JP5251139B2 - Manufacturing method of fuel cell membrane / electrode assembly - Google Patents

Manufacturing method of fuel cell membrane / electrode assembly Download PDF

Info

Publication number
JP5251139B2
JP5251139B2 JP2008010295A JP2008010295A JP5251139B2 JP 5251139 B2 JP5251139 B2 JP 5251139B2 JP 2008010295 A JP2008010295 A JP 2008010295A JP 2008010295 A JP2008010295 A JP 2008010295A JP 5251139 B2 JP5251139 B2 JP 5251139B2
Authority
JP
Japan
Prior art keywords
catalyst layer
electrolyte membrane
membrane
electrode
electrode catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008010295A
Other languages
Japanese (ja)
Other versions
JP2009170382A (en
Inventor
洋 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2008010295A priority Critical patent/JP5251139B2/en
Publication of JP2009170382A publication Critical patent/JP2009170382A/en
Application granted granted Critical
Publication of JP5251139B2 publication Critical patent/JP5251139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体高分子型燃料電池又は直接メタノール型燃料電池の膜・電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane / electrode assembly of a polymer electrolyte fuel cell or a direct methanol fuel cell.

近年、クリーンで発電効率の高い次世代の発電装置が希求されており、その1つとして水素と空気中の酸素を化学反応させる際にその化学エネルギー変化を直接電気エネルギーとして取り出す燃料電池が提案されている。   In recent years, there has been a demand for a next-generation power generation device that is clean and has high power generation efficiency, and as one of them, a fuel cell that directly takes out the chemical energy change as electrical energy when a chemical reaction between hydrogen and oxygen in the air has been proposed. ing.

例えば、固体高分子型燃料電池は、燃料極(アノード極)、空気極(カソード極)及び電解質膜からなり、燃料極は水素から電子を引き抜く触媒、燃料である水素のガス拡散層、集電体としてのセパレータが積層された構造をしている。また空気極は、プロトンと酸素の反応触媒、空気の拡散層、セパレータが積層された構造をしている。電解質膜には、スルホン酸系のプロトン伝導性の固体高分子膜が用いられている。触媒層は電解質膜上に直接形成され又は拡散層上に形成した後にホットプレス法により電解質膜と一体化される。電解質膜と触媒層、電極の接合体(膜・電極接合体)はMEA(Membrane Electrode Assembly)と呼ばれる。   For example, a polymer electrolyte fuel cell includes a fuel electrode (anode electrode), an air electrode (cathode electrode), and an electrolyte membrane. The fuel electrode is a catalyst that extracts electrons from hydrogen, a gas diffusion layer of hydrogen as a fuel, a current collector. It has a structure in which separators as a body are stacked. The air electrode has a structure in which a reaction catalyst of protons and oxygen, an air diffusion layer, and a separator are laminated. As the electrolyte membrane, a sulfonic acid proton conductive solid polymer membrane is used. The catalyst layer is formed directly on the electrolyte membrane or formed on the diffusion layer and then integrated with the electrolyte membrane by hot pressing. The electrolyte membrane / catalyst layer / electrode assembly (membrane / electrode assembly) is called MEA (Membrane Electrode Assembly).

図4は、固体高分子型燃料電池の膜・電極接合体の基本構成例を模式的に示す断面図である。膜・電極接合体10は、高分子電解質膜11の一方の主面に空気極触媒層12が形成され、他方の主面に燃料極触媒層13が形成されている。空気極触媒層12の外側に空気極拡散層14が形成され、燃料極触媒層13の外側に燃料極拡散層15が形成された構成をしている。   FIG. 4 is a cross-sectional view schematically showing a basic configuration example of a membrane / electrode assembly of a solid polymer fuel cell. In the membrane / electrode assembly 10, the air electrode catalyst layer 12 is formed on one main surface of the polymer electrolyte membrane 11, and the fuel electrode catalyst layer 13 is formed on the other main surface. The air electrode diffusion layer 14 is formed outside the air electrode catalyst layer 12, and the fuel electrode diffusion layer 15 is formed outside the fuel electrode catalyst layer 13.

ところで、高分子電解質膜10は非常に高価であるため、高分子電解質膜の使用量を低減するためのMEA構造が数多く提案されている(例えば、特許文献1参照)。特許文献1に記載された膜・電極接合体10は、図5に示されるように空気極の拡散層/触媒層(14,12)及び燃料極の拡散層/触媒層(15,13)と固体高分子電解質膜11を同じ平面寸法に加工し、電極周囲部に補強フィルム16を配設することで固体高分子電解質膜の使用量を低減している。
特開2004−319303号公報
By the way, since the polymer electrolyte membrane 10 is very expensive, many MEA structures for reducing the use amount of the polymer electrolyte membrane have been proposed (for example, see Patent Document 1). As shown in FIG. 5, the membrane / electrode assembly 10 described in Patent Document 1 includes an air electrode diffusion layer / catalyst layer (14, 12) and a fuel electrode diffusion layer / catalyst layer (15, 13). The amount of the solid polymer electrolyte membrane is reduced by processing the solid polymer electrolyte membrane 11 into the same plane dimensions and disposing the reinforcing film 16 around the electrode.
JP 2004-319303 A

しかしながら、図5に示した膜・電極接合体10をホットプレス法で作製したところ、結着部17に空気が残り電解質膜11と触媒層13が均一に接着できないことが判明した。このため、ホットプレス法で作製した膜・電極接合体10は、電解質膜11と触媒層13との間のプロトン伝導性が低下し、高いセル特性が得られないといった問題があった。   However, when the membrane / electrode assembly 10 shown in FIG. 5 was produced by a hot press method, it was found that air remained in the binding portion 17 and the electrolyte membrane 11 and the catalyst layer 13 could not be adhered uniformly. For this reason, the membrane / electrode assembly 10 produced by the hot press method has a problem that the proton conductivity between the electrolyte membrane 11 and the catalyst layer 13 is lowered, and high cell characteristics cannot be obtained.

本発明は、かかる点に鑑みてなされたものであり、ホットプレス時に電解質膜/補強フィルム/触媒層を均一に接着することができ、燃料極−空気極間のクロスリーク量の低減と電池特性の向上を図ることのできる燃料電池の膜・電極接合体の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and can uniformly adhere the electrolyte membrane / reinforcing film / catalyst layer during hot pressing, and can reduce the amount of cross leak between the fuel electrode and the air electrode and the battery characteristics. An object of the present invention is to provide a method for producing a membrane-electrode assembly of a fuel cell capable of improving the above.

本発明の膜・電極接合体の製造方法は、電解質膜の一方の主面に空気極触媒層/拡散層がその触媒層を接して形成され、前記電解質膜の他方の主面に燃料極触媒層/拡散層がその触媒層を接して形成され、前記電解質膜のいずれかの主面と当該主面側に形成された前記電極触媒層との接合面の外周縁部に薄板状の補強部材の一部が挟み込まれてなる膜・電極接合体の製造方法において、前記空気極触媒層/拡散層、前記燃料極触媒層/拡散層、前記電解質膜及び前記補強部材を冶具にセットし、これらをホットプレスで一体化する際に、前記電解質膜と当該電解質膜に接する前記触媒層との間に残留するガスを吸引することを特徴とする。   In the method for producing a membrane-electrode assembly according to the present invention, an air electrode catalyst layer / diffusion layer is formed on one main surface of an electrolyte membrane in contact with the catalyst layer, and a fuel electrode catalyst is formed on the other main surface of the electrolyte membrane. A layer / diffusion layer is formed in contact with the catalyst layer, and a thin plate-like reinforcing member is formed on the outer peripheral edge portion of the joint surface between any one of the electrolyte membranes and the electrode catalyst layer formed on the principal surface side In the method for producing a membrane / electrode assembly in which a part of the membrane is sandwiched, the air electrode catalyst layer / diffusion layer, the fuel electrode catalyst layer / diffusion layer, the electrolyte membrane and the reinforcing member are set on a jig, Is integrated by hot pressing, and gas remaining between the electrolyte membrane and the catalyst layer in contact with the electrolyte membrane is sucked.

この構成によれば、ホットプレス時に、電解質膜と当該電解質膜に接する前記触媒層との間に残留するガスを吸引するので、電解質膜に対して補強部材及び触媒層を均一に接着することができ、燃料極−空気極間のクロスリーク量の低減と電池特性の向上を図ることができる。   According to this configuration, the gas remaining between the electrolyte membrane and the catalyst layer in contact with the electrolyte membrane is sucked during hot pressing, so that the reinforcing member and the catalyst layer can be uniformly bonded to the electrolyte membrane. In addition, the amount of cross leak between the fuel electrode and the air electrode can be reduced and the battery characteristics can be improved.

また本発明は、上記膜・電極接合体の製造方法において、前記ホットプレス時に、前記空気極触媒層/拡散層のセットされた冶具と、前記燃料極触媒層/拡散層のセットされた冶具との双方から、前記電解質膜と当該電解質膜に接する前記触媒層との間に残留するガスを吸引することを特徴とする。   Further, the present invention provides the above-mentioned method for manufacturing a membrane / electrode assembly, wherein the jig in which the air electrode catalyst layer / diffusion layer is set, and the jig in which the fuel electrode catalyst layer / diffusion layer is set, From both, the gas remaining between the electrolyte membrane and the catalyst layer in contact with the electrolyte membrane is sucked.

この構成により、電解質膜と当該電解質膜に接する前記触媒層との間に残留するガスを上下の冶具の双方から吸引するので、電解質膜に対して補強部材及び触媒層を均一に接着することができ、燃料極−空気極間のクロスリーク量の低減と電池特性の向上を図ることができる。   With this configuration, since the gas remaining between the electrolyte membrane and the catalyst layer in contact with the electrolyte membrane is sucked from both the upper and lower jigs, the reinforcing member and the catalyst layer can be uniformly bonded to the electrolyte membrane. In addition, the amount of cross leak between the fuel electrode and the air electrode can be reduced and the battery characteristics can be improved.

また本発明は、上記膜・電極接合体の製造方法において、前記ホットプレス時に、前記空気極又は前記燃料極を構成する触媒層/拡散層のセットされた一方の冶具側から、前記電解質膜と当該電解質膜に接する前記触媒層との間に残留するガスを吸引することを特徴とする。   Further, the present invention provides the method for producing a membrane / electrode assembly, wherein, during the hot pressing, the electrolyte membrane and the electrolyte membrane are formed from one jig side on which the catalyst layer / diffusion layer constituting the air electrode or the fuel electrode is set. Gas remaining between the catalyst layer and the catalyst layer in contact with the electrolyte membrane is sucked.

この構成により、電解質膜と当該電解質膜に接する前記触媒層との間に残留するガスを一方の冶具から吸引しても、電解質膜に対して補強部材及び触媒層を均一に接着することができ、燃料極−空気極間のクロスリーク量の低減と電池特性の向上を図ることができる。   With this configuration, even if the gas remaining between the electrolyte membrane and the catalyst layer in contact with the electrolyte membrane is sucked from one jig, the reinforcing member and the catalyst layer can be uniformly bonded to the electrolyte membrane. Further, it is possible to reduce the amount of cross leak between the fuel electrode and the air electrode and improve the battery characteristics.

上記膜・電極接合体の製造方法において、前記ホットプレス時における前記電解質膜と当該電解質膜に接する前記触媒層との間の真空度を600mmHgより低くすることにより、電解質膜に対して補強部材及び触媒層を均一に接着することができ、特に真空度を300mmHgより低くすることが望ましい。   In the manufacturing method of the membrane-electrode assembly, a reinforcing member and an electrolyte membrane are formed by reducing a vacuum degree between the electrolyte membrane and the catalyst layer in contact with the electrolyte membrane at the time of hot pressing to less than 600 mmHg. The catalyst layer can be adhered uniformly, and it is particularly desirable that the degree of vacuum is lower than 300 mmHg.

本発明によれば、ホットプレス時に電解質膜/補強フィルム/触媒層を均一に接着することができ、燃料極−空気極間のクロスリーク量の低減と電池特性の向上を図ることができる。   According to the present invention, the electrolyte membrane / reinforcing film / catalyst layer can be uniformly bonded during hot pressing, and the amount of cross leak between the fuel electrode and the air electrode can be reduced and the battery characteristics can be improved.

以下、本発明の一実施の形態について添付図面を参照して詳細に説明する。
図1は本実施の形態に係る膜・電極接合体の製造方法による接合体製造過程の一部を示す模式図であり、図2は本実施の形態により作製した膜・電極接合体の模式的断面図である。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing a part of a process for producing a joined body by the method for producing a membrane / electrode assembly according to the present embodiment, and FIG. 2 is a schematic view of the membrane / electrode assembly produced by the present embodiment. It is sectional drawing.

最初に、図2を参照して、本実施の形態により作製した膜・電極接合体の構造について説明する。高分子電解質膜11の両主面には、空気極および燃料極の触媒層12および13が形成され、触媒層12,13の外側面に多孔質のガス拡散層14および15(以下、「拡散層」という)が形成されている。空気極の拡散層/触媒層(14,12)及び燃料極の拡散層/触媒層(15,13)と高分子電解質膜11とを同一面積にし、高分子電解質膜11からみて燃料極側の電極周囲部に額縁状補強フィルム16を配設している。額縁状補強フィルム16は、耐熱性の樹脂フィルムからなり、空気極拡散層/触媒層/高分子電解質膜(14,12,11)における高分子電解質膜11の外周部と一部重なるように中央の開口部サイズが調整されている。なお、高分子電解質膜11を補強できるものであれば、樹脂フィルム以外の薄板状の補強部材を適用することができる。   First, with reference to FIG. 2, the structure of the membrane / electrode assembly produced according to the present embodiment will be described. Catalyst layers 12 and 13 of the air electrode and the fuel electrode are formed on both main surfaces of the polymer electrolyte membrane 11, and porous gas diffusion layers 14 and 15 (hereinafter referred to as “diffusion”) are formed on the outer surfaces of the catalyst layers 12 and 13. Layer)). The diffusion layer / catalyst layer (14, 12) of the air electrode, the diffusion layer / catalyst layer (15, 13) of the fuel electrode, and the polymer electrolyte membrane 11 are made to have the same area, and viewed from the polymer electrolyte membrane 11 on the fuel electrode side. A frame-shaped reinforcing film 16 is disposed around the electrode. The frame-shaped reinforcing film 16 is made of a heat-resistant resin film, and is centered so as to partially overlap the outer peripheral portion of the polymer electrolyte membrane 11 in the air electrode diffusion layer / catalyst layer / polymer electrolyte membrane (14, 12, 11). The opening size is adjusted. In addition, as long as the polymer electrolyte membrane 11 can be reinforced, a thin plate-like reinforcing member other than the resin film can be applied.

燃料極の拡散層15に反応ガスとしての水素を含む燃料ガスを供給・排出するための燃料ガス流路を有し、空気極の拡散層14に反応ガスとしての酸化剤ガスを供給・排出するための酸化剤ガス流路を有してなる図示しないセパレータを備えてなるセルを構成し、上記セルを多数積層したスタックで燃料電池を構成する。   The fuel electrode diffusion layer 15 has a fuel gas flow path for supplying and discharging a fuel gas containing hydrogen as a reaction gas, and an oxidant gas as a reaction gas is supplied to and discharged from the air electrode diffusion layer 14. A cell having a separator (not shown) having an oxidant gas flow path is formed, and a fuel cell is formed by a stack in which a large number of the cells are stacked.

高分子電解質膜11としては、例えばパーフロロスルホン酸ポリマー膜(米国,デュポン社,商品名Nafion膜)を用いることができる。この膜は、飽和に含水させることで、常温で20Ω・cm以下の比抵抗を示し、プロトン伝導性電解質として機能する。膜の飽和含水量は温度によって可逆的に変化する。   As the polymer electrolyte membrane 11, for example, a perfluorosulfonic acid polymer membrane (US, DuPont, trade name Nafion membrane) can be used. This membrane exhibits a specific resistance of 20 Ω · cm or less at room temperature when saturated with water, and functions as a proton conductive electrolyte. The saturated water content of the membrane changes reversibly with temperature.

高分子電解質膜11の燃料極側の主面に接合している拡散層15より水素、空気極側の主面に接合している拡散層14より酸素あるいは空気を供給することにより、高分子電解質膜11と触媒層12および13の界面における水素の酸化反応、酸素の還元反応によってプロトン,電子の移動が起こり、電気を得ることができる。   By supplying hydrogen from the diffusion layer 15 bonded to the main surface on the fuel electrode side of the polymer electrolyte membrane 11 and oxygen or air from the diffusion layer 14 bonded to the main surface on the air electrode side, the polymer electrolyte Proton and electron transfer occur by the oxidation reaction of hydrogen and the reduction reaction of oxygen at the interface between the membrane 11 and the catalyst layers 12 and 13, and electricity can be obtained.

図1は、燃料極拡散層/触媒層(15,13)を一体化した燃料極側一体化電極、空気極拡散層/触媒層(14,12)を一体化した空気極側一体化電極、電解質膜11、額縁状補強フィルム16を、治具21a,21bにセットした状態の模式図である。   FIG. 1 shows a fuel electrode side integrated electrode in which a fuel electrode diffusion layer / catalyst layer (15, 13) is integrated, an air electrode side integrated electrode in which an air electrode diffusion layer / catalyst layer (14, 12) is integrated, It is a schematic diagram of the state which set the electrolyte membrane 11 and the frame-shaped reinforcement film 16 to jig | tool 21a, 21b.

治具21a,21bは、上下に2分割されている。上側治具21aは横方向の移動を規制した状態で空気極拡散層/触媒層(14,12)の一体化電極をプレス位置に位置決めし、下側治具21bは横方向の移動を規制した状態で燃料極拡散層/触媒層(15,13)をプレス位置に位置決めする。上下の治具21a,21bで位置決めされた空気極拡散層/触媒層/高分子電解質膜(14,12,11)と燃料極拡散層/触媒層(15,13)とは互いに対向した状態でセットされる。また、上側治具21aにセットされた空気極拡散層/触媒層(14,12)の空気極拡散層14の背面にプレス上板23aが配置され、下側治具21bにセットされた燃料極拡散層/触媒層(15,13)の燃料極拡散層15の背面にプレス下板23bが配置される。   The jigs 21a and 21b are divided into two vertically. The upper jig 21a positions the integrated electrode of the air electrode diffusion layer / catalyst layer (14, 12) at the press position in a state in which the lateral movement is restricted, and the lower jig 21b regulates the lateral movement. In this state, the fuel electrode diffusion layer / catalyst layer (15, 13) is positioned at the press position. The air electrode diffusion layer / catalyst layer / polymer electrolyte membrane (14, 12, 11) and the fuel electrode diffusion layer / catalyst layer (15, 13) positioned by the upper and lower jigs 21a and 21b face each other. Set. Also, a press upper plate 23a is disposed on the back surface of the air electrode diffusion layer 14 of the air electrode diffusion layer / catalyst layer (14, 12) set in the upper jig 21a, and the fuel electrode set in the lower jig 21b. A press lower plate 23b is disposed on the back surface of the anode diffusion layer 15 of the diffusion layer / catalyst layer (15, 13).

額縁状補強フィルム16は、下側治具21bにセットした燃料極拡散層/触媒層(15,13)の一体化電極上面に膜周囲部と重なるように配置される。   The frame-shaped reinforcing film 16 is disposed on the upper surface of the integrated electrode of the fuel electrode diffusion layer / catalyst layer (15, 13) set on the lower jig 21b so as to overlap the membrane periphery.

本実施の形態は、ホットプレス時に電極接合部24のガスを吸引するための吸引構造を上下の冶具21a,21bに設けている。上側治具21aに接合部吸引用治具穴25aを形成し、接合部吸引用治具穴25aの一端を治具内壁22aに連通させて多孔質の拡散層14と対面させている。また、下側治具21bに形成した接合部吸引用治具穴25bの一端を治具内壁22bに連通させて多孔質の拡散層15と対面させている。接合部吸引用治具穴25a,25bの他端は真空ポンプ26に連結して電極接合部24に残留するガスを吸引することができるように構成されている。   In the present embodiment, the upper and lower jigs 21a and 21b are provided with a suction structure for sucking the gas of the electrode joint portion 24 during hot pressing. A joint suction jig hole 25a is formed in the upper jig 21a, and one end of the joint suction jig hole 25a communicates with the jig inner wall 22a so as to face the porous diffusion layer. Further, one end of a joint suction jig hole 25b formed in the lower jig 21b is communicated with the jig inner wall 22b so as to face the porous diffusion layer 15. The other ends of the joint suction jig holes 25a and 25b are connected to a vacuum pump 26 so that the gas remaining in the electrode joint 24 can be sucked.

次に、以上の構成された冶具を用いた膜・電極接合体10の製造方法について説明する。
(実施例1)
(空気極拡散層/触媒層/高分子電解質膜の一体化電極の作製)
白金担持量40質量%の白金担持カーボン10gと、パーフロロスルホン酸樹脂5%アルコール溶液100gとを混合して触媒ペーストを作製する。この触媒ペーストを拡散層上にダイコーターを用いて白金量が0.3mg/cmとなるように塗布・乾燥し、空気極拡散層/触媒層の一体化電極を作製した。
Next, a method for manufacturing the membrane / electrode assembly 10 using the above-configured jig will be described.
Example 1
(Production of air electrode diffusion layer / catalyst layer / polymer electrolyte membrane integrated electrode)
A catalyst paste is prepared by mixing 10 g of platinum-supporting carbon having a platinum loading of 40% by mass with 100 g of a 5% perfluorosulfonic acid resin alcohol solution. This catalyst paste was applied and dried on the diffusion layer using a die coater so that the amount of platinum was 0.3 mg / cm 2 , thereby producing an integrated electrode of the air electrode diffusion layer / catalyst layer.

上記空気極拡散層/触媒層の一体化電極を、高分子電解質膜(例えば、米国,デュポン社,商品名Nafion膜)に、電解質膜と空気極触媒層とが重なるように配置し、転写温度140℃、転写圧力2MPaでホットプレスして、空気極拡散層/触媒層/高分子電解質膜の一体化電極を形成した。   The air electrode diffusion layer / catalyst layer integrated electrode is disposed on a polymer electrolyte membrane (for example, US, DuPont, trade name Nafion membrane) so that the electrolyte membrane and the air electrode catalyst layer overlap, and the transfer temperature An integrated electrode of air electrode diffusion layer / catalyst layer / polymer electrolyte membrane was formed by hot pressing at 140 ° C. and a transfer pressure of 2 MPa.

(燃料極拡散層/触媒層の一体化電極の作製)
白金担持量30質量%,ルテニウム担持量15質量%の白金ルテニウムカーボン10gと、パーフロロスルホン酸樹脂5%アルコール溶液100gとを混合して触媒ペーストを作製する。この触媒ペーストを拡散膜上にダイコーターを用いて白金量が0.3mg/cmとなるように塗布し、燃料極拡散層/触媒層の一体化電極を作製した。
(Fabrication of fuel electrode diffusion layer / catalyst layer)
A catalyst paste is prepared by mixing 10 g of platinum ruthenium carbon having a platinum loading of 30% by mass and ruthenium loading of 15% by mass with 100 g of a perfluorosulfonic acid resin 5% alcohol solution. This catalyst paste was applied onto the diffusion film using a die coater so that the platinum amount was 0.3 mg / cm 2 , thereby producing an integrated electrode of the fuel electrode diffusion layer / catalyst layer.

(膜・電極接合体の作製)
図1に示すように、空気極拡散層/触媒層/高分子電解質膜(14,12,11)の一体化電極、額縁状補強フィルム16、燃料極拡散層/触媒層(15,13)の一体化電極の順に治具21a,21bにセットする。上記の順に治具21a,21bにセットした後、真空ポンプ26にて上下の冶具21a,21b側から電極接合部24を真空度600mmHgとなるように吸引を行ないながら、プレス上板23a,プレス下板23bを動作させて、転写温度140℃、転写圧力4MPaでホットプレスを実施して膜・電極接合体10を作製した。
(Production of membrane / electrode assembly)
As shown in FIG. 1, the air electrode diffusion layer / catalyst layer / polymer electrolyte membrane (14, 12, 11) integrated electrode, the frame-shaped reinforcing film 16, the fuel electrode diffusion layer / catalyst layer (15, 13) The jigs 21a and 21b are set in the order of the integrated electrodes. After the jigs 21a and 21b are set in the above order, the upper plate 23a and the lower press plate are pressed while the electrode joint 24 is sucked from the upper and lower jigs 21a and 21b by the vacuum pump 26 so that the degree of vacuum is 600 mmHg. The plate 23b was operated, and hot pressing was performed at a transfer temperature of 140 ° C. and a transfer pressure of 4 MPa, and the membrane / electrode assembly 10 was produced.

(実施例2)
上記実施例1に示したMEA製作手順において、ホットプレス時に電極接合部24の吸引を燃料極拡散層/触媒層(15,13)側からのみ行い、その他は実施例1と同一手順にて膜・電極接合体10を作製した。
(Example 2)
In the MEA manufacturing procedure shown in the first embodiment, the electrode junction 24 is sucked only from the fuel electrode diffusion layer / catalyst layer (15, 13) side during hot pressing, and the other steps are the same as in the first embodiment. -The electrode assembly 10 was produced.

(比較例)
上記実施例1に示したMEA製作手順において、ホットプレス時に電極接合部24の吸引を行わずに、その他は実施例1と同一手順にて膜・電極接合体10を作製した。
(Comparative example)
In the MEA manufacturing procedure shown in Example 1 above, the membrane / electrode assembly 10 was manufactured in the same procedure as in Example 1 except that the electrode bonding part 24 was not sucked during hot pressing.

実施例1,2及び比較例で得た3つの膜・電極接合体10を用いたセル長期試験を実施したところ、比較例で作成した膜・電極接合体10では電解質膜が切れて電池電圧特性が急激に低下する現象が確認されたのに対して、実施例1,2では安定して運転することができた。   When a cell long-term test using the three membrane / electrode assemblies 10 obtained in Examples 1 and 2 and the comparative example was carried out, the electrolyte membrane was broken in the membrane / electrode assembly 10 prepared in the comparative example, and the battery voltage characteristics Was confirmed to be abruptly decreased, but Examples 1 and 2 were able to operate stably.

また、実施例1に示した製作手順で膜・電極接合体10を作製する際に、ホットプレス時に電極接合部24の真空度を異ならせる実験を実施した。図3は、ホットプレス時に電極接合部24の真空度を、200mmHg、400mmHg、600mmHg、700mmHgにして得られた各膜・電極接合体のセル電圧測定値を示している。ホットプレス時に電極接合部24の真空度が600mmHgよりも大きくなると急激にセル電圧が小さくなることが判る。また、ホットプレス時に電極接合部24の真空度が300mmHgよりも小さくなるとセル電圧が安定していることが判る。このことから、ホットプレス時の電極接合部24の真空度は600mmHg未満に設定すべきであり、300mmHgよりも小さいことが特に好ましい。   In addition, when the membrane / electrode assembly 10 was manufactured according to the manufacturing procedure shown in Example 1, an experiment was performed in which the degree of vacuum of the electrode bonding portion 24 was varied during hot pressing. FIG. 3 shows cell voltage measurement values of each membrane / electrode assembly obtained by setting the degree of vacuum of the electrode bonded portion 24 to 200 mmHg, 400 mmHg, 600 mmHg, and 700 mmHg during hot pressing. It can be seen that the cell voltage decreases rapidly when the degree of vacuum of the electrode joint 24 is greater than 600 mmHg during hot pressing. It can also be seen that the cell voltage is stable when the degree of vacuum of the electrode joint 24 is less than 300 mmHg during hot pressing. For this reason, the degree of vacuum of the electrode joint 24 during hot pressing should be set to less than 600 mmHg, and is particularly preferably smaller than 300 mmHg.

本実施の形態によれば、ホットプレス時に高分子電解質膜11と触媒層13との結着部となる電極接合部24を吸引するので、高分子電解質膜11と額縁状補強フィルム16が折れや皺を生じることなく密着し、また電極接合部24に残るガスも吸引され高分子電解質膜11に対して額縁状補強フィルム16及び燃料極側触媒層13を均一に接着することができる。   According to the present embodiment, since the electrode joint portion 24 that serves as a binding portion between the polymer electrolyte membrane 11 and the catalyst layer 13 is sucked during hot pressing, the polymer electrolyte membrane 11 and the frame-shaped reinforcing film 16 are not broken. It adheres without generating wrinkles, and the gas remaining in the electrode joint 24 is also sucked, so that the frame-shaped reinforcing film 16 and the fuel electrode side catalyst layer 13 can be uniformly bonded to the polymer electrolyte membrane 11.

本発明は、固体高分子型燃料電池又は直接メタノール型燃料電池の膜・電極接合体の製造方法に適用可能である。   The present invention is applicable to a method for producing a membrane / electrode assembly of a solid polymer fuel cell or a direct methanol fuel cell.

実施例1において一体化電極、電解質膜及び補強フィルムを冶具にセットした状態を示す模式図The schematic diagram which shows the state which set the integrated electrode, electrolyte membrane, and the reinforcement film in the jig in Example 1. 実施例1において作製された膜・電極接合体の模式的断面図Schematic cross-sectional view of the membrane-electrode assembly produced in Example 1 ホットプレス時に電極接合部の真空度を異ならせた各膜・電極接合体のセル電圧測定値を示す図The figure which shows the cell voltage measurement value of each membrane and electrode assembly in which the degree of vacuum of the electrode joint was varied during hot pressing 従来の膜・電極接合体の模式的断面図Schematic cross-sectional view of a conventional membrane / electrode assembly 従来の製造方法を適用して作製された膜・電極接合体の欠陥部を説明するための模式的断面図Schematic cross-sectional view for explaining a defective part of a membrane / electrode assembly produced by applying a conventional manufacturing method

符号の説明Explanation of symbols

10…膜・電極接合体、11…高分子電解質膜、12…空気極触媒層、13…燃料極触媒層、14…空気極拡散層、15…燃料極拡散層、16…補強フィルム、21a…上側治具、21b…下側治具、22a…上側冶具側壁、22b…下側冶具側壁、23a…プレス上板、23b…プレス下板、24…電極接合部、25a,25b…空気吸引用穴、26…真空ポンプ   DESCRIPTION OF SYMBOLS 10 ... Membrane electrode assembly, 11 ... Polymer electrolyte membrane, 12 ... Air electrode catalyst layer, 13 ... Fuel electrode catalyst layer, 14 ... Air electrode diffusion layer, 15 ... Fuel electrode diffusion layer, 16 ... Reinforcing film, 21a ... Upper jig, 21b ... Lower jig, 22a ... Upper jig sidewall, 22b ... Lower jig sidewall, 23a ... Press upper plate, 23b ... Press lower plate, 24 ... Electrode joint, 25a, 25b ... Air suction hole 26 ... Vacuum pump

Claims (5)

電解質膜の一方の主面に、当該一方の主面側から順に空気極触媒層と空気極拡散層が形成され、前記電解質膜の他方の主面に、当該他方の主面側から順に燃料極触媒層と燃料極拡散層が形成され、前記電解質膜のいずれかの主面と当該主面側に形成された前記空気極触媒層又は前記燃料極触媒層との接合面の外周縁部に薄板状の補強部材の一部が挟み込まれてなる膜・電極接合体の製造方法において、
前記電解質膜の一方の主面側に順に前記空気極触媒層及び前記空気極拡散層が配置され、前記電解質膜の他方の主面側に順に前記燃料極触媒層及び前記燃料極拡散層が配置され、前記電解質膜のいずれかの主面と当該主面側に形成された前記空気極触媒層又は前記燃料極触媒層との間に前記補強部材が配置されるように冶具にセットされ、これらをホットプレスで一体化する際に、前記電解質膜と当該電解質膜に接する前記空気極触媒層又は前記燃料極触媒層との間に残留するガスを吸引することを特徴とする膜・電極接合体の製造方法。
An air electrode catalyst layer and an air electrode diffusion layer are formed on one main surface of the electrolyte membrane in order from the one main surface side, and a fuel electrode is formed on the other main surface of the electrolyte membrane in order from the other main surface side. A catalyst layer and a fuel electrode diffusion layer are formed, and a thin plate is formed on the outer peripheral edge portion of the joint surface between one of the main surfaces of the electrolyte membrane and the air electrode catalyst layer or the fuel electrode catalyst layer formed on the main surface side. In the method for producing a membrane / electrode assembly in which a part of the shaped reinforcing member is sandwiched,
The air electrode catalyst layer and the air electrode diffusion layer are sequentially disposed on one main surface side of the electrolyte membrane, and the fuel electrode catalyst layer and the fuel electrode diffusion layer are sequentially disposed on the other main surface side of the electrolyte membrane. Are set on a jig so that the reinforcing member is disposed between any one of the electrolyte membranes and the air electrode catalyst layer or the fuel electrode catalyst layer formed on the principal surface side. The membrane / electrode assembly is characterized by sucking a gas remaining between the electrolyte membrane and the air electrode catalyst layer or the fuel electrode catalyst layer in contact with the electrolyte membrane when the components are integrated by hot pressing. Manufacturing method.
前記空気極触媒層及び前記空気極拡散層が一方の冶具にセットされ、前記燃料極触媒層及び前記燃料極拡散層が他方の冶具にセットされ、前記ホットプレス時に、前記一方の冶具から前記電解質膜と当該電解質膜に接する前記空気極触媒層との間に残留するガスを吸引し、かつ前記他方の冶具から前記電解質膜と当該電解質膜に接する前記燃料極触媒層との間に残留するガスを吸引することを特徴とする請求項1記載の膜・電極接合体の製造方法。 The air electrode catalyst layer and the air electrode diffusion layer are set in one jig, the fuel electrode catalyst layer and the fuel electrode diffusion layer are set in the other jig, and the electrolyte is transferred from the one jig to the electrolyte during the hot pressing. Gas that remains between the membrane and the air electrode catalyst layer in contact with the electrolyte membrane, and gas that remains between the electrolyte membrane and the fuel electrode catalyst layer in contact with the electrolyte membrane from the other jig The method for producing a membrane-electrode assembly according to claim 1, wherein 前記空気極触媒層及び前記空気極拡散層が一方の冶具にセットされ、前記燃料極触媒層及び前記燃料極拡散層が他方の冶具にセットされ、前記ホットプレス時に、前記一方の冶具から前記電解質膜と当該電解質膜に接する前記空気極触媒層との間に残留するガスを吸引し、又は前記他方の冶具から前記電解質膜と当該電解質膜に接する前記燃料極触媒層との間に残留するガスを吸引することを特徴とする請求項1記載の膜・電極接合体の製造方法。 The air electrode catalyst layer and the air electrode diffusion layer are set in one jig, the fuel electrode catalyst layer and the fuel electrode diffusion layer are set in the other jig, and the electrolyte is transferred from the one jig to the electrolyte during the hot pressing. Gas that remains between the membrane and the air electrode catalyst layer in contact with the electrolyte membrane, or gas that remains between the electrolyte membrane and the fuel electrode catalyst layer in contact with the electrolyte membrane from the other jig The method for producing a membrane-electrode assembly according to claim 1, wherein 前記ホットプレス時における前記電解質膜と当該電解質膜に接する前記空気極触媒層との間、及び又は前記電解質膜と当該電解質膜に接する前記燃料極触媒層との間の真空度を600mmHgより低くすることを特徴とする請求項1〜請求項3の何れかに記載の膜・電極接合体の製造方法。 The degree of vacuum between the electrolyte membrane and the air electrode catalyst layer in contact with the electrolyte membrane and / or between the electrolyte membrane and the fuel electrode catalyst layer in contact with the electrolyte membrane during the hot pressing is lower than 600 mmHg. The method for producing a membrane / electrode assembly according to any one of claims 1 to 3. 前記ホットプレス時における前記電解質膜と当該電解質膜に接する前記空気極触媒層との間、及び又は前記電解質膜と当該電解質膜に接する前記燃料極触媒層との間の真空度を300mmHgより低くすることを特徴とする請求項4記載の膜・電極接合体の製造方法。 The degree of vacuum between the electrolyte membrane and the air electrode catalyst layer in contact with the electrolyte membrane and / or between the electrolyte membrane and the fuel electrode catalyst layer in contact with the electrolyte membrane during the hot pressing is lower than 300 mmHg. The method for producing a membrane-electrode assembly according to claim 4.
JP2008010295A 2008-01-21 2008-01-21 Manufacturing method of fuel cell membrane / electrode assembly Expired - Fee Related JP5251139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010295A JP5251139B2 (en) 2008-01-21 2008-01-21 Manufacturing method of fuel cell membrane / electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010295A JP5251139B2 (en) 2008-01-21 2008-01-21 Manufacturing method of fuel cell membrane / electrode assembly

Publications (2)

Publication Number Publication Date
JP2009170382A JP2009170382A (en) 2009-07-30
JP5251139B2 true JP5251139B2 (en) 2013-07-31

Family

ID=40971309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010295A Expired - Fee Related JP5251139B2 (en) 2008-01-21 2008-01-21 Manufacturing method of fuel cell membrane / electrode assembly

Country Status (1)

Country Link
JP (1) JP5251139B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101773726B1 (en) 2014-03-14 2017-08-31 도요타지도샤가부시키가이샤 Method for manufacturing reinforced electrolyte film, method for manufacturing film electrode joining body, and film electrode joining body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6484294B2 (en) * 2017-06-26 2019-03-13 本田技研工業株式会社 Manufacturing method and manufacturing apparatus for electrolyte membrane / electrode structure
JP6848830B2 (en) * 2017-11-27 2021-03-24 トヨタ自動車株式会社 Fuel cell manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158690A (en) * 2003-10-27 2005-06-16 Mitsubishi Electric Corp Fuel cell and manufacturing method of same
JP2006269138A (en) * 2005-03-23 2006-10-05 Nissan Motor Co Ltd Joining method and device between solid polymer membrane and catalyst layer
JP2007250468A (en) * 2006-03-17 2007-09-27 Nissan Motor Co Ltd Electrolyte film
JP2008146833A (en) * 2006-12-05 2008-06-26 Mitsubishi Heavy Ind Ltd Joining method of mea, and press jig for mea joining

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101773726B1 (en) 2014-03-14 2017-08-31 도요타지도샤가부시키가이샤 Method for manufacturing reinforced electrolyte film, method for manufacturing film electrode joining body, and film electrode joining body

Also Published As

Publication number Publication date
JP2009170382A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP4420960B2 (en) Fuel cell and fuel cell layer
JP2009176573A (en) Method of manufacturing membrane-electrode assembly of fuel cell
JP5070817B2 (en) Membrane / electrode assembly of solid polymer electrolyte fuel cell and production method thereof
JP2001015127A (en) Electrolytic film/electrode bonded body and solid polyelectrolyte type fuel cell
JP5162884B2 (en) Solid polymer electrolyte fuel cell
JP5251139B2 (en) Manufacturing method of fuel cell membrane / electrode assembly
JP5239733B2 (en) Manufacturing method of membrane electrode assembly
JP2004247294A (en) Power generation element for fuel cell, its manufacturing method, and fuel cell using power generation element
JP4760027B2 (en) Method for producing membrane / electrode assembly of solid polymer electrolyte fuel cell
JP2002343377A (en) Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same
KR102169843B1 (en) Method of manufacturing membrane electrode assembly and laminate
KR101304700B1 (en) Hot pressing device for bonding membrane electrode assembly with a function of improved stability
KR102163539B1 (en) Membrane-electrode assembly, method for manufacturing the same, and fuel cell stack comprising the same
JP2007087728A (en) Laminate, method of manufacturing it, as well as fuel cell
JP2006107868A (en) Cell for fuel cell, its manufacturing method and fuel cell
JP5272571B2 (en) FUEL CELL MANUFACTURING METHOD AND FUEL CELL
JP3991283B2 (en) Storage method of polymer electrolyte membrane electrode assembly
JP5733182B2 (en) Manufacturing method of membrane electrode assembly
JP7307109B2 (en) Membrane electrode assembly with gas diffusion layer and manufacturing method thereof
KR101220740B1 (en) Solid oxide fuel cell separator comprising collector formed channel and method for manufacturing the same
JP2009026468A (en) Manufacturing method of membrane-gas diffusion electrode assembly
JP2008053167A (en) Manufacturing method of fuel cell
JP5889720B2 (en) Electrolyte membrane / electrode structure and manufacturing method thereof
JP2023031899A (en) Manufacturing method of composite body
JP2012084416A (en) Method for manufacturing fuel cell electrode

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees