JPH0645195A - Manufacture of solid-state electrolytic capacitor - Google Patents

Manufacture of solid-state electrolytic capacitor

Info

Publication number
JPH0645195A
JPH0645195A JP19497891A JP19497891A JPH0645195A JP H0645195 A JPH0645195 A JP H0645195A JP 19497891 A JP19497891 A JP 19497891A JP 19497891 A JP19497891 A JP 19497891A JP H0645195 A JPH0645195 A JP H0645195A
Authority
JP
Japan
Prior art keywords
polyaniline
film
solution
dielectric oxide
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19497891A
Other languages
Japanese (ja)
Inventor
Tomio Hosaka
利美夫 保坂
Hideo Yamamoto
秀雄 山本
Isao Isa
功 伊佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP19497891A priority Critical patent/JPH0645195A/en
Publication of JPH0645195A publication Critical patent/JPH0645195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To manufacture a solid-state electrolytic capacitor excellent in characteristics by a method wherein a dedoped polyaniline film is formed on a dielectric oxide film and then brought into contact with a dope solution to turn into a conductive polyaniline film. CONSTITUTION:A roughened aluminum etched foil is cut off, a lead is fixed to the cut foil by caulking, and the foil is subjected to a chemical conversion treatment for the formation of a dielectric oxide film. This element is dipped into dedoped polyaniline solution, then dried up, and then dipped into naphthalene sulfonic acid butanol solution and dried up, and this process is repeated ten times to form a conductive polyaniline film. A dedoped polyaniline solution is prepared using polyaniline polymerized by chemical oxidation at a reaction temperature of 25C or below. By this setup, a polyaniline film can be formed without causing damage to a dielectric oxide film or an aluminum foil by dissolving, and an excellent capacitor can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性ポリアニリン膜
を固体電解質とする固体電解コンデンサの製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a solid electrolytic capacitor using a conductive polyaniline film as a solid electrolyte.

【0002】[0002]

【従来の技術】弁作用金属表面に誘電体酸化皮膜を形成
し、該誘電体酸化皮膜上に導電性高分子膜を形成して固
体電解質とする構造の固体電解コンデンサが提案されて
いる。特開昭63−173313には、誘電体酸化皮膜
上にプレコート層として導電性高分子膜を化学酸化重合
により形成し、さらに該導電性高分子膜上に導電性高分
子膜を電解重合により形成して固体電解質とする構造の
コンデンサが開示されている。また、特開昭63−15
8829には誘電体酸化皮膜上にプレコート層として二
酸化マンガンなどの導電性を有する金属化合物の薄膜を
形成し、さらに該薄膜上に導電性高分子膜を電解重合に
より形成して固体電解質とする構造のコンデンサが提案
されている。これらのコンデンサは従来のコンデンサに
くらべ、周波数特性、電気的特性及び耐熱性に優れたコ
ンデンサである。しかし、電解重合法で導電性高分子を
形成するには特別な電解槽や給電用の治具が必要である
など煩雑な装置や工程が必要である。
2. Description of the Related Art There has been proposed a solid electrolytic capacitor having a structure in which a dielectric oxide film is formed on the surface of a valve metal and a conductive polymer film is formed on the dielectric oxide film to form a solid electrolyte. In Japanese Unexamined Patent Publication No. 63-173313, a conductive polymer film is formed as a precoat layer on a dielectric oxide film by chemical oxidation polymerization, and a conductive polymer film is formed on the conductive polymer film by electrolytic polymerization. A capacitor having a structure in which a solid electrolyte is used is disclosed. Also, JP-A-63-15
8829 has a structure in which a thin film of a conductive metal compound such as manganese dioxide is formed as a precoat layer on a dielectric oxide film, and a conductive polymer film is formed on the thin film by electrolytic polymerization to form a solid electrolyte. Capacitors have been proposed. These capacitors are superior in frequency characteristics, electrical characteristics and heat resistance to conventional capacitors. However, in order to form a conductive polymer by the electrolytic polymerization method, a complicated device or process is required such as a special electrolytic tank or a jig for feeding power.

【0003】また、導電性高分子の一つとしてポリアニ
リンがある。ポリアニリンは原料として安価なアニリン
を使用するので、経済面では大変有利である。しかし、
一般に、導電性のポリアニリンを合成するには、高濃度
の硫酸などのプロトン酸を共存させて反応させる必要が
あり、一方、コンデンサに汎用されるアルミニウムは、
酸に極めて弱いため、このような導電性ポリアニリン膜
を直接アルミニウム箔上に形成しようとしても誘電体酸
化皮膜及びアルミニウムが溶解してしまうためコンデン
サを形成できず、コンデンサの固体電解質にはほとんど
利用されなかった。
Polyaniline is one of the conductive polymers. Since polyaniline uses inexpensive aniline as a raw material, it is very economically advantageous. But,
In general, in order to synthesize conductive polyaniline, it is necessary to react in the presence of a high concentration of a protonic acid such as sulfuric acid, while aluminum commonly used for capacitors is
Since it is extremely weak against acid, even if an attempt is made to directly form such a conductive polyaniline film on an aluminum foil, the dielectric oxide film and aluminum are dissolved and the capacitor cannot be formed. There wasn't.

【0004】さらに、導電性高分子膜を簡便に形成する
方法としては、酸化剤を用いる化学酸化重合法がある
が、化学酸化重合によるポリアニリンは一般に電導度が
低く、かつ充填密度も小さいため、コンデンサの固体電
解質に応用しても優れたコンデンサ特性が得られなかっ
た。
Further, as a method for easily forming a conductive polymer film, there is a chemical oxidative polymerization method using an oxidizing agent, but polyaniline by the chemical oxidative polymerization generally has a low electric conductivity and a small packing density. Even when applied to the solid electrolyte of a capacitor, excellent capacitor characteristics could not be obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的とすると
ころは、弁作用金属表面に誘電体酸化皮膜を形成し、該
誘電体酸化皮膜上に導電性ポリアニリン膜を形成して固
体電解質とする固体電解コンデンサの製造方法におい
て、誘電体酸化皮膜及びアルミニウムを溶解することな
く導電性のポリアニリン膜を形成し、かつ、特性の優れ
た固体電解コンデンサの製造方法を提供することであ
る。
An object of the present invention is to form a dielectric oxide film on the surface of a valve metal and to form a conductive polyaniline film on the dielectric oxide film to obtain a solid electrolyte. A method for manufacturing a solid electrolytic capacitor, which comprises forming a conductive polyaniline film without dissolving a dielectric oxide film and aluminum and providing a solid electrolytic capacitor having excellent characteristics.

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意検討し
た結果、上記問題を解決しうる固体電解コンデンサの製
造方法を完成するに至った。
As a result of intensive studies, the present inventors have completed a method of manufacturing a solid electrolytic capacitor which can solve the above problems.

【0007】すなわち、誘電体酸化皮膜を形成した弁作
用金属の表面に、固体電解質として導電性のポリアニリ
ン膜を形成した固体電解コンデンサの製造方法におい
て、誘電体酸化皮膜上に脱ドープしたポリアニリン溶液
を用いて脱ドープしたポリアニリン膜を形成した後、ド
ーピング溶液と接触させて導電性のポリアニリン膜を形
成することを特徴とする固体電解コンデンサの製造方法
である。以下、本固体電解コンデンサの製造方法につい
て詳述する。
That is, in a method for producing a solid electrolytic capacitor in which a conductive polyaniline film is formed as a solid electrolyte on the surface of a valve metal having a dielectric oxide film formed thereon, a polyaniline solution dedoped on the dielectric oxide film is used. A method for producing a solid electrolytic capacitor, comprising forming a dedoped polyaniline film by using the polyaniline film, and then contacting it with a doping solution to form a conductive polyaniline film. Hereinafter, the method for manufacturing the present solid electrolytic capacitor will be described in detail.

【0008】弁作用金属としては、アルミニウム、タン
タルまたはチタンを用い、平板の単板または積層板、巻
回、焼結体などの形状で用いる。次に、本発明を弁作用
金属としてアルミニウムを用いた場合について説明す
る。
Aluminum, tantalum or titanium is used as the valve action metal, and is used in the form of a flat single plate or a laminated plate, a wound body, a sintered body or the like. Next, the case where aluminum is used as the valve metal in the present invention will be described.

【0009】アルミニウム箔の表面をエッチングした
後、リードタブを介して陽極リードを接続し、アジピン
酸アンモニウムなどの水溶液中で電解酸化を行い表面に
誘電体酸化皮膜を形成させ素子を得る。該素子を脱ドー
プしたポリアニリン溶液に浸漬または塗布後乾燥するな
どの方法により、誘電体酸化皮膜上に脱ドープしたポリ
アニリン膜を形成する。次に、脱ドープしたポリアニリ
ン膜を形成した素子を、ドーピング溶液と接触して導電
化する。この操作を数回繰り返すことにより導電性のポ
リアニリン膜を形成する。
After etching the surface of the aluminum foil, the anode lead is connected through a lead tab, and electrolytic oxidation is performed in an aqueous solution of ammonium adipate to form a dielectric oxide film on the surface to obtain a device. A dedoped polyaniline film is formed on the dielectric oxide film by a method such as immersing the device in a dedoped polyaniline solution or coating and then drying. Next, the element having the dedoped polyaniline film formed thereon is brought into contact with the doping solution to be made conductive. By repeating this operation several times, a conductive polyaniline film is formed.

【0010】本発明に用いる脱ドープしたポリアニリン
溶液は、化学酸化重合により製造した導電性のポリアニ
リンを脱ドープし、有機溶媒に溶解して調製する。アニ
リンを化学酸化重合するには、アニリン塩をプロトン酸
の存在下、溶液中で酸化剤により酸化重合させれば良
い。用いるアニリン塩としては、通常アニリンの塩酸、
硫酸、過塩素酸、ホウフッ化水素酸等の塩があげられ
る。また、酸化剤としては、過硫酸アンモニウム、過硫
酸カリウムなどの過硫酸塩、過酸化水素、過酸化ナトリ
ウムなどの過酸化物、過マンガン酸カリウム、重クロム
酸カリウム、塩化第二鉄などの高原子価金属化合物など
アニリンを酸化し得る酸化剤ならいずれも使用できる。
また、プロトン酸としては塩酸、硫酸、過塩素酸、ホウ
フッ化水素酸、ヘキサフルオロリン酸などを使用する。
The dedoped polyaniline solution used in the present invention is prepared by dedoping the conductive polyaniline produced by chemical oxidative polymerization and dissolving it in an organic solvent. In order to chemically oxidatively polymerize aniline, aniline salt may be oxidatively polymerized with an oxidizing agent in a solution in the presence of a protic acid. The aniline salt used is usually aniline hydrochloric acid,
Examples thereof include salts of sulfuric acid, perchloric acid, and hydrofluoric acid. Further, as the oxidizing agent, persulfates such as ammonium persulfate and potassium persulfate, peroxides such as hydrogen peroxide and sodium peroxide, high atoms such as potassium permanganate, potassium dichromate and ferric chloride. Any oxidizing agent capable of oxidizing aniline such as a valent metal compound can be used.
Further, hydrochloric acid, sulfuric acid, perchloric acid, borofluoric acid, hexafluorophosphoric acid or the like is used as the protonic acid.

【0011】該化学酸化重合によるポリアニリンは、ア
ンモニア水と接触させると脱ドープされ、脱ドープした
ポリアニリンとなる。これをN-メチル-2-ピロリドン
(以下NMPと略記)またはNMPと他の有機溶媒の混
合溶媒に溶解すると脱ドープしたポリアニリン溶液が得
られる。
The polyaniline obtained by the chemical oxidative polymerization is dedoped when it is brought into contact with aqueous ammonia to become dedoped polyaniline. When this is dissolved in N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) or a mixed solvent of NMP and another organic solvent, a dedoped polyaniline solution is obtained.

【0012】アニリンを化学酸化重合する際、反応温度
を25℃以下に制御して行うのが好ましい。この条件で得
られたポリアニリンから脱ドープしたポリアニリン溶液
を調製し、これを用いて誘電体酸化皮膜上に導電性のポ
リアニリン膜を形成して固体電解質としたコンデンサは
優れた特性を与える。より好ましくは10℃以下である。
一方、反応温度を制御しないで化学酸化重合を行うと、
反応熱のため25℃より高くなる。反応温度が高くなり過
ぎた条件で得られたポリアニリンを固体電解質としたコ
ンデンサは特性が劣る。
[0012] It is preferable to control the reaction temperature at 25 ° C or lower when chemically oxidizing the aniline. A capacitor prepared by preparing a dedoped polyaniline solution from the polyaniline obtained under these conditions and forming a conductive polyaniline film on a dielectric oxide film and using it as a solid electrolyte provides excellent characteristics. It is more preferably 10 ° C or lower.
On the other hand, if chemical oxidative polymerization is performed without controlling the reaction temperature,
It becomes higher than 25 ℃ due to heat of reaction. A capacitor using polyaniline obtained under the condition that the reaction temperature becomes too high has a poor performance as a capacitor.

【0013】ドーピング溶液は、プロトン酸を有機溶媒
に溶解した溶液である。本発明に用いる有機溶媒として
は特に限定されないが、ケトン類、エステル類、アルコ
ール類、芳香族炭化水素類、ニトリル類、セルソルブ
類、含チッ素化合物などが挙げられる。プロトン酸とし
ては、塩酸、硫酸、過塩素酸、ホウフッ化水素酸、ヘキ
サフルオロリン酸などの無機酸類、ベンゼンスルホン
酸、p−トルエンスルホン酸、ナフタレンスルホン酸、
スチレンスルホン酸及びそのポリマーなどの有機スルホ
ン酸、フタル酸、シュウ酸、マレイン酸、ピルビン酸、
マロン酸、サリチル酸、クエン酸、フマル酸、アクリル
酸及びそのポリマー、ビスサルチレートホウ素酸などの
ホウ素錯体の酸などがあげられ、好ましくは有機スルホ
ン酸類である。また、その濃度は0.5mol/l以下で十分
であり、かつ、接触時間は数分ないし数十分であるか
ら、誘電体酸化皮膜を損傷しない。ドーピング溶液と接
触するには、浸漬、塗布、噴霧などの方法を用いる。ま
た、接触後の乾燥温度は室温ないし200℃の範囲で行
う。
The doping solution is a solution of a protic acid dissolved in an organic solvent. The organic solvent used in the present invention is not particularly limited, and examples thereof include ketones, esters, alcohols, aromatic hydrocarbons, nitriles, cellosolves, and nitrogen-containing compounds. As the protic acid, inorganic acids such as hydrochloric acid, sulfuric acid, perchloric acid, borofluoric acid, hexafluorophosphoric acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid,
Organic sulfonic acids such as styrene sulfonic acid and its polymers, phthalic acid, oxalic acid, maleic acid, pyruvic acid,
Examples thereof include malonic acid, salicylic acid, citric acid, fumaric acid, acrylic acid and its polymers, and boron complex acids such as bissalicylateboronic acid, with organic sulfonic acids being preferred. Further, the concentration is 0.5 mol / l or less, and the contact time is several minutes to several tens of minutes, so that the dielectric oxide film is not damaged. For contact with the doping solution, methods such as dipping, coating and spraying are used. The drying temperature after contact is from room temperature to 200 ° C.

【0014】以上の方法により、表面に誘電体酸化皮膜
を形成した弁作用金属上に、導電性のポリアニリン膜を
形成した後、該素子表面にカーボンペースト及び導電性
ペーストにより導電性塗膜を形成し、その一部より陰極
リードを取り出し、樹脂モールドまたは外装ケースに密
封するなどの方法によりコンデンサを得ることができ
る。
By the above method, a conductive polyaniline film is formed on a valve metal having a dielectric oxide film formed on its surface, and then a conductive coating film is formed on the surface of the element with a carbon paste and a conductive paste. Then, the cathode lead is taken out from a part thereof, and the capacitor can be obtained by a method such as sealing with a resin mold or an outer case.

【0015】本発明の固体電解コンデンサの製造方法
は、誘電体酸化皮膜上に脱ドープしたポリアニリン溶液
を用いて脱ドープしたポリアニリン膜を形成した後、ド
ーピング溶液と接触させて導電性のポリアニリン膜を形
成するので、誘電体酸化皮膜やアルミニウム箔を溶解損
傷することなくポリアニリン膜を形成できる。また、こ
のようにして製造したコンデンサは等価直列抵抗が小さ
いなど特性が優れている。さらに、誘電体酸化皮膜上
に、浸漬などの簡便の方法によりポリアニリン膜を形成
できるので工程が簡略になり、また、アニリンモノマー
が無駄に費やされず製造コストが低減される。
According to the method of manufacturing a solid electrolytic capacitor of the present invention, a dedoped polyaniline film is formed on a dielectric oxide film using a dedoped polyaniline solution, and then the conductive polyaniline film is contacted with the doping solution to form a conductive polyaniline film. Since it is formed, the polyaniline film can be formed without melting and damaging the dielectric oxide film and the aluminum foil. Further, the capacitor thus manufactured has excellent characteristics such as a small equivalent series resistance. Furthermore, since the polyaniline film can be formed on the dielectric oxide film by a simple method such as dipping, the process is simplified, and the aniline monomer is not wasted, thus reducing the manufacturing cost.

【0016】[0016]

【実施例】以下、実施例及び比較例により本発明を詳細
に説明する。 実施例1 5℃に冷却した300mlガラス反応器中で、アニリン4.7g
及び濃硫酸9.8gを含む水溶液に過硫酸アンモニウム11.
4gを含む水溶液を滴下して化学酸化重合を行った。生
成した沈澱を濾過してポリアニリンを得た。この粉末4
gをアンモニア水50mlに混合攪ハンし、更に濾過分離す
ることにより、脱ドープしたポリアニリンを得た。この
脱ドープしたポリアニリンをNMP50wt%、ブタノール
50wt%の溶媒に溶解し脱ドープしたポリアニリン0.3wt
%の溶液を得た。 厚み50μm、幅5mmの粗面化したア
ルミニウムエッチ箔を得た。該箔を10mmに切断後、加締
め付けによりリードを取りつけ、アジピン酸アンモニウ
ム水溶液中15Vで化成処理を行って誘電体酸化皮膜を形
成した。この素子を、先に調製した脱ドープしたポリア
ニリン溶液に5分浸漬後70℃で乾燥し、その後、ナフタ
レンスルホン酸0.3mol/lのブタノ−ル溶液に5分浸漬
後100℃で乾燥し、この操作を10回繰り返して導電性の
ポリアニリン膜を形成した。この素子をコロイダルカー
ボンに浸漬し、さらに銀ペーストを塗布して導電性塗膜
を形成し、その一部から対極を取り出した後、エポキシ
樹脂でモールドして定格電圧6.3V、定格静電容量が22
μFのコンデンサを完成した。得られたコンデンサの初
期特性を表1に示す。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples. Example 1 4.7 g of aniline in a 300 ml glass reactor cooled to 5 ° C.
And ammonium persulfate in an aqueous solution containing 9.8 g of concentrated sulfuric acid 11.
An aqueous solution containing 4 g was dropped to carry out chemical oxidative polymerization. The formed precipitate was filtered to obtain polyaniline. This powder 4
g was mixed with 50 ml of ammonia water, and the mixture was stirred and filtered to obtain dedoped polyaniline. This dedoped polyaniline is made of NMP50wt%, butanol
0.3 wt of polyaniline dissolved in 50 wt% solvent and dedoped
% Solution was obtained. A roughened aluminum etched foil having a thickness of 50 μm and a width of 5 mm was obtained. After cutting the foil into 10 mm, the leads were attached by crimping, and chemical conversion treatment was carried out in an aqueous solution of ammonium adipate at 15 V to form a dielectric oxide film. This device was dipped in the previously prepared undoped polyaniline solution for 5 minutes and dried at 70 ° C., then dipped in a butanol solution of 0.3 mol / l naphthalenesulfonic acid for 5 minutes and dried at 100 ° C. The operation was repeated 10 times to form a conductive polyaniline film. This element is dipped in colloidal carbon, and a silver paste is applied to form a conductive coating film. A counter electrode is taken out from a part of the element and molded with an epoxy resin to obtain a rated voltage of 6.3 V and a rated capacitance. twenty two
A μF capacitor was completed. The initial characteristics of the obtained capacitor are shown in Table 1.

【0017】実施例2 化学重合温度を15℃とする以外は実施例1と同様にして
得た脱ドープしたポリアニリンを、NMP60wt%、エタ
ノール40wt%の溶媒に溶解し脱ドープしたポリアニリン
0.3wt%の溶液を得た。 厚み50μm、幅5mmの粗面化し
たアルミニウムエッチ箔を得た。該箔を10mmに切断後、
加締め付けによりリードを取りつけ、アジピン酸アンモ
ニウム水溶液中15Vで化成処理を行って誘電体酸化皮膜
を形成した。この素子を先に調製した溶液に10分間浸漬
後70℃で乾燥し、さらにビスサリチレートホウ素酸0.2m
ol/lのエタノール溶液に5分間浸漬後100℃で乾燥し、
ドーピング反応を行った。この操作を8回繰り返し導電
性のポリアニリン膜を形成した。この素子をコロイダル
カーボンに浸漬し、さらに銀ペーストを塗布して導電性
塗膜を形成し、その一部から対極を取り出した後、エポ
キシ樹脂でモールドして定格電圧6.3V、定格静電容量
が22μFのコンデンサを完成した。得られたコンデンサ
の初期特性を表1に示す。
Example 2 Polyaniline dedoped by dissolving the dedoped polyaniline obtained in the same manner as in Example 1 except that the chemical polymerization temperature was 15 ° C. in a solvent of NMP 60 wt% and ethanol 40 wt%.
A 0.3 wt% solution was obtained. A roughened aluminum etched foil having a thickness of 50 μm and a width of 5 mm was obtained. After cutting the foil into 10 mm,
The lead was attached by crimping, and chemical conversion treatment was performed in an aqueous solution of ammonium adipate at 15 V to form a dielectric oxide film. This device was immersed in the previously prepared solution for 10 minutes and then dried at 70 ° C.
soak in ol / l ethanol solution for 5 minutes and dry at 100 ℃,
A doping reaction was performed. This operation was repeated 8 times to form a conductive polyaniline film. This element is dipped in colloidal carbon, and a silver paste is applied to form a conductive coating film. A counter electrode is taken out from a part of the element and molded with an epoxy resin to obtain a rated voltage of 6.3 V and a rated capacitance. A 22μF capacitor was completed. The initial characteristics of the obtained capacitor are shown in Table 1.

【0018】実施例3 ポリアニリンの化学酸化重合温度が28℃である以外は、
実施例1と同様にしてコンデンサを完成した。得られた
コンデンサの初期特性を表1に示す。
Example 3 Except that the chemical oxidative polymerization temperature of polyaniline was 28 ° C.
A capacitor was completed in the same manner as in Example 1. The initial characteristics of the obtained capacitor are shown in Table 1.

【0019】実施例4 実施例1と同様にして脱ドープしたポリアニリン0.3wt
%の溶液を得た。厚み50μm、幅5mmの粗面化したアル
ミニウムエッチ箔を得た。該箔を10mmに切断後、加締め
付けによりリードを取りつけ、アジピン酸アンモニウム
水溶液中15Vで化成処理を行って誘電体酸化皮膜を形成
した。この素子の表面に、#16のバーコーターを用い
て先に調製した脱ドープしたポリアニリン溶液を塗布し
80℃で乾燥した。その後イソプロピルナフタレンスルホ
ン酸0.2mol/lのエタノ−ル溶液を塗布し100℃で乾燥し
た。この操作を10回繰り返して導電性のポリアニリン膜
を形成した。この素子をコロイダルカーボンに浸漬し、
更に銀ペーストを塗布して導電性塗膜を形成し、その一
部から対極を取り出した後、エポキシ樹脂でモールドし
て定格電圧6.3V、定格静電容量が22μFのコンデンサ
を完成した。得られたコンデンサの初期特性を表1に示
す。
Example 4 0.3 wt% of polyaniline dedoped as in Example 1
% Solution was obtained. A roughened aluminum etched foil having a thickness of 50 μm and a width of 5 mm was obtained. After cutting the foil into 10 mm, the leads were attached by crimping, and chemical conversion treatment was carried out in an aqueous solution of ammonium adipate at 15 V to form a dielectric oxide film. The dedoped polyaniline solution prepared above was applied to the surface of this device using a # 16 bar coater.
It was dried at 80 ° C. Thereafter, an ethanol solution of isopropylnaphthalenesulfonic acid 0.2 mol / l was applied and dried at 100 ° C. This operation was repeated 10 times to form a conductive polyaniline film. Immersing this element in colloidal carbon,
Further, a silver paste was applied to form a conductive coating film, a counter electrode was taken out from a part thereof, and then molded with an epoxy resin to complete a capacitor having a rated voltage of 6.3 V and a rated capacitance of 22 μF. The initial characteristics of the obtained capacitor are shown in Table 1.

【0020】比較例1 厚み50μm、幅5mmの粗面化したアルミニウムエッチ箔
を得た。該箔を10mmに切断後、加締め付けによりリード
を取りつけ、アジピン酸アンモニウム水溶液中15Vで化
成処理を行って誘電体酸化皮膜を形成した。この素子
を、アニリンモノマー20wt%のアセトン溶液に1分間浸
漬し、さらに過硫酸アンモニウム0.3mol/l及び硫酸4m
ol/lの水溶液に5分間浸漬し、化学酸化重合を行っ
た。この操作を5回繰り返し、化学酸化重合によるポリ
アニリン膜を形成した。この素子をコロイダルカーボン
に浸漬し、更に銀ペーストを塗布して導電性塗膜を形成
し、その一部から対極を取り出した後、エポキシ樹脂で
モールドして定格電圧6.3V、定格静電容量が22μFの
コンデンサを完成した。該方法により20個のコンデン
サを作成したが、19個はショート状態でコンデンサを
形成できなかった。残り1個のコンデンサの初期特性を
表1に示す。
Comparative Example 1 A roughened aluminum etched foil having a thickness of 50 μm and a width of 5 mm was obtained. After cutting the foil into 10 mm, the leads were attached by crimping, and chemical conversion treatment was carried out in an aqueous solution of ammonium adipate at 15 V to form a dielectric oxide film. This element was immersed in an acetone solution containing 20 wt% of aniline monomer for 1 minute, and further ammonium persulfate 0.3 mol / l and sulfuric acid 4 m
It was immersed in an ol / l aqueous solution for 5 minutes to carry out chemical oxidative polymerization. This operation was repeated 5 times to form a polyaniline film by chemical oxidative polymerization. This element is dipped in colloidal carbon, and a silver paste is applied to form a conductive coating film. A counter electrode is taken out from a part of the element and molded with an epoxy resin to obtain a rated voltage of 6.3 V and a rated capacitance. A 22μF capacitor was completed. Twenty capacitors were produced by the method, but 19 capacitors could not be formed in a short-circuited state. Table 1 shows the initial characteristics of the remaining one capacitor.

【0021】[0021]

【表1】 静電容量(C)及び誘電損失(tanδ)は120Hzでの測
定値を、等価直列抵抗(ESR)は100kHzでの測定値
を、漏れ電流(LC)は定格電圧1分間の測定値を表
す。ポリアニリンの化学酸化重合温度が28℃(実施例
3)の場合、5℃(実施例1)、15℃(実施例2)の場
合と較べESRが若干大きい。比較例1では、4mol/l
硫酸に接触したとき誘電体酸化皮膜が損傷しほとんどが
ショ−ト状態であり、残った1個もLCが大きく、ま
た、ポリアニリンの電導度、充填密度が小さいためES
R、tanδが大きい。
[Table 1] The capacitance (C) and the dielectric loss (tan δ) represent the measured value at 120 Hz, the equivalent series resistance (ESR) represents the measured value at 100 kHz, and the leakage current (LC) represents the measured value at a rated voltage of 1 minute. When the chemical oxidative polymerization temperature of polyaniline is 28 ° C. (Example 3), the ESR is slightly higher than when it is 5 ° C. (Example 1) or 15 ° C. (Example 2). In Comparative Example 1, 4 mol / l
When contacted with sulfuric acid, the dielectric oxide film was damaged and almost all were in a short state, and the remaining one had a large LC, and the conductivity and packing density of polyaniline were small, so ES
R and tan δ are large.

【0022】[0022]

【発明の効果】本発明の固体電解コンデンサの製造方法
は、誘電体酸化皮膜上に脱ドープしたポリアニリン溶液
を用いて脱ドープしたポリアニリン膜を形成した後、ド
ーピング溶液と接触させて導電性のポリアニリン膜を形
成するので、誘電体酸化皮膜やアルミニウム箔を溶解損
傷することなくポリアニリン膜を形成でき、また、コン
デンサ特性も優れている。さらに、誘電体酸化皮膜上
に、浸漬などの簡便の方法によりポリアニリン膜を形成
できるので工程が簡略になり、アニリンモノマーが無駄
に費やされず製造コストが低減される。
According to the method of manufacturing a solid electrolytic capacitor of the present invention, a dedoped polyaniline film is formed on a dielectric oxide film by using a dedoped polyaniline solution, and then the conductive polyaniline is brought into contact with a doping solution. Since the film is formed, the polyaniline film can be formed without melting and damaging the dielectric oxide film and the aluminum foil, and the capacitor characteristics are excellent. Further, since the polyaniline film can be formed on the dielectric oxide film by a simple method such as dipping, the process is simplified, the aniline monomer is not wasted, and the manufacturing cost is reduced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 誘電体酸化皮膜を形成した弁作用金属の
表面に、固体電解質として導電性のポリアニリン膜を形
成した固体電解コンデンサの製造方法において、誘電体
酸化皮膜上に脱ドープしたポリアニリン溶液を用いて脱
ドープしたポリアニリン膜を形成した後、ドーピング溶
液と接触させて導電性のポリアニリン膜を形成すること
を特徴とする固体電解コンデンサの製造方法。
1. A method for producing a solid electrolytic capacitor in which a conductive polyaniline film is formed as a solid electrolyte on the surface of a valve metal having a dielectric oxide film formed thereon, wherein a polyaniline solution dedoped on the dielectric oxide film is used. A method for producing a solid electrolytic capacitor, comprising forming a dedoped polyaniline film by using the polyaniline film, and then forming a conductive polyaniline film by contacting with a doping solution.
【請求項2】 脱ドープしたポリアニリン溶液が、25℃
以下の反応温度で化学酸化重合したポリアニリンを用い
て調製したことを特徴とする請求項1記載の固体電解コ
ンデンサの製造方法。
2. The dedoped polyaniline solution is at 25 ° C.
The method for producing a solid electrolytic capacitor according to claim 1, which is prepared using polyaniline chemically oxidized and polymerized at the following reaction temperatures.
JP19497891A 1991-07-10 1991-07-10 Manufacture of solid-state electrolytic capacitor Pending JPH0645195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19497891A JPH0645195A (en) 1991-07-10 1991-07-10 Manufacture of solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19497891A JPH0645195A (en) 1991-07-10 1991-07-10 Manufacture of solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0645195A true JPH0645195A (en) 1994-02-18

Family

ID=16333510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19497891A Pending JPH0645195A (en) 1991-07-10 1991-07-10 Manufacture of solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0645195A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690457A2 (en) * 1994-05-23 1996-01-03 Al-Coat Ltd. Polyaniline-containing solution, articles coated therewith, and methods for the preparation of same
JPH08143771A (en) * 1994-11-25 1996-06-04 Nec Corp Heat-resistant poltaniline, derivative therefrom, solid electrolytic capacitor, and process for producing the same
US6328874B1 (en) 1998-01-05 2001-12-11 Mcdonnell Douglas Corporation Anodically formed intrinsically conductive polymer-aluminum oxide composite as a coating on aluminum
KR100775029B1 (en) * 2006-08-07 2007-11-08 주식회사 디지털텍 Stacking method of unit electrode for the stacked type of polymer-condenser
KR100775023B1 (en) * 2006-08-02 2007-11-09 주식회사 디지털텍 Method for manufacturing stacked type polymer-condenser

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690457A2 (en) * 1994-05-23 1996-01-03 Al-Coat Ltd. Polyaniline-containing solution, articles coated therewith, and methods for the preparation of same
EP0690457A3 (en) * 1994-05-23 1996-06-05 Al Coat Ltd Polyaniline-containing solution, articles coated therewith, and methods for the preparation of same
US5618469A (en) * 1994-05-23 1997-04-08 Al-Coat Ltd. Polyaniline-containing solution, articles coated therewith, and methods for the preparation of same
JPH08143771A (en) * 1994-11-25 1996-06-04 Nec Corp Heat-resistant poltaniline, derivative therefrom, solid electrolytic capacitor, and process for producing the same
US5959832A (en) * 1994-11-25 1999-09-28 Nec Corporation Solid electrolytic capacitor with heat resisting polyaniline and method of manufacturing same
US6328874B1 (en) 1998-01-05 2001-12-11 Mcdonnell Douglas Corporation Anodically formed intrinsically conductive polymer-aluminum oxide composite as a coating on aluminum
US6818118B2 (en) 1998-01-05 2004-11-16 Mcdonnell Douglas Corporation Anodically formed intrinsically conductive polymer-aluminum oxide composite as a coating on aluminum
KR100775023B1 (en) * 2006-08-02 2007-11-09 주식회사 디지털텍 Method for manufacturing stacked type polymer-condenser
KR100775029B1 (en) * 2006-08-07 2007-11-08 주식회사 디지털텍 Stacking method of unit electrode for the stacked type of polymer-condenser

Similar Documents

Publication Publication Date Title
WO2003017299A1 (en) Method of producing solid electrolytic capacitor
JP3245567B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001044080A (en) Solid electrolytic capacitor and manufacture thereof
JP2725553B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0645195A (en) Manufacture of solid-state electrolytic capacitor
JP4565730B2 (en) Solid capacitor and manufacturing method thereof
JPH1060234A (en) Electroconductive polymer and its production and solid electrolytic capacitor using the same
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
JP2991387B2 (en) Method for manufacturing solid electrolytic capacitor
JP2945100B2 (en) Method for manufacturing solid electrolytic capacitor
JP3505370B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP4337181B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0669082A (en) Manufacture of solid electrolytic capacitor
JP3233365B2 (en) Solid electrolytic capacitors
JP4126746B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2904453B2 (en) Method for manufacturing solid electrolytic capacitor
JP2898443B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06112094A (en) Manufacture of solid-state electrolytic capacitor
JPH0346214A (en) Manufacture of solid electrolytic capacitor
JP3365211B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06168851A (en) Solid-state electrolytic capacitor and manufacture thereof
JP2765437B2 (en) Method for manufacturing solid electrolytic capacitor
JP2000106330A (en) Capacitor and its manufacture
JPH11191518A (en) Organic solid electrolytic capacitor and manufacture thereof
JP5116130B2 (en) Solid electrolytic capacitor and manufacturing method thereof