JPH05306345A - Processing of ion exchange membrane, production of adhered product of ion exchange membrane to electrode and fuel cell using the same - Google Patents
Processing of ion exchange membrane, production of adhered product of ion exchange membrane to electrode and fuel cell using the sameInfo
- Publication number
- JPH05306345A JPH05306345A JP4111073A JP11107392A JPH05306345A JP H05306345 A JPH05306345 A JP H05306345A JP 4111073 A JP4111073 A JP 4111073A JP 11107392 A JP11107392 A JP 11107392A JP H05306345 A JPH05306345 A JP H05306345A
- Authority
- JP
- Japan
- Prior art keywords
- ion exchange
- exchange membrane
- fuel cell
- electrode
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1023—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1086—After-treatment of the membrane other than by polymerisation
- H01M8/1093—After-treatment of the membrane other than by polymerisation mechanical, e.g. pressing, puncturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Fuel Cell (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、燃料として純水素、ま
たはメタノールおよび化石燃料からの改質水素などの還
元剤を用い、空気や酸素を酸化剤とする燃料電池に関す
るものであり、特に燃料電池用のイオン交換膜の加工方
法およびイオン交換膜と電極との接合体の製造方法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell using pure hydrogen as a fuel or a reducing agent such as reformed hydrogen from methanol and fossil fuels and using air or oxygen as an oxidant, and more particularly to a fuel cell. The present invention relates to a method for processing an ion exchange membrane for a battery and a method for manufacturing a bonded body of an ion exchange membrane and an electrode.
【0002】[0002]
【従来の技術】イオン交換膜燃料電池は電解質であるイ
オン交換膜と電極との接合体からなり、接合体の製造方
法として、例えば特開平3−208260号や特開平3
−203164号では120〜130℃で、特開平3−
184266号では120〜130℃でホットプレスを
行いイオン交換膜と電極とを接合している。イオン交換
膜燃料電池では接合体において負極で発生したプロトン
がイオン交換膜を介して正極へ移動するが、イオン交換
膜と電極との接合が不十分であると電極とイオン交換膜
との界面においてプロトンの移動が起こりにくくなり、
その結果内部抵抗が増大する。また、イオン交換膜と電
極との接合界面において触媒反応の起こる三相界面が形
成され、この三相界面の面積はイオン交換膜と電極との
接合状態によって支配される。このため、イオン交換膜
と電極との接合状態はイオン交換膜燃料電池の特性を大
きく左右する。2. Description of the Related Art An ion exchange membrane fuel cell comprises a bonded body of an ion exchange membrane, which is an electrolyte, and an electrode. As a method for manufacturing the bonded body, for example, JP-A-3-208260 and JP-A-3-208260.
No. 203164, at 120 to 130 ° C.
In No. 184266, hot pressing is performed at 120 to 130 ° C. to bond the ion exchange membrane and the electrode. In the ion exchange membrane fuel cell, the protons generated in the negative electrode in the bonded body move to the positive electrode through the ion exchange membrane, but if the ion exchange membrane and the electrode are not sufficiently bonded, they will not be formed at the interface between the electrode and the ion exchange membrane. Migration of protons is less likely to occur,
As a result, the internal resistance increases. In addition, a three-phase interface in which a catalytic reaction occurs is formed at the bonding interface between the ion exchange membrane and the electrode, and the area of this three-phase interface is governed by the bonding state between the ion exchange membrane and the electrode. Therefore, the bonding state of the ion exchange membrane and the electrode greatly affects the characteristics of the ion exchange membrane fuel cell.
【0003】[0003]
【発明が解決しようとする課題】しかしながら従来のイ
オン交換膜は膜厚、膜抵抗がともに大きく、その結果電
池の内部抵抗が増大する。従来のイオン交換膜と電極の
接合体の製造方法では接合温度が低いためにイオン交換
膜と電極との接着性が弱くプロトンの移動が起こりにく
く、ホットプレスによってイオン交換膜の抵抗が増大す
るために電池の内部抵抗が増大し、触媒反応の場である
三相界面が十分に形成されていないために十分な電池の
出力特性が得られていない。However, the conventional ion exchange membrane has a large film thickness and a large membrane resistance, and as a result, the internal resistance of the battery increases. In the conventional method for producing a bonded body of an ion exchange membrane and an electrode, since the bonding temperature is low, the adhesion between the ion exchange membrane and the electrode is weak, and the migration of protons does not easily occur, and the resistance of the ion exchange membrane increases due to hot pressing. In addition, the internal resistance of the battery is increased, and the three-phase interface, which is the field of the catalytic reaction, is not sufficiently formed, so that sufficient output characteristics of the battery are not obtained.
【0004】本発明は上記従来の課題を解決するもの
で、イオン交換膜のホットプレスを行って膜厚を減少さ
せて膜抵抗を低減させるイオン交換膜の加工方法、イオ
ン交換膜と電極との接着性を向上させて内部抵抗を低減
させ、かつ、三相界面を増加させてより高い性能を有す
るイオン交換膜燃料電池を実現させるためのイオン交換
膜と電極との接合方法、およびそれを用いた燃料電池を
提供することを目的とする。The present invention has been made to solve the above-mentioned conventional problems, and is a method for processing an ion exchange membrane in which the film thickness is reduced by hot pressing the ion exchange membrane to reduce the membrane resistance. A method of joining an ion exchange membrane and an electrode for improving the adhesiveness to reduce the internal resistance and increasing the three-phase interface to realize an ion exchange membrane fuel cell having higher performance, and a method for joining the same The purpose of the present invention is to provide a fuel cell.
【0005】[0005]
【課題を解決するための手段】この目的を達成するため
に、本発明はイオン交換膜を160〜220℃でホット
プレスを行い、膜厚を減少させて膜抵抗を減少させるイ
オン交換膜の加工方法であり、イオン交換膜と電極とを
160〜220℃で接合させる製造方法である。さらに
その製造方法で得られたイオン交換膜と電極の接合体を
用いたイオン交換膜燃料電池である。In order to achieve this object, the present invention processes an ion exchange membrane by hot pressing the ion exchange membrane at 160 to 220 ° C. to reduce the film thickness and the membrane resistance. The method is a method of bonding an ion exchange membrane and an electrode at 160 to 220 ° C. Furthermore, it is an ion exchange membrane fuel cell using the ion-exchange membrane-electrode assembly obtained by the manufacturing method.
【0006】[0006]
【作用】イオン交換膜を160〜220℃でホットプレ
スすることにより、膜厚を減少させて膜抵抗を低減させ
ることができ、またイオン交換膜と電極とを160〜2
20℃でホットプレスすることによりイオン交換膜と電
極の接着性を高め、ホットプレスによるイオン交換膜の
抵抗の増加を抑制して接触抵抗を低減し、かつ三相界面
を増加させることができ、これによって電池の出力特性
を向上させることが可能となった。By hot pressing the ion exchange membrane at 160 to 220 ° C., the film thickness can be reduced and the membrane resistance can be reduced.
By hot pressing at 20 ° C., the adhesion between the ion exchange membrane and the electrode can be enhanced, the increase in resistance of the ion exchange membrane due to hot pressing can be suppressed, the contact resistance can be reduced, and the three-phase interface can be increased. This made it possible to improve the output characteristics of the battery.
【0007】[0007]
【実施例】以下本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.
【0008】(実施例1)パーフルオロビニルエーテル
とテトラフルオロエチレンの共重合体からなるイオン交
換膜として米国デュポン社製のNAFION117を5
wt%過酸化水素水溶液中に70〜80℃で1時間加熱
浸漬処理を行い、有機物の不純物を除去した後、1規定
の硫酸水溶液中に70〜80℃で1時間加熱浸漬処理を
行い、無機物の不純物を除去すると共に、イオン交換基
をプロトン型に置換した。このイオン交換膜を20〜1
00kgf/cm2、130〜260℃でホットプレスを
行った。以下このイオン交換膜をAとする。(Example 1) As an ion exchange membrane made of a copolymer of perfluorovinyl ether and tetrafluoroethylene, 5 NAFION 117 manufactured by DuPont USA is used.
Heat-immersion treatment is performed in a wt% hydrogen peroxide aqueous solution at 70 to 80 ° C. for 1 hour to remove impurities of organic substances, and then heat immersion treatment is performed in a 1N sulfuric acid aqueous solution at 70 to 80 ° C. for 1 hour to form an inorganic substance. And the ion-exchange group was replaced with a proton type. This ion exchange membrane is 20-1
Hot pressing was performed at 130 to 260 ° C. at 00 kgf / cm 2 . Hereinafter, this ion exchange membrane is referred to as A.
【0009】(比較例1)パーフルオロビニルエーテル
とテトラフルオロエチレンの共重合体からなるイオン交
換膜として米国デュポン社製のNAFION117を5
wt%過酸化水素水溶液中に70〜80℃で1時間加熱
浸漬処理を行い、有機物の不純物を除去した後、1規定
の硫酸水溶液中に70〜80℃で1時間加熱浸漬処理を
行い、無機物の不純物を除去すると共に、イオン交換基
をプロトン型に置換した。以下このイオン交換膜をBと
する。(Comparative Example 1) NAFION 117 manufactured by DuPont, USA as an ion exchange membrane made of a copolymer of perfluorovinyl ether and tetrafluoroethylene was used.
Heat-immersion treatment is performed in a wt% hydrogen peroxide aqueous solution at 70 to 80 ° C. for 1 hour to remove impurities of organic substances, and then heat immersion treatment is performed in a 1N sulfuric acid aqueous solution at 70 to 80 ° C. for 1 hour to form an inorganic substance. And the ion-exchange group was replaced with a proton type. Hereinafter, this ion exchange membrane is referred to as B.
【0010】(実施例2)パーフルオロビニルエーテル
とテトラフルオロエチレンの共重合体からなるイオン交
換膜として米国デュポン社製のNAFION117と電
極とを160〜220℃、50kgf/cm2でホットプ
レスを行い接合した。この接合体を用いて図1に示した
イオン交換膜燃料電池の単セルを作成した。図1中、1
0はイオン交換膜を示し、11および12はそれぞれ負
極および正極を示した。電極は両極とも白金触媒を担持
した炭素微粉末に固体高分子電解質を添加して作成し
た。両極とも、白金量は0.5mg/cm2、固体高分子
電解質の添加量は0.3mg/cm2とした。以下この接
合体をCとする。Example 2 NAFION 117 made by DuPont USA as an ion exchange membrane composed of a copolymer of perfluorovinyl ether and tetrafluoroethylene and an electrode were hot-pressed at 160 to 220 ° C. and 50 kgf / cm 2 to bond them. did. A single cell of the ion exchange membrane fuel cell shown in FIG. 1 was prepared using this joined body. 1 in FIG.
0 indicates an ion exchange membrane, and 11 and 12 indicate a negative electrode and a positive electrode, respectively. Both electrodes were made by adding a solid polymer electrolyte to carbon fine powder carrying a platinum catalyst on both electrodes. In both electrodes, the amount of platinum was 0.5 mg / cm 2 , and the amount of solid polymer electrolyte added was 0.3 mg / cm 2 . Hereinafter, this bonded body is referred to as C.
【0011】(実施例3)実施例1のイオン交換膜Aと
電極とを160〜220℃、50kgf/cm2でホット
プレスし、接合を行った。この接合体を用いて図1に示
したイオン交換膜燃料電池の単セルを作成した。電極は
両極とも白金触媒を担持した炭素微粉末に固体高分子電
解質を添加して作成した。両極とも、白金量は0.5m
g/cm2、固体高分子電解質の添加量は0.3mg/cm2
とした。以下この接合体をDとする。Example 3 The ion exchange membrane A and the electrode of Example 1 were hot pressed at 160 to 220 ° C. and 50 kgf / cm 2 to join them. A single cell of the ion exchange membrane fuel cell shown in FIG. 1 was prepared using this joined body. Both electrodes were made by adding a solid polymer electrolyte to carbon fine powder carrying a platinum catalyst on both electrodes. Both electrodes have a platinum content of 0.5 m
g / cm 2 , the amount of solid polymer electrolyte added is 0.3 mg / cm 2
And Hereinafter, this joined body is referred to as D.
【0012】(比較例2)パーフルオロビニルエーテル
とテトラフルオロエチレンの共重合体からなるイオン交
換膜として米国デュポン社製のNAFION117と電
極とを130℃、50kgf/cm2でホットプレスし、
接合を行った。この接合体を用いて図1に示したイオン
交換膜燃料電池の単セルを作成した。電極は両極とも白
金触媒を担持した炭素微粉末に固体高分子電解質を添加
して作成した。両極とも、白金量は0.5mg/cm2、
固体高分子電解質の添加量は0.3mg/cm2とした。
以下この接合体をEとする。Comparative Example 2 NAFION 117 manufactured by DuPont USA as an ion exchange membrane composed of a copolymer of perfluorovinyl ether and tetrafluoroethylene and an electrode were hot pressed at 130 ° C. and 50 kgf / cm 2 .
Joined. A single cell of the ion exchange membrane fuel cell shown in FIG. 1 was prepared using this joined body. Both electrodes were made by adding a solid polymer electrolyte to carbon fine powder carrying a platinum catalyst on both electrodes. The amount of platinum in both electrodes was 0.5 mg / cm 2 ,
The amount of the solid polymer electrolyte added was 0.3 mg / cm 2 .
Hereinafter, this joined body is referred to as E.
【0013】以下本発明の実施例および比較例について
図面を参照しながら説明する。図2に本発明の実施例の
イオン交換膜のプレス温度と膜抵抗の関係を示した。膜
抵抗は1.5M硫酸水溶液中においてH型セルに白金
極、Hg/HgSO4電極を設置し、4端子法で常温、
60℃、80℃について測定した。Examples and comparative examples of the present invention will be described below with reference to the drawings. FIG. 2 shows the relationship between the pressing temperature and the membrane resistance of the ion exchange membrane of the example of the present invention. Membrane resistance was measured by placing a platinum electrode and Hg / HgSO 4 electrode on an H-type cell in a 1.5 M sulfuric acid aqueous solution, and using a four-terminal method at room temperature.
It measured about 60 degreeC and 80 degreeC.
【0014】プレス温度の上昇にともない膜抵抗は減少
し、プレス温度が160℃以上220以下の実施例1の
イオン交換膜Aは、比較例のイオン交換膜Bの膜抵抗が
室温、60℃、80℃でそれぞれ0.207,0.12
3,0.100Ωcm2であるのに対し、各温度について
膜抵抗が低減され、プレス温度が200℃の場合に膜抵
抗は最小となった。また、プレス温度が220℃より高
くなると膜の一部が白色化し、240℃以上になると膜
内に気泡が発生して膜厚にバラツキが生じた。この気泡
はイオン交換基であるSO3 -が分解して生じたSO2と
思われる。The membrane resistance decreases as the pressing temperature rises. The ion exchange membrane A of Example 1 having a pressing temperature of 160 ° C. to 220 ° C. has a membrane resistance of room temperature of 60 ° C. 0.207 and 0.12 at 80 ℃
While the film resistance was 3,0.100 Ωcm 2 , the film resistance was reduced at each temperature, and the film resistance became the minimum when the pressing temperature was 200 ° C. Further, when the pressing temperature was higher than 220 ° C., a part of the film was whitened, and when it was 240 ° C. or higher, bubbles were generated in the film and the film thickness varied. This bubble is considered to be SO 2 generated by the decomposition of SO 3 − which is an ion exchange group.
【0015】[0015]
【表1】 [Table 1]
【0016】(表1)に本実施例および比較例のイオン
交換膜のプレス温度、膜厚、ガス透過量を示した。プレ
ス温度の上昇にしたがって膜厚が減少し、ガス透過量は
プレス温度が220℃までは増加しないが、240℃以
上になると顕著に増大する。これはプレス温度が240
℃以上になると膜が分解されて構造が疎になったためと
考えられる。Table 1 shows the pressing temperature, film thickness, and gas permeation amount of the ion exchange membranes of this example and comparative example. The film thickness decreases as the press temperature rises, and the gas permeation amount does not increase up to the press temperature of 220 ° C., but remarkably increases at 240 ° C. or higher. This has a press temperature of 240
It is considered that the film was decomposed at temperatures above ℃ and the structure became sparse.
【0017】以上のことより、本発明の効果はプレス温
度が160〜220℃の範囲のホットプレスによって得
られることがわかった。From the above, it was found that the effects of the present invention can be obtained by hot pressing at a pressing temperature in the range of 160 to 220 ° C.
【0018】図3に本実施例および比較例のイオン交換
膜と電極との接合体を用いた燃料電池の電圧−電流特性
を示した。負極側に90℃の温度で加湿した水素ガス
を、正極側に80℃の温度で加湿した酸素ガスをそれぞ
れ供給して、放電試験を行った。本発明の実施例の接合
体CおよびDを用いた燃料電池は電流密度200mA/
cm2においてそれぞれ0.65V,0.68Vの電圧を
示した。一方比較例の接合体Eを用いた燃料電池は電流
密度200mA/cm2において電池電圧0.53Vを示
した。FIG. 3 shows the voltage-current characteristics of the fuel cell using the bonded body of the ion exchange membrane and the electrode of this example and the comparative example. A discharge test was performed by supplying hydrogen gas humidified at a temperature of 90 ° C. to the negative electrode side and oxygen gas humidified at a temperature of 80 ° C. to the positive electrode side. A fuel cell using the conjugates C and D of the examples of the present invention has a current density of 200 mA /
The voltages of 0.65 V and 0.68 V are shown in cm 2 . On the other hand, the fuel cell using the joint body E of the comparative example showed a cell voltage of 0.53 V at a current density of 200 mA / cm 2 .
【0019】なお本実施例ではイオン交換膜としてNA
FION117を用いたが、他のパーフルオロビニルエ
ーテルとテトラフルオロエチレンの共重合体からなるイ
オン交換膜を用いても同様の結果が得られた。In this embodiment, NA is used as the ion exchange membrane.
Although FION117 was used, similar results were obtained using an ion exchange membrane made of another copolymer of perfluorovinyl ether and tetrafluoroethylene.
【0020】さらに本実施例では、イオン交換膜燃料電
池の一例として水素−酸素燃料電池を取り上げたが、メ
タノール、天然ガス、ナフサなどを燃料とする改質水素
を用いた燃料電池、また、酸化剤として空気を用いた燃
料電池に適用することも可能である。Further, in this embodiment, a hydrogen-oxygen fuel cell was taken up as an example of the ion exchange membrane fuel cell, but a fuel cell using reformed hydrogen with methanol, natural gas, naphtha, etc. as a fuel, and an oxidation It is also possible to apply to a fuel cell using air as the agent.
【0021】[0021]
【発明の効果】以上のように本発明は、イオン交換膜を
160〜220℃でホットプレスし、膜厚を減少せしめ
ることにより、より低い膜抵抗のイオン交換膜を得るこ
とが可能となり、また、イオン交換膜と電極とを160
〜220℃でホットプレスすることにより、イオン交換
膜と電極との接着強度を高めて接触抵抗を低減させるこ
とが可能となり、より高い放電特性を発揮するイオン交
換膜燃料電池を実現することが可能となるものである。As described above, the present invention makes it possible to obtain an ion exchange membrane having a lower membrane resistance by hot pressing the ion exchange membrane at 160 to 220 ° C. to reduce the thickness. , The ion exchange membrane and the electrode 160
By hot pressing at ~ 220 ° C, it is possible to increase the adhesion strength between the ion exchange membrane and the electrode and reduce the contact resistance, and it is possible to realize an ion exchange membrane fuel cell exhibiting higher discharge characteristics. It will be.
【図1】イオン交換膜燃料電池の断面図FIG. 1 is a sectional view of an ion exchange membrane fuel cell.
【図2】プレス温度とイオン交換膜の膜抵抗の関係を示
す図FIG. 2 is a diagram showing a relationship between a press temperature and a membrane resistance of an ion exchange membrane.
【図3】イオン交換膜燃料電池の電圧−電流特性図FIG. 3 Voltage-current characteristic diagram of ion exchange membrane fuel cell
10 イオン交換膜 11 負極 12 正極 10 Ion exchange membrane 11 Negative electrode 12 Positive electrode
Claims (3)
オロエチレンの共重合体からなるイオン交換膜を160
〜220℃でホットプレスするイオン交換膜の加工方
法。1. An ion exchange membrane made of a copolymer of perfluorovinyl ether and tetrafluoroethylene, 160
A method for processing an ion exchange membrane, which comprises hot pressing at 220 ° C.
オロエチレンの共重合体からなるイオン交換膜とガス拡
散電極とを160〜220℃でホットプレスするイオン
交換膜と電極との接合体の製造方法。2. A method for producing a bonded body of an ion exchange membrane and an electrode, which comprises hot pressing an ion exchange membrane made of a copolymer of perfluorovinyl ether and tetrafluoroethylene and a gas diffusion electrode at 160 to 220 ° C.
オロエチレンの共重合体からなるイオン交換膜とガス拡
散電極とが160〜220℃でホットプレスされた接合
体を用いたイオン交換膜燃料電池。3. An ion exchange membrane fuel cell using an ion exchange membrane made of a copolymer of perfluorovinyl ether and tetrafluoroethylene and a gas diffusion electrode hot pressed at 160 to 220 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4111073A JPH05306345A (en) | 1992-04-30 | 1992-04-30 | Processing of ion exchange membrane, production of adhered product of ion exchange membrane to electrode and fuel cell using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4111073A JPH05306345A (en) | 1992-04-30 | 1992-04-30 | Processing of ion exchange membrane, production of adhered product of ion exchange membrane to electrode and fuel cell using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05306345A true JPH05306345A (en) | 1993-11-19 |
Family
ID=14551702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4111073A Pending JPH05306345A (en) | 1992-04-30 | 1992-04-30 | Processing of ion exchange membrane, production of adhered product of ion exchange membrane to electrode and fuel cell using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05306345A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004102713A1 (en) * | 2003-05-14 | 2006-07-13 | 東レ株式会社 | Membrane electrode composite and polymer electrolyte fuel cell using the same |
JPWO2006019097A1 (en) * | 2004-08-18 | 2008-05-08 | 旭硝子株式会社 | ELECTROLYTE POLYMER FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, ELECTROLYTE MEMBRANE, AND MEMBRANE / ELECTRODE ASSEMBLY |
US7452441B2 (en) | 2004-02-09 | 2008-11-18 | Aisin Seiki Kabushiki Kaisha | Method for manufacturing membrane electrode assembly |
JP2008311233A (en) * | 2008-07-14 | 2008-12-25 | Nec Corp | Solid polymer electrolyte membrane, fuel cell using this, and method of manufacturing the solid polymer electrolyte membrane |
-
1992
- 1992-04-30 JP JP4111073A patent/JPH05306345A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004102713A1 (en) * | 2003-05-14 | 2006-07-13 | 東レ株式会社 | Membrane electrode composite and polymer electrolyte fuel cell using the same |
JP4904812B2 (en) * | 2003-05-14 | 2012-03-28 | 東レ株式会社 | Membrane electrode composite and polymer electrolyte fuel cell using the same |
US7452441B2 (en) | 2004-02-09 | 2008-11-18 | Aisin Seiki Kabushiki Kaisha | Method for manufacturing membrane electrode assembly |
JPWO2006019097A1 (en) * | 2004-08-18 | 2008-05-08 | 旭硝子株式会社 | ELECTROLYTE POLYMER FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, ELECTROLYTE MEMBRANE, AND MEMBRANE / ELECTRODE ASSEMBLY |
JP5168903B2 (en) * | 2004-08-18 | 2013-03-27 | 旭硝子株式会社 | ELECTROLYTE POLYMER FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, ELECTROLYTE MEMBRANE, AND MEMBRANE / ELECTRODE ASSEMBLY |
JP2008311233A (en) * | 2008-07-14 | 2008-12-25 | Nec Corp | Solid polymer electrolyte membrane, fuel cell using this, and method of manufacturing the solid polymer electrolyte membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05242897A (en) | Solid high polymer electrolyte type fuel cell | |
KR20070100693A (en) | Membrane and membrane electrode assembly with adhesion promotion layer | |
JP5070817B2 (en) | Membrane / electrode assembly of solid polymer electrolyte fuel cell and production method thereof | |
KR100599667B1 (en) | Separator for fuel cell using the metal coated with TiN, method to prepare thereit, and polymer electrolyte membrane fuel cell comprising the same | |
JP3358222B2 (en) | Activation method of polymer electrolyte fuel cell | |
JP3469091B2 (en) | Activation method of polymer electrolyte fuel cell | |
US20040197629A1 (en) | Electric power generating element for fuel cell and fuel cell using the same | |
JPH0722037A (en) | Fuel cell and manufacture thereof | |
JPH11224679A (en) | Solid high polymer fuel cell and its manufacture | |
JP3523484B2 (en) | Fuel cell | |
JPH05306345A (en) | Processing of ion exchange membrane, production of adhered product of ion exchange membrane to electrode and fuel cell using the same | |
JPH06251779A (en) | Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell | |
JP5251139B2 (en) | Manufacturing method of fuel cell membrane / electrode assembly | |
JP2003272672A (en) | Electrolyte membrane electrode jointed body and its manufacturing method and fuel cell using the same | |
JP3991283B2 (en) | Storage method of polymer electrolyte membrane electrode assembly | |
JP3965666B2 (en) | Gas diffusion electrode and manufacturing method thereof | |
KR100397954B1 (en) | Manufacturing Method of Polymer Electrolyte Membrane for Fuel Cells | |
JP4045661B2 (en) | ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER ELECTROLYTE FUEL CELL USING THE SAME | |
JPH1116588A (en) | Direct methanol fuel cell having solid high polymer electrolyte and its manufacture | |
JPH06231778A (en) | Solid high polymer electrolytic fuel cell | |
JP2002015742A (en) | Fuel cell and proton conducting material for fuel cell | |
JPH01154467A (en) | Liquid fuel cell | |
JP2002042824A (en) | Solid polymer type fuel cell and its manufacturing method | |
JP2002216802A (en) | Solid polymer electrolyte film type electrode structure, its manufacturing method and fuel cell using it | |
US7244280B2 (en) | Method for producing electrochemical device |