成したもので数
百S/crnであり、従来の固体電解質である二酸化マ
ンガンに比べて著しく高く、電解コンデンサの固体電解
質として有利に使用できるものと考えられる。
On the other hand, the development of new materials has progressed in the field of polymers, resulting in conjugated polymers such as polyacetylene, polyparaphenylene, polypyrrole, and conductive polymers doped with electron-donating or electron-withdrawing compounds. is being developed. The conductivity of conductive polymers depends on the type and synthesis method, but it is several tens to several hundred S/cm for those synthesized by cationic oxidation polymerization, and several hundred S/crn for those synthesized by electrolytic oxidation polymerization. This is significantly higher than manganese dioxide, which is a conventional solid electrolyte, and it is considered that it can be advantageously used as a solid electrolyte for electrolytic capacitors.

前記導電性高分子の合成法のうち、電解酸化重合法は芳
香族化合物を電気化学的に陽極酸化して電極表面上に重
合体を析出させる方法であるが、絶縁体であるコンデン
サの誘電体表面でこのような電極反応を実施するにはか
なりの困難が伴う。
Among the methods for synthesizing conductive polymers, the electrolytic oxidation polymerization method is a method in which aromatic compounds are electrochemically anodized to deposit a polymer on the electrode surface. Significant difficulties are involved in carrying out such electrode reactions at surfaces.

しかも、この方法で電解コンデンサに使用される多孔質
成形体の細孔を完全に充填することは不可能に近い。
Moreover, it is nearly impossible to completely fill the pores of the porous molded body used in the electrolytic capacitor using this method.

一方、酸化カチオン重合法による導電性高分子の形成は
、芳香族化合物と酸化剤の接触によって起こり、誘電体
表面上でも容易に導電性高分子を形成できる。しかし、
芳香族化合物は酸化剤と接触すると直ちに重合を開始す
るため、従来は、まず基材上に酸化剤または芳香族化合
物の一方を含む第一の層を形成し、乾燥させた後もう一
方の芳香族化合物または酸化剤をこれに接触させていた
On the other hand, the formation of a conductive polymer by oxidative cationic polymerization occurs through contact between an aromatic compound and an oxidizing agent, and the conductive polymer can be easily formed even on the surface of a dielectric material. but,
Since aromatic compounds begin to polymerize immediately upon contact with an oxidizing agent, conventionally, a first layer containing either an oxidizing agent or an aromatic compound is first formed on a substrate, and after drying, the other aromatic compound is added. A group compound or an oxidizing agent was brought into contact with this.

この方法では第一の層の表面上から導電性高分子の形成
が始まり、その成長に伴って第二の芳香族化合物または
酸化剤の拡散が抑えられるため、第一の層全体に導電性
高分子を形成するためには長時間反応を続けなければな
らない。特に、電解コンデンサに使用される多孔質成形
体の入り組んだ細孔を充填するには、第一の層の厚さを
抑え、重合操作を繰り返す必要があった。
In this method, the formation of a conductive polymer starts on the surface of the first layer, and as it grows, the diffusion of the second aromatic compound or oxidizing agent is suppressed, so that the conductive polymer is formed throughout the first layer. Reactions must continue for a long time to form molecules. In particular, in order to fill the intricate pores of porous molded bodies used in electrolytic capacitors, it was necessary to reduce the thickness of the first layer and repeat the polymerization operation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上説明したように、電解酸化重合法では固体電解コン
デンサを構成する多孔質成形体の細孔への導電性高分子
の充填は困難であり、また、酸化カチオン重合法でも煩
雑な操作が必要であった。
As explained above, in the electrolytic oxidative polymerization method, it is difficult to fill the pores of the porous molded body that constitutes the solid electrolytic capacitor with conductive polymer, and even in the oxidative cationic polymerization method, complicated operations are required. there were.

従って、導電性高分子は電解コンデンサの固体電解質と
して有利に使用できることが期待されているものの、未
だその性能を十分に生かした、すなわち、高周波領域ま
で良好な特性を有し、しかも信頼性に優れた固体電解コ
ンデンサを簡便に製造する方法が開発されていないとい
う課題があった。
Therefore, although conductive polymers are expected to be advantageously used as solid electrolytes in electrolytic capacitors, their performance has not yet been fully utilized, that is, they have good characteristics up to the high frequency range and are highly reliable. The problem is that no method has been developed to easily manufacture solid electrolytic capacitors.

本発明の目的は、前記の課題を解決することにより、良
好な高周波特性を有し、しかも信頼性に優れた固体電解
コンデンサの製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor having good high frequency characteristics and excellent reliability by solving the above-mentioned problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは前記の課題を解決するために種々の検討を
行った。その結果、固体電解質として優れた性能を有す
る導電性高分子化合物を、簡便な手段により皮膜形成金
属の多孔質成形体の細孔内部に充填する固体電解コンデ
ンサの形成方法を見いだし本発明に至った。
The present inventors conducted various studies to solve the above problems. As a result, they discovered a method for forming a solid electrolytic capacitor in which the pores of a porous molded body of film-forming metal are filled with a conductive polymer compound that has excellent performance as a solid electrolyte by a simple means, and the present invention was achieved. .

すなわち、本発明は、皮膜形成金属多孔質成形体の表面
酸化皮膜を誘電体とし、ピロールまたはピロール誘導体
の酸化重合物を固体電解質とする固体電解コンデンサの
製造方法において、酸化剤のアルコール溶液を前記多孔
質成形体の誘電体表面に導入し、しかる後にピロールま
たはピロール誘導体の水溶液に接触させて酸化重合せし
めることにより、前記固体電解質を形成することを特徴
とする特 本発明において、皮膜形成金属とは、タンクツペアルミ
ニウム、ニオブ、チタン、ジルコニウム、マグネシウム
、亜鉛、ビスマス、ケイ素、およびハフニウム等であり
、金属の圧延箔、微粉焼結物、板、および圧延箔のエツ
チング物等の形態で用いることができる。
That is, the present invention provides a method for manufacturing a solid electrolytic capacitor in which a surface oxide film of a film-formed porous metal molded body is used as a dielectric and an oxidized polymer of pyrrole or a pyrrole derivative is used as a solid electrolyte. In the present invention, the solid electrolyte is formed by introducing the solid electrolyte onto the dielectric surface of the porous molded body, and then bringing it into contact with an aqueous solution of pyrrole or a pyrrole derivative for oxidative polymerization. These are aluminum, niobium, titanium, zirconium, magnesium, zinc, bismuth, silicon, hafnium, etc., and are used in the form of rolled metal foils, fine powder sintered products, plates, and etched products of rolled foils. be able to.

本発明で用いる酸化剤には、導電性高分子の合成に用い
られるハロゲン化第二鉄、ノ10ゲン化第二銅およびベ
ンゾキノン等の従来公知の酸化カチオン化剤が含まれる
が、生成する導電性高分子の形態の面から、カチオンが
高酸化数のFe”、(: u 2 +Cr”、M n 
1 +、およびSn’+等の遷移金属イオン、アニオン
がアルキルベンゼンスルホン酸イオン、ナフタレンスル
ホン酸イオン、アルキルナフタレンスルホン酸イオン、
アルキルスルホン酸イオン、α−オレフィンスルホン酸
イオン、スルホコハク酸イオン、およびN−アシルスル
ホン酸イオン等の有機スルホン酸イオンあるいはアルキ
ル硫酸イオン、ポリエチレンオキサイドアルキルエーテ
ル硫酸イオン、およびポリエチレンオキサイドアルキル
フェノールエーテル硫酸イオン等の有機硫酸イオンであ
る金属塩が好ましい。
The oxidizing agent used in the present invention includes conventionally known oxidizing cationizing agents such as ferric halides, cupric halides, and benzoquinones used in the synthesis of conductive polymers, but the In terms of the morphology of the polymer, the cation has a high oxidation number Fe'', (: u 2 + Cr'', M n
1+, and transition metal ions such as Sn'+, anions such as alkylbenzenesulfonate ions, naphthalenesulfonate ions, alkylnaphthalenesulfonate ions,
Organic sulfonate ions such as alkyl sulfonate ions, α-olefin sulfonate ions, sulfosuccinate ions, and N-acylsulfonate ions, or alkyl sulfate ions, polyethylene oxide alkyl ether sulfate ions, and polyethylene oxide alkylphenol ether sulfate ions. Metal salts that are organic sulfate ions are preferred.

これら酸化剤のうち特に好ましいものを具体的に例示す
ると、パラトルエンスルホン酸、ドデシルベンゼンスル
ホン酸、ブチルナフタレンスルホン酸、012〜C18
のアルキルスルホン酸、およびドデシル硫酸等の第二鉄
塩または第二銅塩が挙げられる。
Specific examples of particularly preferred oxidizing agents include p-toluenesulfonic acid, dodecylbenzenesulfonic acid, butylnaphthalenesulfonic acid, 012-C18
alkyl sulfonic acids, and ferric or cupric salts such as dodecyl sulfuric acid.

また、これら酸化剤を溶解する溶媒は、メタノール、エ
タノール、ペンタノール、オクチルアルコール、および
エチレングリコール等のアルコール系溶媒である。本発
明ではこれらの溶媒を単独で、または2種以上を組み合
せて、更には必要に応じて他の溶媒と組み合わせて使用
する。
Further, the solvent for dissolving these oxidizing agents is an alcoholic solvent such as methanol, ethanol, pentanol, octyl alcohol, and ethylene glycol. In the present invention, these solvents are used alone or in combination of two or more, and further in combination with other solvents as necessary.

本発明の製造方法では、前記の酸化剤アルコール溶液を
、酸化皮膜を形成した前記の皮膜形成金属の多孔質成形
体細孔中に導入し、ピロールまたはN−アルキルビロー
ル等のピロール誘導体水溶液に接触させることにより、
ピロールまたはピロール誘導体の酸化重合が起こりポリ
ピロールまたはその誘導体からなる固体電解質層が形成
される。
In the production method of the present invention, the oxidizing agent alcohol solution is introduced into the pores of the porous molded product of the film-forming metal having an oxide film formed thereon, and an aqueous solution of pyrrole or a pyrrole derivative such as N-alkylvirole is added to the oxidizing agent alcohol solution. By contacting
Oxidative polymerization of pyrrole or a pyrrole derivative occurs to form a solid electrolyte layer made of polypyrrole or its derivative.

酸化剤溶液を皮膜形成金属の多孔質成形体細孔中に導入
する方法は、使用する多孔質成形体の形状によって適宜
選択すればよく、例えば、当該溶液の塗布や噴霧、ある
いは当該溶液への多孔質成形体の浸漬等の方法がある。
The method of introducing the oxidizing agent solution into the pores of the porous molded body of the film-forming metal may be selected as appropriate depending on the shape of the porous molded body to be used. There are methods such as dipping a porous molded body.

また、酸化剤溶液とピロールまたはその誘導体との接触
は、酸化剤溶液を導入した多孔質成形体をそのまま乾燥
させることなくあるいは適当に乾燥した後にピロールま
たはその誘導体の水溶液に浸漬して行う。ここで、完全
に乾燥させてしまうと均一でち密なポリピロール層がで
きにくい傾向があり、好ましくない。
Further, the contact between the oxidizing agent solution and pyrrole or its derivatives is carried out by immersing the porous molded body into which the oxidizing agent solution has been introduced, without drying it as it is, or after suitably drying it, in an aqueous solution of pyrrole or its derivatives. Here, if it is completely dried, it tends to be difficult to form a uniform and dense polypyrrole layer, which is not preferable.

最も好ましくは、乾燥工程を経ることなく、直ちにピロ
ール(誘導体)水溶液に浸漬する方法である。
The most preferred method is to immediately immerse it in an aqueous pyrrole (derivative) solution without going through a drying process.

以上の操作により、皮膜形成金属の多孔質成形体細孔中
の酸化剤とピロールまたはその誘導体を接触させること
により、細孔中でピロールまたはその誘導体の酸化重合
が起こり、同時に、酸化剤溶液とモノマー水溶液とが多
孔質成形体の細孔中で混合し得るので、従来の一方だけ
をまず導入し、乾燥させた後にもう一方を接触させる方
法に比べ、より均一な導電性ポリピロールまたはその誘
導体からなる固体電解質層が短時間のうちに得られる。
By the above operation, the oxidizing agent in the pores of the porous molded product of film-forming metal is brought into contact with the pyrrole or its derivative, whereby oxidative polymerization of pyrrole or its derivative occurs in the pores, and at the same time, the oxidizing agent solution and the pyrrole or its derivative occur. Since the monomer aqueous solution can be mixed in the pores of the porous molded body, compared to the conventional method of introducing only one side first, drying it, and then contacting the other side, it is possible to create a more uniform mixture of conductive polypyrrole or its derivatives. A solid electrolyte layer can be obtained in a short time.

また、酸化剤として前記のような非水溶性の有機スルホ
ン酸化合物あるいは有機硫酸化合物の遷移金属塩を使用
すれば、多孔質成形体から未反応の酸化剤がピロールま
たはその誘導体水溶液へ流出することはない。
Furthermore, if a water-insoluble organic sulfonic acid compound or a transition metal salt of an organic sulfuric acid compound as described above is used as the oxidizing agent, unreacted oxidizing agent will flow out from the porous molded body into the aqueous solution of pyrrole or its derivative. There isn't.

本発明の製造方法において、皮膜形成金属の多孔質成形
体細孔中に導入する酸化剤溶液の濃度、およびピロール
またはその誘導体水溶液の濃度は特に限定されず、それ
ぞれの各溶媒に対する飽和濃度以下の範囲で適宜選択す
る。また、酸化剤溶液を多孔質成形体細孔中に導入する
温度、および酸化剤溶液とピロールまたはその誘導体水
溶液とを接触させる温度も特に限定されず、使用する溶
媒の沸点以下の範囲で適宜選択する。
In the production method of the present invention, the concentration of the oxidizing agent solution and the concentration of the aqueous solution of pyrrole or its derivative to be introduced into the pores of the porous molded product of the film-forming metal are not particularly limited, and are below the saturation concentration for each solvent. Select as appropriate within the range. Furthermore, the temperature at which the oxidizing agent solution is introduced into the pores of the porous molded body and the temperature at which the oxidizing agent solution is brought into contact with the aqueous solution of pyrrole or its derivatives are not particularly limited, and are appropriately selected within a range below the boiling point of the solvent used. do.

本発明ではこのようにして得られた生成物を必要に応じ
て洗浄および乾燥し、通常の方法で引き出し電極を設け
てコンデンサに組み上げる。また、前記固体電解質層形
成の各工程を繰り返し行うことも可能である。
In the present invention, the product thus obtained is washed and dried as required, and an extraction electrode is provided in a conventional manner and assembled into a capacitor. Moreover, it is also possible to repeat each step of forming the solid electrolyte layer.

本発明の製造方法で製造した固体電解コンデンサは、従
来の二酸化マンガンを固体電解質とするものに比べ、電
解質形成時の熱ストレスがないために誘電体損傷が抑え
られ、漏れ電流も小さい。
Compared to conventional capacitors using manganese dioxide as a solid electrolyte, the solid electrolytic capacitor manufactured by the manufacturing method of the present invention has no thermal stress during electrolyte formation, so damage to the dielectric is suppressed and leakage current is small.

また、固体電解質である導電性高分子の導電率も二酸化
マンガンの10〜100倍であるので、ESRも小さく
、高周波特性も従来のものに比べて改善される。
Furthermore, since the conductivity of the conductive polymer that is the solid electrolyte is 10 to 100 times higher than that of manganese dioxide, the ESR is also small and the high frequency characteristics are improved compared to conventional ones.

また、従来の化学酸化重合により得たポリピロール等を
固体電解質とするものに比べても、より均一かつ充填率
の高い固体電解質層を簡単に形成でき、結果として、高
周波特性の優れた、しかも漏れ電流の小さい固体電解コ
ンデンサが得られる。
In addition, compared to solid electrolytes made of polypyrrole, etc. obtained through conventional chemical oxidative polymerization, it is possible to easily form a solid electrolyte layer that is more uniform and has a higher filling rate. A solid electrolytic capacitor with low current can be obtained.

〔作用〕[Effect]

本発明は、酸化剤アルコール溶液を多孔質成形体の誘電
体表面に導入し、しかる後にピロールまたはピロール誘
導体の水溶液に接触させて酸化重合せしめることにより
、細孔内部の誘電体表面に高導電性のポリピロールまた
はその誘導体からなる固体電解質層を形成する。この場
合、酸化剤はアルコール溶液の形となっているので、細
孔内部までよく浸透しその表面を覆う。そして、この状
態でピロールまたはピロールの誘導体の水溶液と接触さ
せるので、ピロールまたはピロールの誘導体も細孔内部
によく浸透し酸化剤と接触し、結果として、短時間のう
ちに、細孔内部の誘電体表面に均一かつ高導電性のポリ
ピロールまたはピロール誘導体のポリマーからなる固体
電解質層が形成される。これにより、高周波特性の優れ
た、しかも漏れ電流の小さい固体電解コンデンサを簡単
に製造することが可能となる。
The present invention provides high conductivity on the dielectric surface inside the pores by introducing an oxidizing agent alcohol solution onto the dielectric surface of a porous molded body, and then bringing it into contact with an aqueous solution of pyrrole or a pyrrole derivative for oxidative polymerization. A solid electrolyte layer made of polypyrrole or a derivative thereof is formed. In this case, since the oxidizing agent is in the form of an alcohol solution, it easily penetrates into the pores and covers their surfaces. In this state, the aqueous solution of pyrrole or pyrrole derivative is brought into contact with the pyrrole or pyrrole derivative, so that the pyrrole or pyrrole derivative also penetrates into the pores and comes into contact with the oxidizing agent. A uniform and highly conductive solid electrolyte layer made of polypyrrole or pyrrole derivative polymer is formed on the body surface. This makes it possible to easily manufacture a solid electrolytic capacitor with excellent high frequency characteristics and low leakage current.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を具体的に説明するが、本
発明はこれら実施例にのみ限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited only to these Examples.

実施例1 直径5mm、厚さ0.8mmの円板状のタンタル微粉焼
結体ペレット(空隙率50%)を硝酸水溶液中で100
Vで陽極酸化し、洗浄および乾燥したベレフ) ヲ25
wt、%ドデシルベンゼンスルホン酸鉄(I)のメタノ
ール溶液に浸漬した。2分後、このペレットを取り出し
、ただちに、0゜1Mビロール水溶液に浸漬して1時間
保持したところ、空隙中でピロールの重合が起こり、ポ
リピロールの充填したタンクルペレット試料が得られた
Example 1 Disc-shaped fine tantalum powder sintered pellets (porosity 50%) with a diameter of 5 mm and a thickness of 0.8 mm were dissolved in a nitric acid aqueous solution at a temperature of 100%.
Anodized with V, washed and dried Beref) wo 25
wt.% iron(I) dodecylbenzenesulfonate in methanol. After 2 minutes, this pellet was taken out and immediately immersed in a 0°1M pyrrole aqueous solution and held for 1 hour, whereupon polymerization of pyrrole occurred in the pores and a tank pellet sample filled with polypyrrole was obtained.

この試料をメタノールで洗浄した後、80℃、1時間減
圧乾燥し、この表面から銀ペーストを用いてリードを引
き出してコンデンサを完成させた。
After washing this sample with methanol, it was dried under reduced pressure at 80° C. for 1 hour, and leads were drawn out from the surface using silver paste to complete a capacitor.

得られたコンデンサの静電容量、tanδ(損失角の正
接)および共振周波数でのESR(等価直列抵抗)を第
1表に示す。このコンデンサは周波数に対する静電容量
の変化率、tanδ、および共振周波数でのESRとも
に小さく、高周波特性の良好なものであった。
Table 1 shows the capacitance, tan δ (tangent of loss angle), and ESR (equivalent series resistance) at the resonant frequency of the obtained capacitor. This capacitor had a small capacitance change rate with respect to frequency, tan δ, and ESR at the resonant frequency, and had good high frequency characteristics.

実施例2 実施例1の陽極酸化したタンタル微粉焼結体ペレットを
用いて、実施例1の方法によるポリピロールの充填、洗
浄および乾燥を4回繰り返し、リードを引き出してコン
デンサを完成させた。得られたコンデンサの静電容量、
tanδおよび共振周波数でのESRを第1表に示す。
Example 2 Using the anodized fine tantalum powder sintered pellets of Example 1, filling with polypyrrole, washing and drying according to the method of Example 1 was repeated four times, and the leads were pulled out to complete a capacitor. The capacitance of the capacitor obtained,
Table 1 shows the ESR at tan δ and resonance frequency.

このコンデンサは周波数に対する静電容量の変化率、t
anδ、および共振周波数でのESRともに小さく、高
周波特性の良好なものであった。
This capacitor has a rate of change of capacitance with respect to frequency, t
Both anδ and ESR at the resonant frequency were small, and the high frequency characteristics were good.

実施例3 実施例1の陽極酸化したタンタル微粉焼結体ペレットヲ
、25Wt、%ドデシルベンゼンスルホン酸鉄(II[
)のエタノール溶液に浸漬した。2分後、このペレット
を取り出し、ただちに0.1Mピロール水溶液に浸漬し
て1時間保持したところ、空隙中でピロールの重合が起
こり、ポリピロールの充填したタンクルペレット試料が
得られた。この試料を実施例1の方法で洗浄および乾燥
し、リードを引き出してコンデンサを完成させた。得ら
れたコンデンサの静電容量、tanδおよび共振周波数
でのESRを第1表に示す。このコンデンサは周波数に
対する静電容量の変化率、tanδ、および共振周波数
でのESRともに小さく、高周波特性の良好なものであ
った。
Example 3 The anodized fine tantalum sintered pellets of Example 1, 25 Wt, % iron dodecylbenzenesulfonate (II[
) in an ethanol solution. After 2 minutes, this pellet was taken out and immediately immersed in a 0.1 M pyrrole aqueous solution and held for 1 hour, whereupon polymerization of pyrrole occurred in the voids and a tank pellet sample filled with polypyrrole was obtained. This sample was washed and dried by the method of Example 1, and the leads were pulled out to complete the capacitor. Table 1 shows the capacitance, tan δ, and ESR at the resonant frequency of the obtained capacitor. This capacitor had a small capacitance change rate with respect to frequency, tan δ, and ESR at the resonant frequency, and had good high frequency characteristics.

実施例4 実施例1の陽極酸化したタンタル微粉焼結体ペレットを
、25wt0%アルキルスルホン酸鉄(III)(アル
キル鎖長C1□、CI3、およびCI4の混合物)のメ
タノール溶液に浸漬した。2分後、このペレットを取り
出し、ただちに0.1Mピロール水溶液に浸漬して1時
間保持したところ、空隙中でピロールの重合が起こり、
ポリピロールの充填したタンクルペレット試料が得られ
た。この試料を実施例1の方法で洗浄および乾燥し、リ
ードを引き出してコンデンサを完成させた。得られたコ
ンデンサの静電容量、tanδおよび共振周波数でのE
SRを第1表に示す。このコンデンサは周波数に対する
静電気容量の変化率、tanδ、および共振周波数での
ESRともに小さく、高周波特性の良好なものであった
Example 4 The anodized fine tantalum sintered pellets of Example 1 were immersed in a methanol solution of 25 wt 0% iron(III) alkyl sulfonate (mixture of alkyl chain lengths C1□, CI3, and CI4). After 2 minutes, this pellet was taken out and immediately immersed in a 0.1M pyrrole aqueous solution and kept for 1 hour, whereupon polymerization of pyrrole occurred in the voids.
Tanker pellet samples filled with polypyrrole were obtained. This sample was washed and dried by the method of Example 1, and the leads were pulled out to complete the capacitor. The capacitance of the obtained capacitor, tan δ and E at the resonant frequency
SR is shown in Table 1. This capacitor had a small change rate of electrostatic capacitance with respect to frequency, tan δ, and ESR at the resonant frequency, and had good high frequency characteristics.

実施例5 実施例1の陽極酸化したタンタル微粉焼結体ペレットを
、25wt、%ドデシル硫酸銅(If)のメタノール溶
液に浸漬した。2分後、このペレットを取り出し、ただ
ちに0.1Mピロール水溶液に浸漬して1時間保持した
ところ、空隙中でピロールの重合が起こり、ポリピロー
ルの充填したタンクルペレット試料が得られた。この試
料を実施例1の方法で洗浄および乾燥し、リードを引き
出してコンデンサを完成させた。得られたコンデンサの
静電容量、tanδおよび共振周波数でのESRを第1
表に示す。このコンデンサは周波数に対する静電容量の
変化率、tanδ、および共振周波数でのESRともに
小さく、高周波特性の良好なものであった。
Example 5 The anodized fine tantalum sintered pellets of Example 1 were immersed in a methanol solution of 25 wt.% copper dodecyl sulfate (If). After 2 minutes, this pellet was taken out and immediately immersed in a 0.1 M pyrrole aqueous solution and held for 1 hour, whereupon polymerization of pyrrole occurred in the voids and a tank pellet sample filled with polypyrrole was obtained. This sample was washed and dried by the method of Example 1, and the leads were pulled out to complete the capacitor. The capacitance, tan δ, and ESR at the resonant frequency of the obtained capacitor are
Shown in the table. This capacitor had a small capacitance change rate with respect to frequency, tan δ, and ESR at the resonant frequency, and had good high frequency characteristics.

実施例6 実施例1のタンタルペレットに代えてエツチングによっ
て表面積を12倍に拡大した膜厚50μI11%1辺1
cmの正方形のアルミニウム箔を使用し、実施例1と同
様の方法で陽極酸化、洗浄、および乾燥し、これを25
wt、%ドデシルベンゼンスルホン酸鉄(I)のメタノ
ール溶液に浸漬した。2分後、このアルミニウム箔を取
り出し、ただちに0,1Mピロール水溶液に浸漬して1
時間保ったところ、表面が黒色のポリピロールで被覆さ
れたアルミニウム箔が得られた。
Example 6 Instead of the tantalum pellets in Example 1, the surface area was expanded by 12 times by etching, and the film thickness was 50 μI, 11%, 1 side, 1
cm square aluminum foil was anodized, washed and dried in the same manner as in Example 1, and then
wt.% iron(I) dodecylbenzenesulfonate in methanol. After 2 minutes, this aluminum foil was taken out and immediately immersed in a 0.1M pyrrole aqueous solution.
When kept for a while, an aluminum foil whose surface was coated with black polypyrrole was obtained.

この試料を実施例1の方法で洗浄および乾燥し、リード
を引き出してコンデンサを完成させた。得られたコンデ
ンサの静電容量、tanδおよび共振周波数でのESR
を第1表に示す。このコンデンサは周波数に対する静電
容量の変化率、tanδ、および共振周波数でのESR
ともに小さく、高周波特性の良好なものであった。
This sample was washed and dried by the method of Example 1, and the leads were pulled out to complete the capacitor. Capacitance, tan δ and ESR at resonant frequency of the obtained capacitor
are shown in Table 1. This capacitor has a rate of change of capacitance with frequency, tan δ, and ESR at the resonant frequency.
Both were small and had good high frequency characteristics.

実施例7 実施例1のタンクルペレットに代えて直径5mm、高さ
3m+++の円柱状のアルミニウム微粉焼結体ペレット
(空隙率50%)を使用し、実施例1と同様の方法で陽
極酸化、洗浄、および乾燥し、これを25wt。
Example 7 Instead of the tankle pellets of Example 1, cylindrical fine aluminum powder sintered pellets (porosity 50%) with a diameter of 5 mm and a height of 3 m+++ were used, and anodized in the same manner as in Example 1. Washed, dried, and weighed 25wt.

%ドデシルベンゼンスルホン酸鉄(III)のメタノー
ル溶液に浸漬した。2分後、このペレットを取り出し、
ただちに0.1Mピロール水溶液に浸漬して1時間保っ
たところ、表面が黒色のポリピロールで被覆されたアル
ミニウム微粉焼結体ペレットが得られた。
% iron(III) dodecylbenzenesulfonate in methanol. After 2 minutes, remove the pellet and
When it was immediately immersed in a 0.1M pyrrole aqueous solution and kept for 1 hour, a fine aluminum powder sintered body pellet whose surface was coated with black polypyrrole was obtained.

この試料を実施例1の方法で洗浄および乾燥し、リード
を引き出してコンデンサを完成させた。得られたコンデ
ンサの静電容量、tanδおよび共振周波数でのESR
を第1表に示す。このコンデンサは周波数に対する静電
容量の変化率、tanδ、および共振周波数でのESR
ともに小さく、高周波特性の良好なものであった。
This sample was washed and dried by the method of Example 1, and the leads were pulled out to complete the capacitor. Capacitance, tan δ and ESR at resonant frequency of the obtained capacitor
are shown in Table 1. This capacitor has a rate of change of capacitance with frequency, tan δ, and ESR at the resonant frequency.
Both were small and had good high frequency characteristics.

比較例 実施例1の陽極酸化したタンタル微粉焼結体ペレットを
25wt1%ドデシルベンゼンスルホン酸鉄(1)のメ
タノール溶液に浸漬した。2分後このペレットを取り出
し、60℃で3時間乾燥した後、25℃でピロールの飽
和蒸気に1時間さらしたところ、表面にポリピロールが
生成したタンクルペレット試料が得られた。この試料を
実施例1の方法で洗浄および乾燥し、リードを引き出し
てコンデンサを完成させた。
Comparative Example The anodized fine tantalum sintered pellets of Example 1 were immersed in a methanol solution of 25 wt 1% iron dodecylbenzenesulfonate (1). After 2 minutes, the pellet was taken out, dried at 60° C. for 3 hours, and then exposed to saturated steam of pyrrole at 25° C. for 1 hour, to obtain a tankle pellet sample with polypyrrole formed on the surface. This sample was washed and dried by the method of Example 1, and the leads were pulled out to complete the capacitor.

得られたコンデンサの静電容量、tanδおよび共慶周
波数でのESRは第1表に示すとおり、固体電解コンデ
ンサとしては一応の特性値を示してはいるが、高周波(
100kl+幻での静電v量の減少およびtanδの増
大が著しく大きく、前述の各実施例に比べて劣るもので
あった。
As shown in Table 1, the capacitance, tan δ, and ESR at the consonant frequency of the obtained capacitor show reasonable characteristic values for a solid electrolytic capacitor, but at high frequencies (
The decrease in the amount of electrostatic v and the increase in tan δ at 100 kl + phantom were significantly large, and were inferior to each of the examples described above.

第1表 〔発明の効果〕 以上説明したように、本発明によれば、高周波特性の優
れた、しかも漏れ電流の小さい固体電解コンデンサを、
簡便な方法により製造でき、その効果は大である。
Table 1 [Effects of the Invention] As explained above, according to the present invention, a solid electrolytic capacitor with excellent high frequency characteristics and low leakage current can be
It can be produced by a simple method and has great effects.

Claims (3)

【特許請求の範囲】[Claims] 1.皮膜形成金属の多孔質成形体の表面酸化皮膜を誘電
体とし、ピロールまたはピロール誘導体の酸化重合物を
固体電解質とする固体電解コンデンサの製造方法におい
て、 酸化剤のアルコール溶液を前記多孔質成形体の誘電体表
面に導入し、しかる後にピロールまたはピロール誘導体
の水溶液に接触させて酸化重合せしめることにより、前
記固体電解質を形成することを特徴とする固体電解コン
デンサの製造方法。
1. A method for manufacturing a solid electrolytic capacitor in which a surface oxide film of a porous molded body of a film-forming metal is used as a dielectric and an oxidized polymer of pyrrole or a pyrrole derivative is used as a solid electrolyte, wherein an alcohol solution of an oxidizing agent is added to the porous molded body. A method for manufacturing a solid electrolytic capacitor, comprising forming the solid electrolyte by introducing the solid electrolyte onto the surface of a dielectric material and then bringing it into contact with an aqueous solution of pyrrole or a pyrrole derivative for oxidative polymerization.
2.酸化剤が有機スルホン酸化合物あるいは有機硫酸化
合物の遷移金属塩である請求項1記載の固体電解コンデ
ンサの製造方法。
2. 2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the oxidizing agent is an organic sulfonic acid compound or a transition metal salt of an organic sulfuric acid compound.
3.アルコールがメタノールまたはエタノールである請
求項1記載の固体電解コンデンサの製造方法。
3. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the alcohol is methanol or ethanol.
JP29529789A 1989-11-13 1989-11-13 Manufacture of solid electrolytic capacitor Pending JPH03155110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29529789A JPH03155110A (en) 1989-11-13 1989-11-13 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29529789A JPH03155110A (en) 1989-11-13 1989-11-13 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03155110A true JPH03155110A (en) 1991-07-03

Family

ID=17818783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29529789A Pending JPH03155110A (en) 1989-11-13 1989-11-13 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03155110A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076972A (en) * 1997-11-28 2001-03-23 Showa Denko Kk Solid electrolytic capacitor and manufacture of the same
US6423103B1 (en) 1999-01-25 2002-07-23 Nec Tokin Toyama, Ltd. Method for producing a solid electrolytic capacitor
JP2010087183A (en) * 2008-09-30 2010-04-15 Nippon Chemicon Corp Solid electrolytic capacitor
US8023249B2 (en) 2007-09-27 2011-09-20 Taiyo Yuden Co., Ltd Capacitor and method of manufacturing the same
US8027145B2 (en) * 2007-07-30 2011-09-27 Taiyo Yuden Co., Ltd Capacitor element and method of manufacturing capacitor element
JP2014150127A (en) * 2013-01-31 2014-08-21 Sanyo Electric Co Ltd Method for manufacturing solid-state electrolytic capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076972A (en) * 1997-11-28 2001-03-23 Showa Denko Kk Solid electrolytic capacitor and manufacture of the same
US6423103B1 (en) 1999-01-25 2002-07-23 Nec Tokin Toyama, Ltd. Method for producing a solid electrolytic capacitor
US8027145B2 (en) * 2007-07-30 2011-09-27 Taiyo Yuden Co., Ltd Capacitor element and method of manufacturing capacitor element
US8023249B2 (en) 2007-09-27 2011-09-20 Taiyo Yuden Co., Ltd Capacitor and method of manufacturing the same
US8555474B2 (en) 2007-09-27 2013-10-15 Taiyo Yuden Co., Ltd. Method of manufacturing capacitor element
JP2010087183A (en) * 2008-09-30 2010-04-15 Nippon Chemicon Corp Solid electrolytic capacitor
JP2014150127A (en) * 2013-01-31 2014-08-21 Sanyo Electric Co Ltd Method for manufacturing solid-state electrolytic capacitor

Similar Documents

Publication Publication Date Title
US6334966B1 (en) Chemical oxidative preparation of conductive polymers
US6134099A (en) Electrolytic capacitor having a conducting polymer layer without containing an organic acid-type dopant
JPH11121281A (en) Method for manufacturing solid electrolytic capacitor
EP1022752B1 (en) Method for producing a solid electrolytic capacitor
JPH03155110A (en) Manufacture of solid electrolytic capacitor
JP2907131B2 (en) Conductive polymer, solid electrolytic capacitor using the same, and method of manufacturing the same
JPH06310380A (en) Manufacture of solid electrolytic capacitor
JPH0494110A (en) Manufacture of solid electrolytic capacitor
JP3846760B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0346214A (en) Manufacture of solid electrolytic capacitor
JPH0669082A (en) Manufacture of solid electrolytic capacitor
JPH053138A (en) Manufacture method of solid electrolytic capacitor
JP3223790B2 (en) Capacitor and manufacturing method thereof
JP4126746B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2002008946A (en) Method of manufacturing solid electrolytic capacitor
JPH0494109A (en) Manufacture of solid electrolytic capacitor
JP2764938B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06112094A (en) Manufacture of solid-state electrolytic capacitor
JPH0494107A (en) Manufacture of solid electrolytic capacitor
JPH02288215A (en) Manufacture of solid electrolytic capacitor
JPH11251191A (en) Solid electrolytic capacitor and its manufacture
JP2000297142A (en) Polymerization liquid for forming solid electrolyte, its preparation, and preparation of solid electrolytic capacitor using same
JP3060958B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0494108A (en) Manufacture of solid electrolytic capacitor
JP2000040642A (en) Manufacture of solid electrolytic capacitor