JPH053121A - Magnetic member - Google Patents

Magnetic member

Info

Publication number
JPH053121A
JPH053121A JP23285391A JP23285391A JPH053121A JP H053121 A JPH053121 A JP H053121A JP 23285391 A JP23285391 A JP 23285391A JP 23285391 A JP23285391 A JP 23285391A JP H053121 A JPH053121 A JP H053121A
Authority
JP
Japan
Prior art keywords
film
magnetic
alloy
sputtering
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23285391A
Other languages
Japanese (ja)
Inventor
Reiko Akashi
玲子 明石
Hitoshi Iwasaki
仁志 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23285391A priority Critical patent/JPH053121A/en
Priority to US07/860,221 priority patent/US5439754A/en
Publication of JPH053121A publication Critical patent/JPH053121A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a magnetic film or a magnetic member, having a high saturated magnetic flux density Bs and a low coercive force Hc characteristic, which is suitable for the constitution of a magnetic head and the like. CONSTITUTION:The title magnetic member is the alloy magnetic film shown by a general formula MM'N (where the M denotes at least one of the transition metal of Co and Fe, M' denotes the element containing at least one kind selected from B, A, Si, Ga, Ge, Ti, Zr, Hf, Nb, Ta, Mo and W, and N denotes nitrogen), and the concentration of M' or N in the alloy magnetic film is characteristically made relatively higher on one main surface. Accordingly, when the magnetic film or magnetic member is used for constitution of a magnetic head while high saturated magnetic flux density Bs exceeding 1.7T is being maintained, the magnetic film or magnetic member displays excellent recording efficiency and reproduction capacity because it has no false gap.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁性部材に係り、たとえ
ば磁気ヘッドの構成に適する磁性部材(磁性膜)に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic member, and more particularly to a magnetic member (magnetic film) suitable for the construction of a magnetic head.

【0002】[0002]

【従来の技術】たとえば保磁力Hcの高い磁気記録媒体
に対する記録ないし読出しの能力(機能)を充分発揮さ
せるには、磁気ヘッドを構成する磁性膜ないし磁性体層
が、高い飽和磁束密度Bsおよび軟磁気特性(低保磁力
Hc)を備えていることが要求される。
2. Description of the Related Art In order to sufficiently exert the recording (reading) capability (function) for a magnetic recording medium having a high coercive force Hc, for example, a magnetic film or a magnetic layer forming a magnetic head has a high saturation magnetic flux density Bs and a soft magnetic flux density Bs. It is required to have magnetic properties (low coercive force Hc).

【0003】ところで、良好な軟磁気特性を示す結晶質
の磁性膜としては、NiFe合金膜、FeAlSi系の
合金膜などが、従来知られている。しかし、これらの磁
性膜の飽和磁束密度Bsは最大で1.1 T程度で、前記保
磁力Hcの高い磁気記録媒体に対する磁気ヘッド構成用
として充分とはいえない。また、多くのFe系もしくは
Co系合金は、アモルファス化することにより、低保磁
力Hcを示す。しかし、アモルファス化させるための元
素添加により飽和磁束密度Bsが低下し、さらに耐熱性
を考慮すると飽和磁束密度Bsは1T程度となってしま
う。これに対して、結晶質のA1を含むCoFe系合金
膜やFe系合金膜は、1.5 T以上の高い飽和磁束密度B
sを示すので、保磁力Hcの高い磁気記録媒体に対する
磁気ヘッド構成用として好適視される。
Incidentally, NiFe alloy films, FeAlSi-based alloy films, and the like are conventionally known as crystalline magnetic films exhibiting good soft magnetic characteristics. However, the saturation magnetic flux density Bs of these magnetic films is about 1.1 T at the maximum, which is not sufficient for a magnetic head configuration for a magnetic recording medium having a high coercive force Hc. In addition, many Fe-based or Co-based alloys exhibit a low coercive force Hc by becoming amorphous. However, the saturation magnetic flux density Bs is lowered by the addition of an element for making it amorphous, and further considering the heat resistance, the saturation magnetic flux density Bs becomes about 1T. On the other hand, a CoFe-based alloy film or Fe-based alloy film containing crystalline A1 has a high saturation magnetic flux density B of 1.5 T or more.
Since s is shown, it is suitable for use as a magnetic head for a magnetic recording medium having a high coercive force Hc.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記結晶質の
A1を含むCoFe系合金磁性膜やFe系合金磁性膜に
ついて、本発明者らがさらに鋭意研究を進めたところ、
第3の元素の添加量を減らして飽和磁束密度Bsを高め
ると、数μm厚以上の膜の場合、全体としての保磁力H
cは低いものの、たとえばスパッターリングで形成した
磁性膜の初期形成層における保磁力Hcが劣化している
ことが確認された。したがって、この種の合金磁性膜を
用い、たとえばMIGヘッドを作製した場合、疑似ギャ
ップの原因となり、その結果として出力の周波数特性に
リップルを生じさせ、良好な再生特性が得られないとい
う深刻な問題が発生し易いという欠点がある。
However, the inventors of the present invention further conducted extensive studies on the CoFe-based alloy magnetic film and the Fe-based alloy magnetic film containing the crystalline A1 as described above.
When the saturation magnetic flux density Bs is increased by reducing the addition amount of the third element, the coercive force H as a whole in the case of a film having a thickness of several μm or more.
Although c was low, it was confirmed that the coercive force Hc in the initial formation layer of the magnetic film formed by sputtering was deteriorated. Therefore, when an alloy magnetic film of this kind is used to manufacture, for example, an MIG head, it causes a pseudo gap, resulting in ripples in the frequency characteristic of the output, and a serious problem that a good reproducing characteristic cannot be obtained. Has a drawback that it is apt to occur.

【0005】さらに、アモルファス化を促進する遷移金
属を含むCoFe系合金磁性膜については、たとえばス
パッタリングで成膜を進めた場合、成膜後期過程で基板
温度が上昇し、結晶粒成長が生じHcの劣化が起こり易
いという問題がある。
Further, for a CoFe alloy magnetic film containing a transition metal that promotes amorphization, when the film formation is carried out by sputtering, for example, the substrate temperature rises in the latter stage of film formation and crystal grain growth occurs and Hc of Hc increases. There is a problem that deterioration easily occurs.

【0006】本発明は、より高い飽和磁束密度Bsであ
りながら、一方では低保磁力Hc特性を示し、磁気ヘッ
ドなどの構成に適する磁性膜ないし磁性部材の提供を目
的とする。さらには、磁性膜成長初期の劣化層の発生が
抑制可能な磁性膜の提供を目的とする。
It is an object of the present invention to provide a magnetic film or a magnetic member which has a higher saturation magnetic flux density Bs and, on the other hand, exhibits a low coercive force Hc characteristic and which is suitable for a magnetic head or the like. Further, another object of the present invention is to provide a magnetic film capable of suppressing the generation of a deteriorated layer at the initial stage of growth of the magnetic film.

【0007】[0007]

【課題を解決するための手段】本発明に係る磁性部材
(磁性膜)は、一般式、MM′N (ただし式中、MはCo、Feの少なくともいずれか1
種の遷移金属、M′はB、Al、Si、Ga、Ge、T
i、Zr、Hf、Nb、Ta、Mo、Wから選択される
少なくとも1種の元素、Nは窒素である)で示される合
金系磁性膜であって、前記合金系磁性膜中のM′もしく
はNの濃度が相対的に一主面側を高くさせたことを特徴
とする。
A magnetic member (magnetic film) according to the present invention has a general formula: MM'N (where M is at least one of Co and Fe).
Species of transition metals, M'is B, Al, Si, Ga, Ge, T
i, Zr, Hf, Nb, Ta, Mo, W, N is nitrogen, and the alloy-based magnetic film is M ′ or M ′ in the alloy-based magnetic film. The N concentration is relatively high on the one main surface side.

【0008】換言すると、Co、Feから成る群から選
択された少なくとも一つの遷移金属と、B、Al、S
i、Ga、Ge、Ti、Zr、Hf、Nb、Ta、M
o、Wから成る群Xから選択される少なくとも一つの元
素と、窒素とで構成された合金系磁性体(膜ないし部
材)であって、一主面側たとえば支持基板側ほど、前記
X成分濃度あるいは窒素濃度が高く、他主面側たとえば
膜厚方向ほどX成分濃度あるいは窒素濃度が減少してい
ることを特徴とする合金系磁性膜(磁性部材)である。
上記本発明に係る合金系磁性膜ないし磁性部材は次の
ようにして製造される。すなわち、窒素を含むスパッタ
リングガス中で、Co、Feから成る群から選択された
少なくとも一つの遷移金属Mと、B、Al、Si、G
a、Ge、Ti、Zr、Hf、Nb、Ta、Mo、Wか
ら成る群M′から選択される少なくとも一つの元素とで
構成された金属を、スパッタリングすることによって製
造される。なお、このスパッタリング工程において、
(a) スパッタリング初期過程では、スパッタリング後期
過程に比べて、M′(X)の濃度が異なるターゲットを
用いるか、あるいは(b) スパッタリング初期過程におけ
るスパッタリング条件を、スパッタリング後期過程のス
パッタリング条件に比べて、膜組成の少なくともM′
(X)濃度あるいは窒素(N)濃度が異なる条件でスパ
ッタリングを行う。
In other words, at least one transition metal selected from the group consisting of Co and Fe and B, Al and S
i, Ga, Ge, Ti, Zr, Hf, Nb, Ta, M
An alloy-based magnetic body (film or member) composed of nitrogen and at least one element selected from the group X consisting of o and W, wherein one main surface side, for example, a support substrate side, has the above X component concentration. Alternatively, the alloy-based magnetic film (magnetic member) is characterized in that the nitrogen concentration is high and the X component concentration or the nitrogen concentration decreases on the other main surface side, for example, in the film thickness direction.
The alloy type magnetic film or magnetic member according to the present invention is manufactured as follows. That is, in a sputtering gas containing nitrogen, at least one transition metal M selected from the group consisting of Co and Fe and B, Al, Si and G.
It is produced by sputtering a metal composed of at least one element selected from the group M ′ consisting of a, Ge, Ti, Zr, Hf, Nb, Ta, Mo and W. In this sputtering process,
(a) In the initial stage of sputtering, a target having a different concentration of M ′ (X) is used compared to the latter stage of sputtering, or (b) The sputtering conditions in the initial stage of sputtering are compared with those in the latter stage of sputtering. , At least M'of the film composition
Sputtering is performed under the condition of different (X) concentration or nitrogen (N) concentration.

【0009】[0009]

【作用】本発明に係る合金系磁性膜(磁性部材)は、C
o、Feから成る群から選択された少なくとも一つの遷
移金属Mと、B、Al、Si、Ga、Ge、Ti、Z
r、Hf、Nb、Ta、Mo、Wから成る群Xから選択
される少なくとも一つの元素M′と、窒素とで構成され
る膜において、図1(a) 〜(b)に示すごとく、たとえば
膜の初期形成層ほど、すなわち支持基板面側ほどM′成
分濃度あるいは窒素の濃度が高く、膜厚(膜厚成長)方
向ほどM′成分濃度あるいは窒素濃度を相対的に減少さ
せた構成としいる。このような構成に選択・設定したこ
とにより、合金系磁性膜成長初期層、すなわち支持基板
面近傍の軟磁気特性の劣化が抑制され、また最終的に形
成された合金系磁性膜の飽和磁束密度Bsの低下を最小
限に抑えることが可能となる。この結果、たとえばMI
Gヘッドの作製に適用した場合も、支持基板と合金系磁
性膜間の疑似的なギャップ発生の低減が可能となり、よ
って周波数特性のリップルを小さくすることができる。
The function of the alloy-based magnetic film (magnetic member) according to the present invention is C
at least one transition metal M selected from the group consisting of o and Fe, and B, Al, Si, Ga, Ge, Ti, and Z.
In a film composed of nitrogen and at least one element M ′ selected from the group X consisting of r, Hf, Nb, Ta, Mo and W, as shown in FIGS. The M'component concentration or the nitrogen concentration is higher toward the initial formation layer of the film, that is, toward the support substrate surface side, and the M'component concentration or the nitrogen concentration is relatively decreased in the film thickness (film thickness growth) direction. .. By selecting and setting such a configuration, deterioration of the soft magnetic properties in the initial growth layer of the alloy magnetic film, that is, in the vicinity of the supporting substrate surface is suppressed, and the saturation magnetic flux density of the finally formed alloy magnetic film is reduced. It is possible to minimize the decrease in Bs. As a result, for example, MI
Also when applied to the production of the G head, it is possible to reduce the generation of a pseudo gap between the support substrate and the alloy-based magnetic film, and thus to reduce the ripple of the frequency characteristic.

【0010】さらに図2(a) 〜(b) に膜の初期形成層ほ
ど、すなわち支持基板面側ほどM′成分濃度あるいは窒
素の濃度が低く、膜厚(膜厚成長)方向ほどM′成分濃
度あるいは窒素濃度を相対的に増加させた構成を示す。
このような構成に選択・設定したことにより、膜成長後
期過程において結晶粒増大によるHcの増加を抑制で
き、また最終的に形成された合金系磁性膜の飽和磁束密
度Bsの低下を最小限に抑えることが可能となる。
Further, in FIGS. 2A and 2B, the M'component concentration or the nitrogen concentration is lower in the initial formation layer of the film, that is, in the support substrate surface side, and in the film thickness (film thickness growth) direction. A configuration in which the concentration or the nitrogen concentration is relatively increased is shown.
By selecting and setting such a configuration, it is possible to suppress the increase of Hc due to the increase of crystal grains in the latter stage of the film growth, and to minimize the decrease of the saturation magnetic flux density Bs of the finally formed alloy magnetic film. It becomes possible to suppress.

【0011】[0011]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】実施例1 Co−11.5at% Fe−4at%A1合金ターゲットを用い
て、2極高周波(RF)マグネトロンスパッタ装置によ
り、Ar+N2 ガス雰囲気中で、適当なバイアス電圧を
加えながら、Si基板上に全スパッタガス圧をパラメー
ターとして成膜を行った。なお、スパッタリング条件は
次の通りである。
Example 1 Using a Co-11.5 at% Fe-4 at% A1 alloy target and a two-pole radio frequency (RF) magnetron sputtering apparatus in an Ar + N 2 gas atmosphere while applying an appropriate bias voltage, a Si substrate was used. A film was formed on the above with the total sputtering gas pressure as a parameter. The sputtering conditions are as follows.

【0013】 高周波電流密度 7.4 W/cm2 全スパッタガス圧 0.06Pa〜0.2 Pa 窒素ガス 20% 予備排気 2×10-4Pa以下 上記によって得られた合金系磁性膜について、保磁力H
cは印加磁界4000A/mとしてB−Hループトレーサー
により、また飽和磁束密度BsはVSMによりそれぞれ
測定した。
High frequency current density 7.4 W / cm 2 Total sputter gas pressure 0.06 Pa to 0.2 Pa Nitrogen gas 20% Pre-evacuation 2 × 10 −4 Pa or less Coercive force H of the alloy magnetic film obtained as described above
c was measured with a BH loop tracer with an applied magnetic field of 4000 A / m, and saturation magnetic flux density Bs was measured with VSM.

【0014】図3に、膜厚を0.3 μm とした場合、膜厚
を 4μm とした場合の保磁力Hc、飽和磁束密度Bsお
よび合金系磁性膜中のAl濃度につき、全スパッタガス
圧依存性を示す。ただし飽和磁束密度Bsおよび合金系
磁性膜中のAl濃度は膜厚に依存しなかった。図3から
分かるように、全スパッタガス圧を増加させるに従い膜
厚を0.3 μm とした場合の保磁力Hcおよび飽和磁束密
度Bsが減少し、このときA1濃度の増加が認められ
た。一方、膜厚を 4μm とした場合の保磁力Hcは、全
スパッタガス圧に依存せず約80A/mの低い保磁力Hc
を示した。
FIG. 3 shows the dependence of the coercive force Hc, the saturation magnetic flux density Bs and the Al concentration in the alloy magnetic film on the total sputtering gas pressure when the film thickness is 0.3 μm and when the film thickness is 4 μm. Show. However, the saturation magnetic flux density Bs and the Al concentration in the alloy magnetic film did not depend on the film thickness. As can be seen from FIG. 3, the coercive force Hc and the saturation magnetic flux density Bs when the film thickness was 0.3 μm decreased as the total sputtering gas pressure was increased, and at this time, the increase of the A1 concentration was observed. On the other hand, the coercive force Hc when the film thickness is 4 μm does not depend on the total sputter gas pressure and is as low as about 80 A / m.
showed that.

【0015】そこで、スパッタの初期過程では、全スパ
ッタガス圧を0.2 Paとし、成長膜厚が 4μm となったス
パッタ終了時に、全スパッタガス圧が0.06Paとなるよう
に全スパッタガス圧をスパッタ時間に対して変化させス
パッタを行った。その結果、成長させた合金系磁性膜全
体としてみた磁気特性は、保磁力Hc〜100 A/m、飽
和磁束密度Bs〜1.75Tの良好な膜が得られた。また、
この時の保磁力Hcは、膜厚が薄い(<0.3 μm )場合
でも200 A/mと小さく、膜厚依存性が小さかった。
Therefore, in the initial stage of sputtering, the total sputtering gas pressure is set to 0.2 Pa, and the total sputtering gas pressure is set to 0.06 Pa at the end of the sputtering when the grown film thickness becomes 4 μm. Was changed and sputtering was performed. As a result, the magnetic properties of the grown alloy-based magnetic film as a whole were excellent, with a coercive force Hc of 100 A / m and a saturation magnetic flux density Bs of 1.75 T. Also,
The coercive force Hc at this time was as small as 200 A / m even when the film thickness was thin (<0.3 μm), and the film thickness dependence was small.

【0016】実施例2 CoFe11.5A14 合金ターゲットを用い、実施例1で
用いた装置とは異なる2極RFスパッタ装置により、A
r+N2 ガス雰囲気中で、適当なバイアス電圧を加えな
がら、Si基板上に窒素分圧をパラメーターとして成膜
を行った。このスパッタリングによって形成した膜厚を
0.5 μm とした場合、膜厚を 4μm とした場合の合金系
磁性膜の保磁力Hcおよび窒素濃度、飽和磁束密度Bs
の窒素分圧依存性を調べた結果を図4に示す。ただし合
金系磁性膜中の窒素濃度および飽和磁束密度Bsは膜厚
に依存しなかった。図4から分かるように、膜厚を0.5
μm とした場合、窒素分圧を増加するに従い窒素濃度は
増加し、飽和磁束密度Bsは減少した。保磁力Hcは窒
素分圧 0.1〜0.13Paで最小値を示した。一方、膜厚を 4
μm とした場合は、前記膜厚が0.5 μm の場合ほど窒素
分圧に依存せず、窒素分圧0.033 Paのとき膜厚が0.5 μ
m の場合の保磁力Hcが約 430A/mであったのに対
し、保磁力Hcが約 100A/mであった。
Example 2 A CoFe 11.5 A1 4 alloy target was used, and a two-pole RF sputtering apparatus different from the apparatus used in Example 1 was used to
Film formation was performed in a r + N 2 gas atmosphere while applying an appropriate bias voltage, using the nitrogen partial pressure as a parameter on the Si substrate. The film thickness formed by this sputtering
When the thickness is 0.5 μm, the coercive force Hc, nitrogen concentration, and saturation magnetic flux density Bs of the alloy magnetic film when the film thickness is 4 μm
Fig. 4 shows the results of examining the nitrogen partial pressure dependence of the. However, the nitrogen concentration and the saturation magnetic flux density Bs in the alloy magnetic film did not depend on the film thickness. As can be seen from Fig. 4, the film thickness is 0.5
In the case of μm, the nitrogen concentration increased and the saturation magnetic flux density Bs decreased as the nitrogen partial pressure increased. The coercive force Hc showed the minimum value at a nitrogen partial pressure of 0.1 to 0.13 Pa. On the other hand, the film thickness is 4
When the thickness is set to 0.5 μm, it does not depend on the nitrogen partial pressure as in the case where the film thickness is 0.5 μm, and when the nitrogen partial pressure is 0.033 Pa, the film thickness is 0.5 μm.
The coercive force Hc at m was about 430 A / m, while the coercive force Hc was about 100 A / m.

【0017】そこで、スパッタ初期過程での窒素分圧を
0.13Paに設定してスパッタを行い、スパッタ終了時には
窒素分圧が0.033 Paとなるように、スパッタリング中の
窒素分圧を時間とともに変化させスパッタを行った。こ
のときのスパッタリングはつぎのような条件であった。
Therefore, the nitrogen partial pressure in the initial stage of sputtering is
Sputtering was performed with the pressure set to 0.13 Pa, and the nitrogen partial pressure during sputtering was changed over time so that the nitrogen partial pressure was 0.033 Pa at the end of sputtering. The sputtering at this time was under the following conditions.

【0018】 高周波電流密度 5.1 W/cm2 全スパッタガス圧 1.3 Pa 窒素ガス圧 0.03Pa〜0.25Pa 予備排気 1.3 ×10-4Pa以下 上記によって得た合金系磁性膜の特性を評価したとこ
ろ、膜全体としてみた磁気特性は、保磁力Hc〜90A/
m、飽和磁束密度Bs1.8 Tの良好な軟磁性を示した。
また、このときの保磁力Hcは膜厚が薄い(<0.5 μm
)場合でも70A/mと小さく、膜厚依存性は小さかっ
た。
High-frequency current density 5.1 W / cm 2 Total sputter gas pressure 1.3 Pa Nitrogen gas pressure 0.03 Pa to 0.25 Pa Pre-evacuation 1.3 × 10 -4 Pa or less The characteristics of the alloy-based magnetic film obtained as described above were evaluated. The magnetic characteristics seen as a whole are coercive force Hc ~ 90A /
m, and the saturation magnetic flux density Bs1.8 T showed good soft magnetism.
Further, the coercive force Hc at this time has a small film thickness (<0.5 μm
In this case, it was as small as 70 A / m and the film thickness dependence was small.

【0019】実施例3 Co90Fe10合金ターゲット、およびA1ターゲットを
用いて、2元同時RFスパッタ装置により、Ar+N2
ガス雰囲気中で、適当なバイアス電圧を加えながら、S
i基板上に、Co90Fe10ターゲットの投入高周波電流
密度を7.4 W/cm2 と一定にし、A1ターゲットの投入
高周波電流密度を成膜初期に3.1 W/cm2 とし、成膜終
了時1.8 W/cm2 となるように成膜の時間に従い投入高
周波電流密度を減少させ、成膜初期に膜中のA1濃度が
高く、成膜終了時の成膜中のA1濃度が低くなるよう
に、同時スパッタを行った。このときのスパッタリング
条件は次の通りである。
Example 3 Using a Co 90 Fe 10 alloy target and an A1 target, a binary simultaneous RF sputtering system was used for Ar + N 2
While applying an appropriate bias voltage in a gas atmosphere, S
On the i substrate, the high frequency current density of the Co 90 Fe 10 target was kept constant at 7.4 W / cm 2, and the high frequency current density of the A1 target was set to 3.1 W / cm 2 at the beginning of film formation, and 1.8 W at the end of film formation. / cm 2 and comprising reducing the introduced high frequency current density in accordance with the time of film formation as a high A1 concentration in the film in the film formation initial, so that A1 concentration in the film formation at the time of film formation completion lowered, simultaneously Sputtering was performed. The sputtering conditions at this time are as follows.

【0020】 高周波電流密度Co90Fe10 3.7 W/cm2 Al 1.8 W/cm2 〜 3.1W/cm2 全スパッタガス圧 1.3 Pa 窒素ガス圧 0.26Pa 予備排気 1.3 ×10-4Pa以下 上記によって得た合金系磁性膜の特性を評価したとこ
ろ、膜全体としてみた磁気特性は、保磁力Hc〜70A/
m、飽和磁束密度Bs〜1.8 A/mであった。また、こ
のときの保磁力Hcは膜厚が薄い(<0.2 μm )場合に
も60A/mと小さく、膜厚依存性は小さかった。
High frequency current density Co 90 Fe 10 3.7 W / cm 2 Al 1.8 W / cm 2 to 3.1 W / cm 2 Total sputter gas pressure 1.3 Pa Nitrogen gas pressure 0.26 Pa Pre-evacuation 1.3 × 10 -4 Pa or less Obtained by the above When the characteristics of the alloy-based magnetic film were evaluated, the magnetic properties of the entire film were found to be coercive force Hc to 70 A /
m, and the saturation magnetic flux density Bs was 1.8 A / m. Further, the coercive force Hc at this time was as small as 60 A / m even when the film thickness was thin (<0.2 μm), and the film thickness dependence was small.

【0021】実施例4 ターゲット組成でAlが 4at.%、 6at.%もしくは 8at.%
としたCoFe11.5Al4 合金ターゲット、CoFe11
Al6 合金ターゲット、CoFe11Al8 合金ターゲッ
トの三種のターゲットを用いて、3元RFスパッタ装置
により、Ar+N2 ガス雰囲気中で、適当なバイアス電
圧を加えながら、図5に断面的に示すようなCoFe10
Al3.5 /CoFe10Al5.1 /CoFe10Al7.2
支持基板で構成される積層磁性膜を作製した。図5にお
いて、1は支持基板、2はCoFe11Al8 合金をター
ゲットとして形成した合金系磁性膜、3はCoFe11
6 合金をターゲットとして形成した合金系磁性膜、4
はCoFe11.5Al4 合金をターゲットとして形成した
合金系磁性膜である。
Example 4 4 at.%, 6 at.% Or 8 at.% Al in the target composition
CoFe 11.5 Al 4 alloy target, CoFe 11
Using three types of targets, an Al 6 alloy target and a CoFe 11 Al 8 alloy target, with a three-way RF sputtering apparatus in an Ar + N 2 gas atmosphere while applying an appropriate bias voltage, as shown in a sectional view in FIG. CoFe 10
Al 3.5 / CoFe 10 Al 5.1 / CoFe 10 Al 7.2 /
A laminated magnetic film composed of a supporting substrate was produced. In FIG. 5, 1 is a support substrate, 2 is an alloy-based magnetic film formed by targeting a CoFe 11 Al 8 alloy, and 3 is CoFe 11 A.
Alloy-based magnetic film formed by using 16 alloy as a target, 4
Is an alloy-based magnetic film formed by using a CoFe 11.5 Al 4 alloy as a target.

【0022】上記によって得た合金系磁性膜(全膜厚 3
μm )の特性を評価したところ、膜全体としてみた磁気
特性は、保磁力Hc〜80A/m、飽和磁束密度Bs〜1.
7 Tの良好な特性を示した。また、この積層膜は熱処理
することで、特性の劣化を生じることなく、膜厚が0.5
μm 以下と薄い場合でもHcは80A/mと小さいととも
に、保磁力Hcの膜厚依存性も小さかった。
The alloy-based magnetic film (total film thickness 3
The magnetic properties of the film as a whole were as follows: coercive force Hc to 80 A / m, saturation magnetic flux density Bs to 1.
Good characteristics of 7 T were exhibited. In addition, this laminated film is heat-treated to reduce the film thickness to 0.5 without deterioration of characteristics.
Even when it was as thin as μm or less, Hc was as small as 80 A / m, and the coercive force Hc also had a small film thickness dependency.

【0023】比較例として、前記CoFe系合金におけ
る第三元素の効果について示す。
As a comparative example, the effect of the third element in the CoFe alloy will be shown.

【0024】CoFe11.5Al4 合金ターゲットもしく
はCoFe11Al8 合金ターゲットを用い、2極RFス
パッタ装置により、Ar+N2 ガス雰囲気中で、適当な
バイアス電圧を加えながら、Si基板上に膜厚をパラメ
ーターとして、下記の条件で合金系磁性膜の成膜行っ
た。
A CoFe 11.5 Al 4 alloy target or a CoFe 11 Al 8 alloy target was used and a two-pole RF sputtering apparatus was used in an Ar + N 2 gas atmosphere while applying an appropriate bias voltage, with the film thickness on the Si substrate as a parameter. The alloy magnetic film was formed under the following conditions.

【0025】 高周波電流密度 3.7 W/cm2 全スパッタガス圧 1.3 Pa 窒素ガス圧 0.26Pa 予備排気 1.3 ×10-4Pa以下 次に、CoFe11.5Al4 合金ターゲットを用いて作製
した合金系磁性膜を用い、常套の手段によってMIGヘ
ッドを作製し、出力の周波数特性を測定した結果を図6
に示す。図6から分かるように 3〜 4dB以上のうねり
が生じヘッドとして使用不可能であった。このうねりの
原因を調べるため、保磁力Hcの膜厚依存性を測定した
結果を図7に示す。図7から分かるようにCoFe11.5
Al4 合金ターゲットを用いた場合、形成された磁性膜
厚が薄い場合ほど保磁力Hcが大きい。すなわち、膜成
長初期における磁気的な特性劣化が認められた。前記構
成のMIGヘッドが図6に見られたうねりを生じるの
は、磁性膜の膜成長初期における磁気的な特性劣化が、
支持基板と磁性膜の間の疑似的なギャップとなっている
ものと考えられる。
High frequency current density 3.7 W / cm 2 Total sputter gas pressure 1.3 Pa Nitrogen gas pressure 0.26 Pa Pre-evacuation 1.3 × 10 -4 Pa or less Next, an alloy magnetic film produced using a CoFe 11.5 Al 4 alloy target was prepared. FIG. 6 shows the result of measuring the frequency characteristic of the output by using the MIG head manufactured by the conventional means.
Shown in. As can be seen from FIG. 6, waviness of 3 to 4 dB or more occurred and it was impossible to use as a head. In order to investigate the cause of this waviness, the results of measuring the film thickness dependence of the coercive force Hc are shown in FIG. As can be seen from FIG. 7, CoFe 11.5
When an Al 4 alloy target is used, the coercive force Hc increases as the formed magnetic film thickness decreases. That is, magnetic property deterioration was recognized in the initial stage of film growth. The waviness shown in FIG. 6 is generated in the MIG head having the above-described structure because the magnetic characteristic deterioration of the magnetic film at the initial stage of film growth is
It is considered that there is a pseudo gap between the support substrate and the magnetic film.

【0026】一方、Al添加量を 8%に増加させたCo
Fe11Al8 合金ターゲットを用いてスパッタして形成
した磁性膜について、保磁力Hcおよび飽和磁束密度B
sの膜厚依存性を測定した結果を図8に示す。なお、参
考のために、CoFe11.5Al4 合金ターゲットを用い
た場合の、飽和磁束密度Bsの膜厚依存性も合わせて示
す。図8から分かるように、Fe11Al8 合金ターゲッ
トを用いた場合、形成された合金系磁性膜は、その膜厚
に依存せず低保磁力Hcを示した。しかし、飽和磁束密
度Bsについては、CoFe11.5Al4 合金ターゲット
を用いた場合に比べて低く、約1.5 Tとなり、従来の合
金系磁性膜の場合とほぼ等しい飽和磁束密度Bsに過ぎ
なかった。
On the other hand, Co whose Al addition amount is increased to 8%
For a magnetic film formed by sputtering using an Fe 11 Al 8 alloy target, coercive force Hc and saturation magnetic flux density B
The result of having measured the film thickness dependence of s is shown in FIG. For reference, the film thickness dependence of the saturation magnetic flux density Bs when a CoFe 11.5 Al 4 alloy target is used is also shown. As can be seen from FIG. 8, when the Fe 11 Al 8 alloy target was used, the alloy magnetic film formed showed a low coercive force Hc independent of the film thickness. However, the saturation magnetic flux density Bs was lower than that using the CoFe 11.5 Al 4 alloy target and was about 1.5 T, which was almost the same as the saturation magnetic flux density Bs of the conventional alloy magnetic film.

【0027】実施例5 Co−11.5at% Fe−5at%Ta合金ターゲットを用い
て、2極高周波(RF)マグネトロンスパッタ装置によ
り、Ar+N2 ガス雰囲気中で、適当なバイアス電圧を
加えながら、Si基板上に基板温度をパラメーターとし
て成膜を行った。なお、スパッタリング条件は次の通り
である。
Example 5 Using a Co-11.5 at% Fe-5 at% Ta alloy target and a bipolar radio frequency (RF) magnetron sputtering apparatus in an Ar + N 2 gas atmosphere while applying an appropriate bias voltage, a Si substrate was used. A film was formed on the substrate using the substrate temperature as a parameter. The sputtering conditions are as follows.

【0028】 高周波電流密度 7.4 W/cm2 全スパッタガス圧 0.2Pa 窒素ガス 10% 予備排気 2×10-4Pa以下 上記によって得られた合金系磁性膜について、成膜時の
基板温度と保磁力Hcの関係を調べたところ図9に示す
ごとくであった。図9から分かるように、約50℃の低基
板温度で成膜された合金系磁性膜は、40A/m以下の低
い保磁力Hcを示したが、基板温度を上昇させるに伴い
成膜された合金系磁性膜の保磁力Hcは増加している。
この理由は、低基板温度で成膜された合金系磁性膜は、
結晶粒が微細化され、この結晶粒の微細化によって低保
磁力Hcとなり、一方、高基板温度で成膜された合金系
磁性膜は、結晶粒が成長し、この結晶粒の成長によって
保磁力Hcが増大するものと考えられる。つまり、たと
えばVTR用の磁気ヘッドとして使用される磁性膜(通
常数μm の膜厚)を成膜する過程において、成膜初期過
程では基板温度が低いが、成膜が進む従い基板温度が上
昇する。したがって、成膜の初期過程ほど結晶粒が微細
化し易く、成膜後期になるに伴い結晶成長が起こってい
るといえる。
High frequency current density 7.4 W / cm 2 Total sputter gas pressure 0.2 Pa Nitrogen gas 10% Pre-evacuation 2 × 10 −4 Pa or less For the alloy magnetic film obtained as described above, the substrate temperature and coercive force during film formation When the relationship of Hc was examined, it was as shown in FIG. As can be seen from FIG. 9, the alloy magnetic film formed at a low substrate temperature of about 50 ° C. showed a low coercive force Hc of 40 A / m or less, but was formed as the substrate temperature was increased. The coercive force Hc of the alloy magnetic film is increasing.
The reason for this is that the alloy-based magnetic film formed at a low substrate temperature is
The crystal grains are miniaturized, and the coercive force Hc becomes low due to the miniaturization of the crystal grains. On the other hand, in the alloy-based magnetic film formed at the high substrate temperature, the crystal grains grow and the coercive force is grown by the growth of the crystal grains. It is considered that Hc increases. That is, for example, in the process of forming a magnetic film (usually a film thickness of several μm) used as a magnetic head for a VTR, the substrate temperature is low in the initial stage of film formation, but the substrate temperature rises as the film formation progresses. .. Therefore, it can be said that the crystal grains are more likely to become finer in the initial stage of film formation, and crystal growth occurs in the latter stage of film formation.

【0029】上記における添加元素Taは、成膜される
磁性膜の結晶粒を微細化する作用を呈するが、基板温度
が上昇する成膜後期過程での結晶粒成長を抑制し得るほ
どの濃度にTaを添加すると、成膜される磁性膜全体と
しての飽和磁束密度Bsが大幅に減少する。そこで、以
下のような三種のターゲットを用いて、成膜初期過程に
比べ成膜後期過程においてTa濃度が増大するような成
膜を行った。
The additive element Ta in the above has an effect of refining the crystal grains of the magnetic film to be formed, but has a concentration enough to suppress the crystal grain growth in the latter stage of film formation where the substrate temperature rises. When Ta is added, the saturation magnetic flux density Bs of the formed magnetic film as a whole is significantly reduced. Therefore, the following three types of targets were used to form a film in which the Ta concentration was increased in the latter stage of film formation as compared with the initial stage of film formation.

【0030】すなわち、ターゲット組成でTaが 5at.
%、 7at.%もしくは 9at.%としたCoFe11.5Ta5
金ターゲット、CoFe11Ta7 合金ターゲット、Co
Fe11Ta9 合金ターゲットの三種のターゲットを用い
て、3元RFスパッタ装置により、Ar+N2 ガス雰囲
気中で、適当なバイアス電圧を加えながら、図10に断面
的に示すようなCoFe10Ta8 /CoFe10Ta6
CoFe10Ta5 /支持基板で構成される積層磁性膜を
作製した。図10において、1は支持基板、2′はCo
Fe11.5Ta5 合金をターゲットとして形成した合金系
磁性膜、3′はCoFe11Ta7 合金をターゲットとし
て形成した合金系磁性膜、4′はCoFe11Ta9 合金
をターゲットとして形成した合金系磁性膜である。
That is, Ta is 5 at.
%, 7 at.% Or 9 at.% CoFe 11.5 Ta 5 alloy target, CoFe 11 Ta 7 alloy target, Co
Using three types of targets, Fe 11 Ta 9 alloy targets, and a three-way RF sputtering apparatus in an Ar + N 2 gas atmosphere while applying an appropriate bias voltage, CoFe 10 Ta 8 / CoFe 10 Ta 6 /
A laminated magnetic film composed of CoFe 10 Ta 5 / support substrate was produced. In FIG. 10, 1 is a support substrate, 2'is Co
Alloy-based magnetic film formed by using Fe 11.5 Ta 5 alloy as a target, 3 ′ is an alloy-based magnetic film formed by using CoFe 11 Ta 7 alloy as a target, and 4 ′ is an alloy-based magnetic film formed by using CoFe 11 Ta 9 alloy as a target. Is.

【0031】上記によって得た合金系磁性膜(全膜厚 4
μm )の特性を評価したところ、膜全体としてみた磁気
特性は、保磁力Hc〜40A/m、飽和磁束密度Bs〜1.
6 Tの良好な特性を示した。また、この積層膜は熱処理
することで、特性の劣化を生じることなく、膜厚が0.5
μm 以下と薄い場合でも保磁力Hcは55A/mと小さい
とともに、保磁力Hcの膜厚依存性も小さかった。
The alloy magnetic film (total film thickness 4
The magnetic properties of the film as a whole were coercive force Hc to 40 A / m and saturation magnetic flux density Bs to 1.
It showed a good characteristic of 6 T. In addition, this laminated film is heat-treated to reduce the film thickness to 0.5 without deterioration of characteristics.
The coercive force Hc was as small as 55 A / m even when it was as thin as μm or less, and the film thickness dependence of the coercive force Hc was also small.

【0032】成膜される磁性膜にTa濃度の勾配をつけ
る手段としては、前記したようにスパッタリング後期
に、スパッタリング初期に比べTa濃度の高いターゲッ
トを用いてスパッタリングを行う方法や、たとえば全ス
パッタガス圧,窒素分圧などのスパッタリング条件をス
パッタリング初期と後期で断続的もしくは連続的に変化
させ、膜成長初期過程に比べて膜成長後期過程におい
て、Ta濃度が増加する条件でスパッタリングを行えば
よい。
As a means for giving a Ta concentration gradient to the magnetic film to be formed, as described above, a method of performing sputtering using a target having a higher Ta concentration in the latter stage of sputtering than in the initial stage of sputtering, for example, all sputtering gas is used. The sputtering conditions such as pressure and nitrogen partial pressure may be changed intermittently or continuously in the early and late stages of sputtering, and the sputtering may be performed under the condition that the Ta concentration increases in the latter stage of film growth compared to the earlier stage of film growth.

【0033】次に、本発明に係る合金系磁性膜の応用例
として、磁気ヘッドの構成に適用した場合を、図11〜
図12を参照して説明する。
Next, as an application example of the alloy-based magnetic film according to the present invention, the case of being applied to the structure of a magnetic head will be described with reference to FIGS.
This will be described with reference to FIG.

【0034】図11は長手記録のハードディスクに対す
る記録・再生に用いる薄膜磁気ヘッドの要部構成例を断
面的に示したもので、5aは支持基板6上に被着形成され
た前記本発明に係る強磁性膜、7はヘッド先端側で所定
のギャップ8を形成するよう、前記強磁性膜5a上に積層
された第1絶縁層である。また、9は前記第1の絶縁層
7上に巻装されたコイル、10は前記コイル9を覆うよう
に被着形成された第2の絶縁層である。しかして、前期
第2の絶縁層10表面には本発明に係る強磁性膜5bが、そ
の一部が前記強磁性膜5aに接触し、ヘッド先端側で強磁
性膜5aとの間にギャップ8を形成するように積層して形
成され、この強磁性膜5b上には保護膜12が形成された構
成を成している。
FIG. 11 is a cross-sectional view showing an example of the essential structure of a thin-film magnetic head used for recording / reproducing with respect to a longitudinal recording hard disk. Reference numeral 5a denotes the above-mentioned present invention which is adhered and formed on a supporting substrate 6. The ferromagnetic film 7 is a first insulating layer laminated on the ferromagnetic film 5a so as to form a predetermined gap 8 at the head tip side. Further, 9 is a coil wound on the first insulating layer 7, and 10 is a second insulating layer adhered to cover the coil 9. Then, the ferromagnetic film 5b according to the present invention is partly in contact with the ferromagnetic film 5a on the surface of the second insulating layer 10 in the previous period, and a gap 8 is formed between the ferromagnetic film 5b and the ferromagnetic film 5a on the head tip side. And a protective film 12 is formed on the ferromagnetic film 5b.

【0035】上記本発明に係る強磁性膜(合金系磁性
膜)5a,5b は、従来の強磁性膜(NiFe膜やCo系ア
モルファス膜など)に比べて飽和磁束密度が高く、高保
磁力媒体に対しても十分な記録が可能となり、しかも膜
成長初期層において磁気的な劣化がないため、目的とす
るギャップ長が確実に得られ、その結果高密度記録が可
能となる。
The ferromagnetic films (alloy-based magnetic films) 5a, 5b according to the present invention have a higher saturation magnetic flux density than conventional ferromagnetic films (NiFe film, Co-based amorphous film, etc.), and are suitable for high coercive force media. On the other hand, sufficient recording is possible, and since there is no magnetic deterioration in the initial layer of film growth, the target gap length can be reliably obtained, and as a result, high density recording is possible.

【0036】図12はメタルインギャップヘッドの要部
構成例を斜視的に示したもので、13a,13b は1対のフェ
ライトコア、16a,16bは前記フェライトコア13a,13b の
対向面側に中間層14a,14b を介して配設されている本発
明に係る合金系磁性膜である。この構成において中間層
14a,14b は、付着力の強化およびフェライトコア13a,13
b と強磁性膜16a,16b との間の相互拡散を防止する役割
を成し、Cr,SiO2 、NiFeなどで構成するのが
好ましい。さらに、15は前記フェライトコア13a,13b の
対向面側に中間層14a,14b を介して配設されている合金
系磁性膜16a,16b 間に、所要のギャップ8が形成される
ように溶着されたガラス、9は前記フェライトコア13a
に巻装されたコイルである。
FIG. 12 is a perspective view showing an example of the essential structure of a metal in-gap head. 13a and 13b are a pair of ferrite cores, and 16a and 16b are intermediate faces of the ferrite cores 13a and 13b facing each other. The alloy-based magnetic film according to the present invention is disposed via layers 14a and 14b. Intermediate layer in this configuration
14a and 14b are for strengthening adhesion and ferrite cores 13a and 13b.
It plays the role of preventing mutual diffusion between b and the ferromagnetic films 16a and 16b, and is preferably composed of Cr, SiO 2 , NiFe or the like. Further, 15 is welded so as to form a required gap 8 between the alloy-based magnetic films 16a and 16b arranged on the facing surfaces of the ferrite cores 13a and 13b with the intermediate layers 14a and 14b interposed therebetween. Glass, 9 is the ferrite core 13a
The coil is wound around.

【0037】この構成において、強磁性膜16a,16b は膜
成長初期層において磁気的な劣化がないため、フェライ
トコア13a,13b と強磁性膜16a,16b との間に疑似的なギ
ャップが生じることがないため、ヘッドとして実用に供
した場合、出力の周波数特性にうねりが生じることはな
く、さらに飽和磁束密度も従来の強磁性膜(Co系アモ
ルファス膜など)に比べて高いため、高保磁力媒体に対
しても十分な記録が可能となる。
In this structure, since the ferromagnetic films 16a and 16b have no magnetic deterioration in the initial layer of film growth, a pseudo gap is generated between the ferrite cores 13a and 13b and the ferromagnetic films 16a and 16b. When used as a head, the output frequency characteristic does not swell, and the saturation magnetic flux density is higher than that of a conventional ferromagnetic film (such as a Co-based amorphous film). It is possible to record enough even for.

【0038】なお、上記実施例では、合金系磁性膜中の
M′成分もしくは窒素Nの濃度分布、つまり膜厚方向の
組成変化が連続的な場合を示したが、たとえば図1(a),
(b)および図2(a),(b) に点線で示すごとく、膜厚方向
の組成変化が不連続であっても同じ効果が期待できるこ
とは勿論である。つまり、一主面側と他主面側とのM′
成分もしくは窒素Nの濃度分布が、相対的に高い濃度と
低い濃度の関係を保持していればよい。
In the above examples, the case where the concentration distribution of the M'component or nitrogen N in the alloy type magnetic film, that is, the compositional change in the film thickness direction is continuous, is shown, for example, in FIG.
As shown by the dotted line in (b) and FIGS. 2 (a) and 2 (b), the same effect can be expected even if the composition change in the film thickness direction is discontinuous. That is, M ′ between one main surface side and the other main surface side
It suffices that the concentration distribution of the component or nitrogen N holds the relation between the relatively high concentration and the low concentration.

【0039】さらに、上記実施例における合金系磁性膜
中のM′成分AlをたとえばGaやInで置換した場合
も、あるいはTaをTi,Zn,Hf,Nb,Moもし
くはWで置換した場合も同様の結果が認められた。
Further, the same applies when M'component Al in the alloy type magnetic film in the above embodiment is replaced by Ga or In, for example, or when Ta is replaced by Ti, Zn, Hf, Nb, Mo or W. The result was confirmed.

【0040】[0040]

【発明の効果】以上詳述したように、本発明に係る合金
系磁性膜(磁性部材)は、高い飽和磁束密度Bsを保ち
ながら、膜の磁気特性が平均化されている。その結果、
本発明に係る合金系磁性膜をたとえば磁気ヘッドの構成
に用いた場合、記録能力にすぐれるとともに、疑似ギャ
ップもないため再生能力にもすぐれた磁気ヘッドとして
機能する。
As described above in detail, in the alloy type magnetic film (magnetic member) according to the present invention, the magnetic characteristics of the film are averaged while maintaining a high saturation magnetic flux density Bs. as a result,
When the alloy-based magnetic film according to the present invention is used, for example, in the construction of a magnetic head, it functions as a magnetic head having excellent recording ability and reproducing ability because there is no pseudo gap.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a) は本発明に係る磁性膜のM′(X)濃度の
支持基板表面からの距離に対する変化を表す図、(b) は
本発明に係る強磁性膜の窒素濃度の支持基板表面からの
距離に対する変化を表す図。
FIG. 1 (a) is a diagram showing a change in M ′ (X) concentration of a magnetic film according to the present invention with respect to a distance from a support substrate surface, and (b) is a diagram showing nitrogen concentration support of a ferromagnetic film according to the present invention. The figure showing the change with respect to the distance from the substrate surface.

【図2】(a) は本発明に係る磁性膜のM′(X)濃度の
支持基板表面からの距離に対する変化を表す図、(b) は
本発明に係る強磁性膜の窒素濃度の支持基板表面からの
距離に対する変化を表す図。
FIG. 2 (a) is a diagram showing a change in M ′ (X) concentration of a magnetic film according to the present invention with respect to a distance from a surface of a supporting substrate, and (b) is a diagram showing nitrogen concentration support of a ferromagnetic film according to the present invention. The figure showing the change with respect to the distance from the substrate surface.

【図3】本発明に係る磁性膜の形成においてCoFe
11.5Al4 をターゲットとして用いて成膜したときの保
磁力Hc、飽和磁束密度BsおよびAl濃度の全スパッ
タガス圧依存性を示す特性図。
FIG. 3 is a graph showing CoFe in forming a magnetic film according to the present invention.
11.5 A characteristic diagram showing the dependency of coercive force Hc, saturation magnetic flux density Bs, and Al concentration on the total sputtering gas pressure when a film is formed using Al 4 as a target.

【図4】本発明に係る磁性膜の形成においてCoFe
11.5Al4 をターゲットとして用いて成膜したときの保
磁力Hc、飽和磁束密度BsおよびAl濃度の全スパッ
タガス圧依存性を示す特性図。
FIG. 4 is a graph showing CoFe in forming a magnetic film according to the present invention.
11.5 A characteristic diagram showing the dependency of coercive force Hc, saturation magnetic flux density Bs, and Al concentration on the total sputtering gas pressure when a film is formed using Al 4 as a target.

【図5】本発明に係る磁性膜の構造例を示す断面図。FIG. 5 is a sectional view showing a structural example of a magnetic film according to the present invention.

【図6】膜成長初期層が磁気的に劣化している磁性膜を
用いて構成したメタルインギャップ型ヘッドにおける出
力の周波数特性を示す特性図。
FIG. 6 is a characteristic diagram showing an output frequency characteristic in a metal-in-gap type head configured by using a magnetic film whose film initial growth layer is magnetically deteriorated.

【図7】磁性膜の形成においてCoFe11.5Al4 をタ
ーゲットとして用いて成膜したときの保磁力Hcの膜厚
依存性を示す特性図。
FIG. 7 is a characteristic diagram showing film thickness dependence of coercive force Hc when a film is formed using CoFe 11.5 Al 4 as a target in forming a magnetic film.

【図8】磁性膜の形成においてCoFe11.5Al8 もし
くはCoFe11.5Al4 をターゲットとして用いて成膜
したときの保磁力Hc、飽和磁束密度Bsの膜厚依存性
を示す特性図。
FIG. 8 is a characteristic diagram showing the film thickness dependence of coercive force Hc and saturation magnetic flux density Bs when a film is formed using CoFe 11.5 Al 8 or CoFe 11.5 Al 4 as a target in the formation of a magnetic film.

【図9】磁性膜の形成においてCoFe11.5Ta5 をタ
ーゲットとして用いて成膜したときの保磁力Hcの基板
温度依存性を示す特性図。
FIG. 9 is a characteristic diagram showing the substrate temperature dependence of the coercive force Hc when CoFe 11.5 Ta 5 is used as a target in the formation of a magnetic film.

【図10】本発明に係る磁性膜の他の構造例を示す断面
図。
FIG. 10 is a sectional view showing another structural example of the magnetic film according to the present invention.

【図11】本発明に係る磁性膜を用いて構成した長手記
録対応の薄膜磁気ヘッドの要部を示す断面図。
FIG. 11 is a sectional view showing a main part of a thin film magnetic head for longitudinal recording, which is formed by using a magnetic film according to the present invention.

【図12】本発明に係る強磁性膜を用いて構成したメタ
ルインギャップヘッドの要部を示す斜視図である。
FIG. 12 is a perspective view showing a main part of a metal in-gap head configured by using a ferromagnetic film according to the present invention.

【符号の説明】[Explanation of symbols]

1、6…支持基板 2…CoFe11Al8 ターゲット
をスパッタしして形成した磁性膜 2′…CoFe
11.5Ta5ターゲットをスパッタして形成した磁性膜
3…CoFe11Al6 ターゲットをスパッタして形成
した磁性膜 3′…CoFe11Ta7 ターゲットをスパッタして形成
した磁性膜 4…CoFe11.5Al4 ターゲットをス
パッタして形成した磁性膜 4′…CoFe11Ta9
ターゲットをスパッタして形成した磁性膜 5、11、
16a 、16b …磁性膜(強磁性膜) 7…第1の絶縁層
(膜) 8…ギャップ 9…コイル10…第2の絶縁
層(膜) 12…保護層(膜) 13a,13b …フェライ
トコア 14a,14b …中間層 15…ガラス層
1, 6 ... Support substrate 2 ... CoFe 11 Al 8 magnetic film formed by sputtering target 2 ′ ... CoFe
11.5 Magnetic film formed by sputtering Ta 5 target
3 ... Magnetic film formed by sputtering CoFe 11 Al 6 target 3 '... Magnetic film formed by sputtering CoFe 11 Ta 7 target 4 ... CoFe 11.5 Al 4 Magnetic film formed by sputtering target 4' ... CoFe 11 Ta 9
Magnetic film formed by sputtering target 5, 11,
16a, 16b ... Magnetic film (ferromagnetic film) 7 ... First insulating layer (film) 8 ... Gap 9 ... Coil 10 ... Second insulating layer (film) 12 ... Protective layer (film) 13a, 13b ... Ferrite core 14a, 14b ... Intermediate layer 15 ... Glass layer

Claims (1)

【特許請求の範囲】 【請求項1】 一般式、MM′N (ただし式中、MはCo、Feの少なくともいずれか1
種の遷移金属、M′はB、Al、Si、Ga、Ge、T
i、Zr、Hf、Nb、Ta、Mo、Wから選択される
少なくとも1種の元素、Nは窒素である)で示される合
金系磁性膜であって、前記合金系磁性膜中のM′もしく
はNの濃度が相対的に一主面側を高くさせたことを特徴
とする磁性部材。
1. A general formula, MM'N (wherein M is at least one of Co and Fe).
Species of transition metals, M'is B, Al, Si, Ga, Ge, T
i, Zr, Hf, Nb, Ta, Mo, W, N is nitrogen, and the alloy-based magnetic film is M ′ or M ′ in the alloy-based magnetic film. A magnetic member having a relatively high concentration of N on one main surface side.
JP23285391A 1990-07-05 1991-09-12 Magnetic member Withdrawn JPH053121A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP23285391A JPH053121A (en) 1991-03-29 1991-09-12 Magnetic member
US07/860,221 US5439754A (en) 1990-07-05 1992-03-27 Ferromagnetic film, method of manufacturing the same, and magnetic head

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-66383 1991-03-29
JP6638391 1991-03-29
JP23285391A JPH053121A (en) 1991-03-29 1991-09-12 Magnetic member

Publications (1)

Publication Number Publication Date
JPH053121A true JPH053121A (en) 1993-01-08

Family

ID=26407586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23285391A Withdrawn JPH053121A (en) 1990-07-05 1991-09-12 Magnetic member

Country Status (1)

Country Link
JP (1) JPH053121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7905389B2 (en) 2003-07-29 2011-03-15 G.D. - S.P.A. Container and foldable blank for forming the container itself

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7905389B2 (en) 2003-07-29 2011-03-15 G.D. - S.P.A. Container and foldable blank for forming the container itself

Similar Documents

Publication Publication Date Title
US5227940A (en) Composite magnetic head
US5585984A (en) Magnetic head
JPS6129105A (en) Magnetic alloy thin film
JPH0484403A (en) Soft magnetic thin film
JPH053121A (en) Magnetic member
US5786103A (en) Soft magnetic film and magnetic head employing same
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JP2570337B2 (en) Soft magnetic laminated film
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP3232592B2 (en) Magnetic head
JP2551008B2 (en) Soft magnetic thin film
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JPH04214831A (en) Soft magnetic film
JPH04252006A (en) Corrosion-resistant magnetically soft film and magnetic head using the same
JPH0567313A (en) Magneto-resistance effect film and magnetic head using it
JPH01143312A (en) Amorphous soft magnetic laminated film
JPH03292705A (en) Ferromagnetic film and magnet head using thereof
JPH11273050A (en) Magnetic recording medium and magnetic memory device
JPH0789526B2 (en) Crystalline soft magnetic thin film
JPH0529143A (en) Soft magnetic thin film
JPH0789527B2 (en) Crystalline soft magnetic thin film
JPH05226151A (en) Soft magnetic alloy film to be used for magnetic head and having high saturation flux density and high heat resistance and magnetic head
JPH0489606A (en) Production of soft magnetic thin film
JPH08107036A (en) Soft magnetic thin film magnetic recording equipment using that film
JPH0376102A (en) Multilayer magnetic thin film and magnetic head using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203