JPH036217A - Production of solid electrolytic capacitor - Google Patents

Production of solid electrolytic capacitor

Info

Publication number
JPH036217A
JPH036217A JP13840889A JP13840889A JPH036217A JP H036217 A JPH036217 A JP H036217A JP 13840889 A JP13840889 A JP 13840889A JP 13840889 A JP13840889 A JP 13840889A JP H036217 A JPH036217 A JP H036217A
Authority
JP
Japan
Prior art keywords
polymer layer
conductive polymer
polypyrrole
electrolytic
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13840889A
Other languages
Japanese (ja)
Inventor
Atsuko Kaneko
敦子 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP13840889A priority Critical patent/JPH036217A/en
Publication of JPH036217A publication Critical patent/JPH036217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To improve electric characteristics, thermal stability and durability by forming a conductive polymer layer of polypyrrole by vapor-phase polymerization and another conductive polymer layer of polypyrrole by electrolytic polymerization on a eutectic film. CONSTITUTION:A eutectic film prepared by oxidizing the surface of a substrate comprising a valve metal such as Al, Ta or Nb is coated with an aqueous solution containing 7-15wt.% oxidizing agent, e.g. (NH4)2S2O8, and vapor-phase polymerization is conducted at -60 to 200 deg.C in the vapor phase containing a pyrrole compound of the formula (wherein R1 to R3 are each H, alkyl or aryl) to give a conductive polymer layer of polypyrrole. The product is dipped in an electrolytic bath containing 0.01-2mol/l of a supporting electrolyte, e.g. hexafluorophosphate, and 0.01-5mol/l of the pyrrole compound of the formula and electrolytically polymerized at a current density of 0.01-100mA/cm<2> and an electrolytic voltage of 1-300V to give another conductive polymer layer of polypyrrole.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導電性高分子膜を有する固体電解コンデンサの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a solid electrolytic capacitor having a conductive polymer film.

(従来の技術) 従来、アルミニウム、タンタル等の弁作用のある金属を
陽極体とする固体電解コンデンサにおいて、固体電解質
として二酸化マンガン(MnOz)やテトラシアノキノ
ジメタン(T CN Q )錯塩を用いたものがよく知
られている。これらの固体電解質は、被覆成分の浸漬、
加熱固化の繰り返しによって行なわれるが、工程が複雑
であり、固体電解質の膜厚の制御も難しい。複雑な工程
で生産性が低いので、小宴1のコンデンサの製作には不
適であり、逆に大容量のコンデンサの製作に4i高温加
熱を行うため熱歪の影響が大きくなる。これらの固体電
解質は、浸漬し、相当な高温で加熱固fヒするものであ
るから、陽極体表面にレジスト部材でパターンを設け、
局所的に電解質層を形成するようなプロセスは困難であ
り、またこれらの固体電解質は粒状体で、固体電解質そ
の他の形成後チップに切断するようなプロセスの実行も
できない、したがってこれら技術は中容量のコンデンサ
しか実現できないのが現状である。
(Prior art) Conventionally, in solid electrolytic capacitors whose anodes are metals with valve action such as aluminum or tantalum, manganese dioxide (MnOz) or tetracyanoquinodimethane (T CN Q ) complex salts have been used as solid electrolytes. something is well known. These solid electrolytes are immersed in coating components,
This is done by repeating heating and solidification, but the process is complicated and it is difficult to control the thickness of the solid electrolyte. Since it is a complicated process and has low productivity, it is not suitable for manufacturing capacitors of Small Party 1, and conversely, since 4i high temperature heating is performed to manufacture large capacity capacitors, the influence of thermal distortion becomes large. Since these solid electrolytes are immersed and heated at a considerably high temperature, a pattern is formed on the surface of the anode body using a resist material.
Processes that locally form electrolyte layers are difficult, and these solid electrolytes are granular and cannot be cut into chips after solid electrolyte or other formation. Currently, only capacitors of

近年このような欠点を補うものとして、固体電解質とし
てポリピロール。ポリチオフェンなどの導電性のポリマ
ー層を有する固体電解コンデンサの提供が試みられてい
る。(特開昭60−244017、特開昭61−231
5など参照)この技術を用いれば上記問題点はほとんど
解決され、プロセス選択の自由度が大きく適当なプロセ
スによりチップ型の小容量のコンデンサから大容量のコ
ンデンサまで幅広く製品を製作することが可能となる。
In recent years, polypyrrole has been used as a solid electrolyte to compensate for these drawbacks. Attempts have been made to provide solid electrolytic capacitors having conductive polymer layers such as polythiophene. (JP-A-60-244017, JP-A-61-231
(Refer to 5, etc.) Using this technology, most of the above problems are solved, and there is a large degree of freedom in process selection, making it possible to manufacture a wide range of products from small-capacity chip capacitors to large-capacity capacitors using appropriate processes. Become.

(発明が解決しようとする課題) 導電性高分子の自戒法としては、液相重き法、気相重き
法及び電解重合法などがあるが、液相重合法や気相重き
法では誘電体皮膜上に強度が強く熱安定性のある膜を形
成することができず、熱安定性、耐久性の優れた電解コ
ンデンサを得ることができない、他方電解重合法では、
誘電体であるアルミニウムやタンタルなどの金属酸化物
皮膜が、電気絶縁本であるため、付着性に優れた強度の
強い膜が形成できず、耐久性、電気的特性のほれた電解
コンデンサを得ることができなかった。
(Problems to be Solved by the Invention) Self-control methods for conductive polymers include liquid phase polymerization, gas phase polymerization, and electrolytic polymerization methods. On the other hand, with the electrolytic polymerization method, it is not possible to form a strong and thermally stable film on top of the capacitor, making it impossible to obtain an electrolytic capacitor with excellent thermal stability and durability.
Since the dielectric metal oxide film such as aluminum or tantalum is an electrical insulator, it is not possible to form a strong film with excellent adhesion, and to obtain an electrolytic capacitor with excellent durability and electrical characteristics. I couldn't do it.

本発明の課題は、上記欠点を除去し、電気的特性に優れ
、熱安定性、耐久性のある固体電解コンデンサ及びその
製造方法を提供することである。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a solid electrolytic capacitor with excellent electrical characteristics, thermal stability, and durability, and a method for manufacturing the same.

(課題を解決するための手段) 本発明はかかる課2を解決するためになされたものであ
り、誘電体皮膜上に、酸化剤分用いて気相重き法により
導電性高分子層を形成させ、次いで該誘電水高分子層上
に、電解重り法により導電性高分子層を形成させ、積層
して形成された導電性高分子膜を有する開本電解コンデ
ンサを製造するものであって、電気的特性に優れ、熱安
定性、耐久性のある固体電解コンデンサを容易に提供で
きるようにしたものである。
(Means for Solving the Problems) The present invention has been made to solve problem 2, and it forms a conductive polymer layer on a dielectric film by a vapor phase method using an oxidizing agent. Then, a conductive polymer layer is formed on the dielectric water polymer layer by an electrolytic weight method to produce an open-ended electrolytic capacitor having a laminated conductive polymer film. This makes it possible to easily provide a solid electrolytic capacitor with excellent physical properties, thermal stability, and durability.

本発明において重合原料として性用される単量(式中R
1、R2及びR1は、同一でも異なってもよく、水素、
アルキル基、またはアリール基を示す)かかる化な物の
具体例としてはビロール、3−メチルビロール、3.4
−ジメチルビロール、3エチルビロール、3−フェニル
ビロール等が挙げられる。
In the present invention, the monomers used as polymerization raw materials (in the formula R
1, R2 and R1 may be the same or different, hydrogen,
Specific examples of such compounds (representing an alkyl group or an aryl group) include virol, 3-methylvirol, 3.4
-Dimethylvirol, 3-ethylvirol, 3-phenylvirol, and the like.

本発明において使用される37!電体皮膜の種類は特に
限定されないが、例えば、アルミニウム、タンタル、ニ
オブ等の弁金属基体の表面を酸化して形成する金属酸(
ヒ物皮膜を好適に使用することができる。
37! used in the present invention! The type of electric coating is not particularly limited, but examples include metal acids (formed by oxidizing the surface of valve metal substrates such as aluminum, tantalum, and niobium).
A firefly film can be suitably used.

本発明に従えば、第一段階として上記誘電体皮膜上で酸
化剤を用いて上記単量体を気相重合させる。この気相重
合法としては、酸化剤を含浸、塗布または噴霧した誘電
体皮膜を上記単量体蒸気にさらし、誘電体皮膜上に重合
体を形成させる方法を使用する。また単量体蒸気の代わ
りに液状単量体を窒素、アルゴン等の不活性ガスに同社
させ上記酸化剤処理した誘電体皮膜上で重きさせてもよ
い、気相重き温度には特に限定はないが、一般には一6
0°Cから200°Cの間の温度で実施する。
According to the present invention, as a first step, the monomer is vapor-phase polymerized on the dielectric film using an oxidizing agent. As this gas phase polymerization method, a method is used in which a dielectric film impregnated with, coated with, or sprayed with an oxidizing agent is exposed to the monomer vapor to form a polymer on the dielectric film. In addition, instead of monomer vapor, the liquid monomer may be placed in an inert gas such as nitrogen or argon, and the liquid monomer may be heated on the dielectric film treated with the oxidizing agent. There is no particular limitation on the vapor phase temperature. However, in general, 16
It is carried out at temperatures between 0°C and 200°C.

気相重合高分子層は誘電体皮膜と導電性高分子膜の密着
性を高めるために必須の層であるが、気相重き高分子は
熱安定性が低いのて、その膜厚は極めて薄い方がよく、
重合時間は気相重き高分子層の生成程度を観察判断しな
がら、数分から数時間の間で適宜選択するとよい。
The vapor phase polymerized polymer layer is an essential layer to improve the adhesion between the dielectric film and the conductive polymer film, but because the vapor phase polymer has low thermal stability, its film thickness is extremely thin. It's better,
The polymerization time may be appropriately selected from several minutes to several hours while observing and determining the degree of formation of a gas phase-heavy polymer layer.

上記の気相重な法で使用する酸1ヒ剤としては、誘電体
皮膜に対し有害でないものが望ましいが、ある程度問題
があっても固体電解コンデンサとして使用できるもので
あれば特に制限されることはない、この酸化剤としては
、過硫酸アンモニラ11、過硫酸ナトリウム、過硫酸カ
リウム等の過硫酸塩、塩化第二鉄、臭化第二鉄、硝酸第
二鉄、蓚酸第二鉄、過塩素酸第二鉄等の第二鉄塩、塩化
第二銅、臭化第二銅、硫酸第二銅、”硝酸第二胴等の第
二銅塩、硫酸、硝酸等のプロトン酸、三酸化イオウ、二
酸イヒ窒素等の含酸素化き物、過酸化水素、過酢酸等の
過酸化物、キノン、オゾン、ジアゾニウム塩等が挙げら
れるが、特に過硫酸アンモニウム、塩化第二鉄またはキ
ノンが好ましく、なかでも特に過硫酸アンモニウムが好
ましい。
It is preferable that the acidic arsenic used in the above vapor phase method be one that is not harmful to the dielectric film, but there are particular restrictions if it can be used as a solid electrolytic capacitor even if it has some problems. No, the oxidizing agents include persulfates such as ammonia persulfate 11, sodium persulfate, potassium persulfate, ferric chloride, ferric bromide, ferric nitrate, ferric oxalate, and perchlorate. Ferric salts such as ferric acids, cupric chloride, cupric bromide, cupric sulfate, cupric salts such as nitric acid, protonic acids such as sulfuric acid and nitric acid, sulfur trioxide , oxygenated compounds such as nitrogen diacid, hydrogen peroxide, peroxides such as peracetic acid, quinone, ozone, diazonium salts, etc. Ammonium persulfate, ferric chloride or quinone are particularly preferred, Among these, ammonium persulfate is particularly preferred.

これらの酸化剤は溶液、例えば水溶液として誘電体皮膜
に含浸5塗布または噴霧するが、コンデンサの安定性は
使用する酸化剤の濃度に影響を受ける。本発明の方法で
は酸化剤濃度を7〜15重景%重量るのが好ましく、1
0〜15重量%とすると特に良好な結果を得ることがで
きる。
These oxidizing agents are impregnated or sprayed onto the dielectric film as a solution, such as an aqueous solution, and the stability of the capacitor is affected by the concentration of the oxidizing agent used. In the method of the present invention, the oxidizing agent concentration is preferably 7 to 15% by weight;
Particularly good results can be obtained when the amount is 0 to 15% by weight.

上記の酸化剤の含浸、塗布または噴霧にあたり、有機酸
を併用することができる。有a酸としては、ベンゼンス
ルホン酸、トルエンスルホン酸等のアリールスルポン酸
を酸化剤1モル当り0.2モルから20モルの範囲内で
使用すればよい。
An organic acid can be used in combination with the impregnation, coating, or spraying of the above-mentioned oxidizing agent. As the alpha acid, arylsulfonic acids such as benzenesulfonic acid and toluenesulfonic acid may be used in an amount of 0.2 to 20 moles per mole of the oxidizing agent.

本発明の第二段階は上記気相型き高分子層の上に電解重
き高分子層を積層することからなる。
The second step of the present invention consists of laminating an electrolytically heavy polymer layer on the vapor phase type polymer layer.

電解重合法としては、支持電解質及び上記単量体を含む
電解液中で電解酸「ヒ重きを行うと、気相重合高分子層
の上に電解重き高分子層が積層した強靭な電導性高分子
膜が形成される。電解重き条件としては、例えば支持電
解質濃度0.01モル/1〜2モル/Z  、単量体濃
度0.01モ゛ル/β〜5モル/l の電解液を用い、
電流密度001〜L OO+IIA / cm”、電解
電圧1〜300vの範囲で実施し、定電流法、定電圧法
及びそれ以外のいかなる方法も使用することができる。
In the electrolytic polymerization method, when an electrolytic acid is added in an electrolytic solution containing a supporting electrolyte and the above monomers, a strong conductive polymer is formed in which an electrolytically heavy polymer layer is laminated on a gas phase polymerized polymer layer. A molecular film is formed. As the heavy electrolytic conditions, for example, an electrolytic solution with a supporting electrolyte concentration of 0.01 mol/1 to 2 mol/Z and a monomer concentration of 0.01 mol/β to 5 mol/l is used. use,
It is carried out at a current density of 001 to LOO+IIA/cm" and an electrolytic voltage of 1 to 300 V, and a constant current method, a constant voltage method, and any other method can be used.

電解重合法に使用する支持電解質としては、例えば陰イ
オンがヘキサフロロリン、ヘキサフロロリン、テトラフ
ロロホウ素等のハロゲン化物アニオン、ヨウ素、臭素、
塩素等のハロゲンアニオン、ベンゼンスルホン酸、トル
エンスルホン酸、β−ナフタレンスルホン酸等のスルホ
ン酸アニオン、サリチル酸、蓚酸、アジピン酸等のカル
ボン酸アニオン、過塩素酸アニオンであり、陽イオンが
ナトリウム、カリウム、リチウム等のアルカリ金属カチ
オン、アンモニウム、テトラアルキルアンモニウムなど
の四級アンモニウムカナオンである。
The supporting electrolytes used in the electrolytic polymerization method include, for example, anions such as halide anions such as hexafluoroline, hexafluoroline, and tetrafluoroborine, iodine, bromine,
Halogen anions such as chlorine, sulfonic acid anions such as benzenesulfonic acid, toluenesulfonic acid, and β-naphthalenesulfonic acid, carboxylic acid anions such as salicylic acid, oxalic acid, and adipic acid, and perchlorate anions, and the cations are sodium and potassium. , alkali metal cations such as lithium, and quaternary ammonium cations such as ammonium and tetraalkylammonium.

1ヒ合物としては、例えばベンゼンスルホン酸テトラブ
チルアンモニウム、トルエンスルホン酸テ1〜ラブチル
アンモニウム、ナフタレン−2−スルホン酸ナトリウム
、L i P F a、L 1AsF 6、NapF6
、K  u F  6 、  K  A s F  a
 、  LiBF、  、  NaCl0  、  L
iC110、KCl01K l、Nal、テトラエチル
アンモニウムボロジサリチレート等が挙げられる。
Examples of the compound include tetrabutylammonium benzenesulfonate, tetrabutylammonium toluenesulfonate, sodium naphthalene-2-sulfonate, LiPFa, L1AsF6, NapF6.
, K u F 6 , K A s F a
, LiBF, , NaCl0, L
Examples include iC110, KCl01K1, Nal, and tetraethylammonium borodisalicylate.

電解液の調製は、上記の単量体及び支持電解質を溶解し
得る溶媒に溶解することにより行う。この溶媒としては
両物質を溶解し得るものであれば特に制限はないが、ア
セトニトリル、ベンゾニトリル等のニトリル、エタノー
ル、プロパツール等のアルコール類、ジメチルホルムア
ミド、プロピレンカーボネート、ジメチルスルホキシド
、水などが挙げられる。
The electrolytic solution is prepared by dissolving the monomer and supporting electrolyte in a solvent that can dissolve them. The solvent is not particularly limited as long as it can dissolve both substances, but examples include nitriles such as acetonitrile and benzonitrile, alcohols such as ethanol and propatool, dimethylformamide, propylene carbonate, dimethyl sulfoxide, and water. It will be done.

(実施例) 以下に実施例にて本発明を具体的に説明するが、本発明
は、こられ実施例のみに限定されるものではない。
(Examples) The present invention will be specifically explained below using Examples, but the present invention is not limited to these Examples.

実施例1 素材として高純度アルミニウム(純度99.99%〉の
箔を用い、このアルミニウム箔の表面を交流電解エツチ
ングして表面積を拡大させた後、その表面を充分水洗い
する1次いでこのアルミニウム箔を陽極として電圧的7
0Vで陽i酸化処理を行い、その表面に酸化アルミニウ
ムの誘電体皮膜を形成しな。得られたアルミニウム箔上
の酸化アルミニウム皮膜上に、過硫酸アンモニウム4度
10重旦%の過硫酸アンモニウム水溶液を塗布した。こ
のように処理したアルミニウム箔をビロール単量体の蒸
気中に室温で約20分間さらし、誘電体皮膜上にビロー
ルの気相重音反応によりポリピロール層を形成させた。
Example 1 Using high-purity aluminum foil (99.99% purity) as a material, the surface of this aluminum foil was subjected to AC electrolytic etching to increase the surface area, and then the surface was thoroughly washed with water. Voltage 7 as anode
Perform anodic oxidation treatment at 0V and form a dielectric film of aluminum oxide on the surface. An aqueous solution of ammonium persulfate containing 4% ammonium persulfate and 10% ammonium persulfate was applied onto the aluminum oxide film on the aluminum foil obtained. The aluminum foil treated in this way was exposed to the vapor of pyrrole monomer at room temperature for about 20 minutes, and a polypyrrole layer was formed on the dielectric film by the gas phase overtone reaction of pyrrole.

次いで上記処理を行ったアルミニウム箔をlrf%Iと
し、ナフタレン−2スルホン酸0.02mol/&、ボ
ロジサリチル酸トリエチルアンモニウム0.1rnol
/&、ビロール0.2モル/1 を含む電解液中に浸漬
し、電流密度1、OmA/eIa2で約1時間電解重合
し、黒色のポリピロール層をra層した。
Next, the aluminum foil subjected to the above treatment was made into lrf%I, 0.02 mol/& of naphthalene-2 sulfonic acid, and 0.1 rnol of triethylammonium borodisalicylate.
/&, was immersed in an electrolytic solution containing 0.2 mol/1 pyrrole and electrolytically polymerized at a current density of 1 and OmA/eIa2 for about 1 hour to form a black polypyrrole layer.

上記方法で得られた電極を取り出し、洗浄、屹燥した後
、カーボンペースト、銀ペーストにより対極リード分取
り出し、エポキシ樹脂で外装封止して電解コンデンサと
した。
After the electrode obtained by the above method was taken out, washed, and dried, the counter electrode lead was taken out using carbon paste and silver paste, and the exterior was sealed with epoxy resin to form an electrolytic capacitor.

実施例2〜4 ビロールの気相重合反応において使用する過硫酸アンモ
ニウム濃度を、15]ifl?イ(実施例2)、25重
旦%(実施例3〉、及び3 Q @ fJfl q、<
 (実施例4)と変えた以外は実施例1と全く同様に処
理して電解コンデンサを1ヤ成した。
Examples 2 to 4 The concentration of ammonium persulfate used in the gas phase polymerization reaction of virol was set to 15]ifl? (Example 2), 25% (Example 3), and 3 Q @ fJfl q, <
One layer of electrolytic capacitors was fabricated in the same manner as in Example 1 except for the changes in Example 4.

比較例 陽極箔上に気相重合法によるポリピロール層を形成せず
に実施例1に準じてとロールの電解重合を行ったが、酸
化アルミニウム誘電体上に密着性のある膜を形成するこ
とはできなかった。
Comparative Example A roll was electrolytically polymerized according to Example 1 without forming a polypyrrole layer by vapor phase polymerization on the anode foil, but it was not possible to form an adhesive film on the aluminum oxide dielectric. could not.

上記実施例で得られた電解コンデンサの電気的特性を静
電容jt(Cap)、損失角の正接(tanδ)、等価
直列抵抗(E S R1100KHzにおけるは)、漏
れ電流(LC6,3Vにおける値)についてlit定し
た。また電解コンデンサの安定性、耐久性を調べるため
、110°Cで2000時間経過後、及び同じ<300
0時間経過後の静電容量の変化(LCす)、及び等価直
列抵抗を測定した。これらの結果を第1表及び第2表に
示す。
The electrical characteristics of the electrolytic capacitor obtained in the above example are shown in terms of capacitance jt (Cap), tangent of loss angle (tan δ), equivalent series resistance (at ESR 1100KHz), and leakage current (value at LC6.3V). It was determined that it was lit. In addition, in order to investigate the stability and durability of electrolytic capacitors, we tested them after 2000 hours at 110°C and at
Changes in capacitance (LC) and equivalent series resistance after 0 hours were measured. These results are shown in Tables 1 and 2.

第1表 第2表 第1表、第2表からみて、本発明の固体電解コンデンサ
は、単位面積当たりの容量が高く、損失角の正接値、等
価直列抵抗値及び漏れ電流が低い特性を示し、耐久試験
においても静電容量の低下、等価直列抵抗値の上昇が少
なく、極めて安定で耐久性に漫れたものであることが判
る。また気相重合で1史用する酸化剤濃度は、特に15
重量%以下で1量れた効果をもたらすことが判る。
Table 1 Table 2 Tables 1 and 2 show that the solid electrolytic capacitor of the present invention has high capacitance per unit area, and exhibits characteristics of low loss angle tangent value, equivalent series resistance value, and leakage current. Even in durability tests, there was little decrease in capacitance and little increase in equivalent series resistance, and it was found to be extremely stable and durable. In addition, the concentration of oxidizing agent used for one cycle in gas phase polymerization is particularly 15
It can be seen that less than 1% by weight brings about a significant effect.

(発明の効果) 以上詳細に説明した通り、本発明の方法によれば、(1
)誘電体皮膜と電解重き層の接合を気相重き層を介して
行うので、導電性高分子膜と誘電体皮膜の密着性がよく
、漏れ電流が小さく、静電容量の低下、等価直列抵抗値
の上昇が少ない高耐圧性のコンデンサを得ることができ
る。(2)気相重合高分子層と電解重合高分子層を?1
層したので、熱安定性の低い気相重合膜の欠点がカバー
され、熱安定性のよいコンデンサを得ることができる、
(3)製造時に高温処理を行わないので誘電体を…渇す
ることがなく、定格電圧をあげることができ、このため
従来のものと同容量、同定格電圧のコンデンサを得るの
に従来のものより形状を小型化てきる、等の効果がある
(Effect of the invention) As explained in detail above, according to the method of the present invention, (1
) Since the dielectric film and the electrolytic heavy layer are bonded through the gas phase heavy layer, the adhesion between the conductive polymer film and the dielectric film is good, the leakage current is small, the capacitance is reduced, and the equivalent series resistance is reduced. It is possible to obtain a high voltage resistant capacitor with little increase in value. (2) Gas phase polymerization polymer layer and electrolytic polymerization polymer layer? 1
Because of the layered structure, the shortcomings of gas-phase polymerized films, which have low thermal stability, are covered, and a capacitor with good thermal stability can be obtained.
(3) Since high-temperature treatment is not performed during manufacturing, the dielectric material is not depleted and the rated voltage can be increased. Therefore, it is possible to obtain a capacitor with the same capacity and the same rated voltage as the conventional capacitor. This has the effect of making the shape more compact.

従って、本発明は電気的特性、安定性、耐久性、及び経
済性の点で量れた効果を達成し得るものである。
Therefore, the present invention can achieve significant advantages in terms of electrical properties, stability, durability, and economy.

Claims (3)

【特許請求の範囲】[Claims] (1) 誘電体皮膜上に、酸化剤を用いて気相重合法に
よりポリピロールの導電性高分子層を形成させ、次いで
該導電性高分子層上に、電解重合法によりポリピロール
の導電性高分子層を形成させることを特徴とする固体電
解コンデンサの製造方法。
(1) A conductive polymer layer of polypyrrole is formed on the dielectric film by vapor phase polymerization using an oxidizing agent, and then a conductive polymer layer of polypyrrole is formed on the conductive polymer layer by electrolytic polymerization. A method for manufacturing a solid electrolytic capacitor, characterized by forming layers.
(2) 酸化剤濃度7〜15重量%で気相重合させる請
求項1に記載の固体電解コンデンサの製造方法。
(2) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the gas phase polymerization is carried out at an oxidizing agent concentration of 7 to 15% by weight.
(3) 酸化剤として過硫酸アンモニウムを使用する請
求項2又は3に記載の固体電解コンデンサの製造方法。
(3) The method for manufacturing a solid electrolytic capacitor according to claim 2 or 3, wherein ammonium persulfate is used as the oxidizing agent.
JP13840889A 1989-05-31 1989-05-31 Production of solid electrolytic capacitor Pending JPH036217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13840889A JPH036217A (en) 1989-05-31 1989-05-31 Production of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13840889A JPH036217A (en) 1989-05-31 1989-05-31 Production of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH036217A true JPH036217A (en) 1991-01-11

Family

ID=15221262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13840889A Pending JPH036217A (en) 1989-05-31 1989-05-31 Production of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH036217A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247378A (en) * 1991-06-07 1993-09-21 Peter Miller Optical retarder having means for determining the retardance of the cell corresponding to the sensed capacitance thereof
US6430032B2 (en) 2000-07-06 2002-08-06 Showa Denko K. K. Solid electrolytic capacitor and method for producing the same
WO2003017299A1 (en) * 2001-08-20 2003-02-27 Sanyo Electric Co., Ltd. Method of producing solid electrolytic capacitor
US7388741B2 (en) 2002-11-21 2008-06-17 Show A Denko K.K. Solid electrolytic capacitor and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247378A (en) * 1991-06-07 1993-09-21 Peter Miller Optical retarder having means for determining the retardance of the cell corresponding to the sensed capacitance thereof
US6430032B2 (en) 2000-07-06 2002-08-06 Showa Denko K. K. Solid electrolytic capacitor and method for producing the same
US6867088B2 (en) 2000-07-06 2005-03-15 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
WO2003017299A1 (en) * 2001-08-20 2003-02-27 Sanyo Electric Co., Ltd. Method of producing solid electrolytic capacitor
US7125764B2 (en) 2001-08-20 2006-10-24 Sanyo Electric Co., Ltd. Method of producing solid electrolytic capacitor
US7388741B2 (en) 2002-11-21 2008-06-17 Show A Denko K.K. Solid electrolytic capacitor and method for producing the same

Similar Documents

Publication Publication Date Title
EP0437857B1 (en) A method for producing a solid capacitor and a solid capacitor obtainable by said method
JPS63173313A (en) Solid electrolytic capacitor
JP4776338B2 (en) Conductive polymer dopant solution, conductive polymer oxidant / dopant, conductive composition, solid electrolytic capacitor and method for producing the same
JPH0365887B2 (en)
JPH05175082A (en) Manufacture of solid electrolytic capacitor
JPH02249221A (en) Solid electrolytic capacitor
JPH02235321A (en) Solid electrolytic capacitor
JPH036217A (en) Production of solid electrolytic capacitor
JP2007142070A (en) Dopant solution for conductive polymer, oxidizing agent also serving as dopant for conductive polymer, conductive composition, solid electrolytic capacitor, and method of manufacturing same
JP2011228636A (en) Solid-state capacitor and manufacturing method of the same
JP3213994B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0583167B2 (en)
JPS62189714A (en) Formation of semiconductor layer of solid electrolytic capacitor
JPH0276211A (en) Solid electrolytic capacitor and manufacture thereof
JPH0346214A (en) Manufacture of solid electrolytic capacitor
JPH11191518A (en) Organic solid electrolytic capacitor and manufacture thereof
JP2741071B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63102309A (en) Solid electrolyte capacitor and manufacture of the same
JPH04111407A (en) Manufacture of solid electrolytic capacitor
JPH0350813A (en) Manufacture of solid electrolytic capacitor
JPH0266921A (en) Manufacture of solid electrolytic capacitor
JPH0298915A (en) Solid electrolytic capacitor
JPH0350811A (en) Manufacture of solid electrolytic capacitor
JPS63314822A (en) Manufacture of solid electrolytic capacitor
JPH0274019A (en) Manufacture of solid electrolytic condenser