JPH01154467A - Liquid fuel cell - Google Patents

Liquid fuel cell

Info

Publication number
JPH01154467A
JPH01154467A JP62311988A JP31198887A JPH01154467A JP H01154467 A JPH01154467 A JP H01154467A JP 62311988 A JP62311988 A JP 62311988A JP 31198887 A JP31198887 A JP 31198887A JP H01154467 A JPH01154467 A JP H01154467A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
liquid fuel
electrode
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62311988A
Other languages
Japanese (ja)
Inventor
Teruo Kumagai
熊谷 輝夫
Yuichi Kamo
友一 加茂
Sankichi Takahashi
燦吉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62311988A priority Critical patent/JPH01154467A/en
Publication of JPH01154467A publication Critical patent/JPH01154467A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To make a cell lightweight, to heighten cell voltage, and to lengthen the life by giving supply and exhaust functions of liquid fuel and oxidizing agent to electrodes and by combining them with impermeable separators. CONSTITUTION:Electrodes 1, 2 are formed by installing grooves 4 for supplying and exhausting fuel and oxidizing agent on the one side of a conductive porous substrate and applying a catalyst such as platinum onto its other side. An electrolyte 3 consists of an ion exchange membrane into which a sulfuric acid aqueous solution is impregnated. Separators 5 are flat plates comprising a mixture of expanded graphite and water repellent material. By using the electrodes 1, 2 having electrochemical reaction conducting parts and fuel and oxidizing agent supply and exhaust parts and the electrolyte impermeable separators 5, a cell is made compact and cell voltage is heightened, and the life is lengthened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液体燃料電池に係り、特に電極が電気化学的
反応部と燃料及び酸化剤を供給・排出する機能をかね備
えることにより、優れた電池特性や軽量化を有し、その
性質及びそれを用いて製造された液体燃料電池に関する
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a liquid fuel cell, and in particular, the present invention provides an excellent method for liquid fuel cells, in which the electrodes have both an electrochemical reaction part and a function of supplying and discharging fuel and oxidizing agent. The present invention relates to liquid fuel cells manufactured using the same, which have excellent battery characteristics and light weight.

〔従来の技術〕[Conventional technology]

燃料と酸化剤を供給することにより、燃料の有する化学
エネルギーを連続的に電気エネルギーに変換することが
可能である燃料電池は、その高効重性、無公害性等の長
所により新しい電源として注目されている。その中でも
、液体を燃流とするものは、燃料の取扱い性、電池の小
型化等により実用化が期待されている。この液体燃料電
池の単セルの構成の一例を第1図に示す、これを、複数
積層することによって電池が構成される。
Fuel cells, which are capable of continuously converting the chemical energy of fuel into electrical energy by supplying fuel and oxidizer, are attracting attention as a new power source due to their advantages such as high efficiency and non-pollution. has been done. Among these, those that use liquid as a fuel flow are expected to be put into practical use due to their ease of handling fuel, miniaturization of batteries, etc. An example of the structure of a single cell of this liquid fuel cell is shown in FIG. 1, and a battery is constructed by stacking a plurality of these cells.

すなわち、燃料極1、酸化剤極2とこの間にイオン導電
性を有する電解質3が位置し、それぞれの電極に液体燃
料及び酸化剤を供給・排出する溝4を有するセパレータ
5から構成されている。前述したように、電池は第1図
の単セルの繰り返しであって、セパレータ5を介して積
層される。従ってこのようなセパレータ5は、電極から
電気エネルギーを取り出す集電体のみならず、単セル間
を電気的に接続するインターコネクタであり、燃料と酸
化剤を分離するセパレータであって、かつ燃料と酸化剤
を供給してそれぞれの電極での反応生成物を排出する手
段でもある。このような機能を要求されることから、一
般的には、化学的、電気化学的安定性や経済性及び軽量
化等から炭素材料が多く使用されている。炭素材料を用
いた従来技術のセパレータとしては、大きくわけると炭
素ブロックを切削する機械加工によるものや金型等に入
れて加圧成形するものがある0機械加工品には、不浸透
化高密度黒鉛のものがある。これは、2000℃以上の
高温で黒鉛ブロックとし、切削後フェノール樹脂等を含
浸して、液体と気体の分離機能である不浸透化したもの
である。このため、生産性が悪く高価であるとともに、
硬質材料であるためにもろく機械的強度に問題があった
。また、高密度であるために重くなるという問題もある
That is, it is comprised of a fuel electrode 1, an oxidizer electrode 2, and an electrolyte 3 having ion conductivity located therebetween, and a separator 5 having grooves 4 for supplying and discharging liquid fuel and oxidizer to and from each electrode. As mentioned above, the battery is a repetition of the single cell shown in FIG. 1, and is stacked with the separator 5 in between. Therefore, such a separator 5 is not only a current collector that extracts electrical energy from an electrode, but also an interconnector that electrically connects unit cells, a separator that separates fuel and oxidizer, and a separator that separates fuel and oxidizer. It is also a means for supplying an oxidizing agent and discharging reaction products at each electrode. Since such functions are required, carbon materials are generally used in large numbers due to their chemical and electrochemical stability, economical efficiency, and light weight. Conventional separators using carbon materials can be roughly divided into those made by cutting a carbon block by mechanical processing, and those made by putting it in a mold and press-forming.Machined products include impermeable high-density separators. There are graphite ones. This is made into a graphite block at a high temperature of 2000° C. or higher, and after cutting, it is impregnated with phenol resin or the like to make it impermeable, which serves to separate liquids and gases. For this reason, productivity is low and it is expensive.
Since it is a hard material, it is brittle and has problems with mechanical strength. Another problem is that it is heavy due to its high density.

生産性のよい加圧成形するものとしては、炭素粉末と熱
硬化性樹脂で成形する樹脂モールドのものがある。これ
は、製造が簡単で安価であり緻密であり不浸透性に優れ
ているものの5機械的強度及び電気抵抗(電極との接触
抵抗も含む)が高い等の問題がある。また、経済性、軽
量化等から炭素材料に膨張黒鉛を使用したものがある。
One example of pressure molding with good productivity is a resin mold made of carbon powder and thermosetting resin. Although this material is easy to manufacture, inexpensive, dense, and has excellent impermeability, it has problems such as high mechanical strength and high electrical resistance (including contact resistance with electrodes). In addition, some use expanded graphite as the carbon material for reasons of economy and weight reduction.

(特開昭59−27476号)膨張黒鉛のものは、可撓
性・弾力性を有しており、積層した場合に接する他の部
材との接触がよく、接触抵抗が小さく良好である。
(Japanese Patent Laid-Open No. 59-27476) Expanded graphite has flexibility and elasticity, and when laminated, it makes good contact with other members and has low contact resistance.

しかし、前記したものに比べて緻密性・均一性に問題が
あり、液体燃料、電解液等の吸収及び燃料と酸化剤の透
過等1分離機能が十分とは言えない。
However, it has problems in density and uniformity compared to those described above, and cannot be said to have sufficient separation functions such as absorption of liquid fuel, electrolyte, etc., and permeation of fuel and oxidizer.

この問題点を改善するために、表面に撥水性物質をコー
ティングしたり、撥水性物質と膨張黒鉛を混合する提案
がある。(特願昭61−96785号)この提案は、液
の不浸透には良好であるが、撥水性物質を含むことから
、含まないものより重量が重くなる。また、平板では良
好であるが第1図に示すような溝を有する構造のものに
おいては、低密度にして軽量化を図ろうとすると緻密・
均一性が不十分でピンホールの存在するなど液不浸透性
に問題がある。
In order to improve this problem, there are proposals to coat the surface with a water-repellent material or to mix the water-repellent material with expanded graphite. (Japanese Patent Application No. 61-96785) Although this proposal is good for liquid impermeability, since it contains a water-repellent substance, it is heavier than one that does not contain it. In addition, although it is good for flat plates, when it comes to structures with grooves as shown in Figure 1, when trying to reduce the density and weight,
There are problems with liquid impermeability, such as insufficient uniformity and the presence of pinholes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように、電池の軽量化と液不浸透性(気−液の分
離機能)の両方を満足することは難しい問題であった。
As described above, it has been a difficult problem to satisfy both the weight reduction and liquid impermeability (gas-liquid separation function) of the battery.

本発明の目的は、軽量化及び気−液の分離機能を改善し
、これにより電池の軽量化、電池電圧の向上、長寿命化
が図られる液体燃料電池を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid fuel cell that is lighter in weight and has an improved gas-liquid separation function, thereby reducing the weight of the battery, improving the battery voltage, and extending the life of the battery.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、前記したセパレータのものより軽量である
電極に液体燃料及び酸化剤の供給・排出する機能を備え
ることにより軽量化が、またこれと平板のセパレータと
組み合わせることにより不浸透性も達成される。
The above purpose is to reduce weight by equipping the electrode, which is lighter than the separator described above, with the function of supplying and discharging liquid fuel and oxidizing agent, and to achieve impermeability by combining this with a flat separator. Ru.

〔作用〕[Effect]

ここでは、電解液に硫酸を使用し、液体燃料としてメタ
ノールを用いるメタノール燃料電池の特性を詳しく述べ
て本発明を説明する。
Here, the present invention will be explained by detailing the characteristics of a methanol fuel cell that uses sulfuric acid as an electrolyte and methanol as a liquid fuel.

本発明は、例えば第2図のように、単セルが構成される
。電極は1片面に燃料及び酸化剤の供給・排気の機能を
有する溝4を備えた導電性の多孔質基材のもう片面に、
例えば白金を担持した触媒を塗布結着したもの、電解質
3は硫酸水溶液を含浸したイオン交換膜から成っている
。また、セパレータ5は、膨張黒鉛を用いている。メタ
ノール燃料電池の電極での反応は、それぞれ 燃料極:CHaoH十H20→6H++CCh+6 Q
  −(1)酸化剤極: 6H++3/20z+6Q→
3H20・・・(2)と進行する。酸化剤極では水が生
成する反応が進行することから、生成した水を電極から
排出するとともに、酸化剤が拡散が律速にならない程度
の撥水性が必要である。従来の電極(第1図平板型)に
おいては、触媒層の撥水性は燃料極及び空気極とも10
wt%〜50wt%のポリテトラフルオロエチレン(以
下PTFEと記する)量、望ましくは燃料極20〜30
wt%、酸化剤極30〜40wt%PTFEにおいて優
れた電極性能を示すことがわかっている。そこで1本発
明の片面に溝を有する電極基材のPTFE量と電極性能
を調べた。その結果として、第3図に燃料極、第4図に
酸化剤極のそれぞれの単極性能を示す、第3図からPT
FE量は50wt%以下において良好な性能を示すこと
がわかる。第4図からPTFE量10〜50wt%で高
い酸化剤極性能を示す0以上から、電極の強度を考慮し
、基材のPTFE量は、10〜50wt%、望ましくは
20〜40wt%において良好な単極特性が得られろこ
とがわかる。
In the present invention, a single cell is configured as shown in FIG. 2, for example. The electrode is made of a conductive porous substrate having grooves 4 on one side for supplying and exhausting fuel and oxidizing agent, and on the other side,
For example, the electrolyte 3 is made of an ion exchange membrane impregnated with an aqueous sulfuric acid solution. Further, the separator 5 uses expanded graphite. The reactions at the electrodes of a methanol fuel cell are as follows: Fuel electrode: CHaoH + H20 → 6H++CCh+6 Q
-(1) Oxidizer electrode: 6H++3/20z+6Q→
3H20...(2) and so on. Since the reaction that produces water proceeds at the oxidizing agent electrode, the produced water must be discharged from the electrode, and the oxidizing agent must have water repellency to the extent that diffusion does not become rate-limiting. In the conventional electrode (flat plate type in Figure 1), the water repellency of the catalyst layer is 10 for both the fuel electrode and the air electrode.
Amount of polytetrafluoroethylene (hereinafter referred to as PTFE) of wt% to 50 wt%, preferably 20 to 30% of the fuel electrode
It has been found that excellent electrode performance is exhibited in 30 to 40 wt% PTFE as an oxidizer electrode. Therefore, the amount of PTFE and electrode performance of the electrode base material having grooves on one side of the present invention were investigated. As a result, Fig. 3 shows the monopolar performance of the fuel electrode, and Fig. 4 shows the monopolar performance of the oxidizer electrode.
It can be seen that good performance is exhibited when the amount of FE is 50 wt% or less. From Fig. 4, PTFE content of 10 to 50 wt% indicates high oxidizing agent electrode performance. Considering the strength of the electrode, the PTFE content of the base material should be 10 to 50 wt%, preferably 20 to 40 wt%. It can be seen that unipolar characteristics can be obtained.

セパレータは、平板型を用い、膨張黒鉛及び撥水性物質
の混合物から成っている。これは、膨張黒鉛を30〜3
00 kg/aJのプレス圧力でシート状成形体(ラミ
ネートシート)にする工程で膨張黒鉛粉末のほかに撥水
物質としてPTFEあるいはフッ化炭素を10〜50w
t%添加し、次に、このラミネートシートを複数枚重ね
て100〜500 kg/adのプレス圧で成形体とし
たものである。このセパレータの硫酸水溶液での液透過
量を測定したところ、100時間後で0.01ma/a
#と液透過が実質的に零であった。そのほかの、不浸透
化炭素物質(樹脂モールド、不浸透高密度黒鉛等)の適
用も可能である。
The separator is of a flat plate type and is made of a mixture of expanded graphite and a water-repellent material. This is expanded graphite from 30 to 3
In addition to expanded graphite powder, 10 to 50 w of PTFE or fluorocarbon is added as a water repellent material in the process of forming a sheet-like molded product (laminate sheet) with a press pressure of 0.00 kg/aJ.
t% is added, and then a plurality of these laminate sheets are stacked and pressed under a press pressure of 100 to 500 kg/ad to form a molded product. When we measured the amount of liquid permeation through this separator with an aqueous sulfuric acid solution, it was found to be 0.01 ma/a after 100 hours.
# and liquid permeation were substantially zero. Other impermeable carbon materials (resin mold, impermeable high-density graphite, etc.) can also be applied.

本発明の適用が可能な燃料電池は、燃料にメタノール、
ホルマリン、ギ酸等の液体燃料を用いるものや水素及び
水素含有ガス等の気体燃料を用いるものがある。気体燃
料を用いるものについては、リン酸を電解液とするもの
においての提案(特開昭59−154771号)がある
A fuel cell to which the present invention can be applied uses methanol as a fuel,
Some use liquid fuels such as formalin and formic acid, and others use gaseous fuels such as hydrogen and hydrogen-containing gas. Regarding those using gaseous fuel, there is a proposal for using phosphoric acid as an electrolyte (Japanese Patent Laid-Open No. 154771/1983).

液体燃料を使用する燃料電池においては、本発明に類似
の提案はみあたらない。
No proposal similar to the present invention has been found in fuel cells that use liquid fuel.

このように本発明は、液体燃料を使用する燃料電池にお
いて、電極に電気化学的反応部と燃料・縁化剤の供給・
排出機能をかね備えさせ、成年浸透なセパレータを用い
ることにより、電池が軽量化、電池電圧の向上、長寿命
化を図ることができる。
In this way, the present invention provides a fuel cell using liquid fuel, in which an electrochemical reaction part is provided at the electrode, and fuel and edging agent are supplied and
By using a separator that has a discharge function and is permeable to adults, it is possible to reduce the weight of the battery, improve the battery voltage, and extend the life of the battery.

〔実施例〕〔Example〕

以下、本発明を実施例により説明するが、以下の実施例
に制約されるものではない。
Hereinafter, the present invention will be explained by examples, but the present invention is not limited to the following examples.

〈実施例−1〉 片面が平面で、もう片面に深さ2■、巾3IIllの溝
を3am間融に備えた厚さ4閣で100X120■のカ
ーボン基材(密度0.4g/a1)に、ポリテトラフル
オロエチレン液(PTFE、ポリフロンデイスパージョ
ンD−1=ダイキン製)を、PTFEとして40wt%
になるように含浸し、乾燥後、380℃で15分焼成し
た。
<Example-1> A 100×120mm carbon base material (density 0.4g/a1) with a thickness of 4 mm and a flat surface on one side and a groove with a depth of 2cm and a width of 3mm on the other side. , polytetrafluoroethylene liquid (PTFE, Polyflon Dispersion D-1 = manufactured by Daikin) was 40 wt% as PTFE.
After drying, it was baked at 380°C for 15 minutes.

この平面側に、炭素粉末(ファーネスブラック:キャボ
ット社)に白金とルテニウムとして50wt%担持した
触媒粉末1.15gにポリフロンデイスパージョンD1
と水を混合し、PTFEとして25wt%のペーストを
得、これを均一に塗布する0次に、乾燥後、280℃で
1時間焼成して燃料極1を得た。
On this flat side, 1.15 g of catalyst powder, in which 50 wt% of platinum and ruthenium were supported on carbon powder (Furnace Black: Cabot Corporation), was coated with Polyflon dispersion D1.
and water to obtain a paste of 25 wt % as PTFE, which was uniformly applied. After drying, it was fired at 280° C. for 1 hour to obtain fuel electrode 1.

更に、炭素粉末に白金として30wt%担持した触媒粉
末を0.77gとり、ポリフロンデイスパージョンD1
と水を加えて混合し、PTFEとして35wt%のペー
ストを、前記カーボン基材の平面側に均一に塗布し、乾
燥後、280℃で1時間焼成し酸化剤極2を得た。
Furthermore, 0.77 g of catalyst powder in which 30 wt% of platinum was supported on carbon powder was taken, and polyflon dispersion D1 was prepared.
A paste containing 35 wt % of PTFE was uniformly applied to the flat side of the carbon base material, dried, and then baked at 280° C. for 1 hour to obtain an oxidizer electrode 2.

次に、膨張黒鉛粉末とポリフロンデイスパージョンD1
を用いて、膨張黒鉛(80wt%)とPTFEとして2
0wt%を均一に混合し、370℃の温度条件でプレス
成形して厚さ3閣程度のラミネートシートを得、さらに
これを5枚積層して150kg/cdのプレス圧力で成
形し、平板状のセパレータA(110X114nn)を
得た。
Next, expanded graphite powder and polyflon dispersion D1
2 as expanded graphite (80 wt%) and PTFE.
0 wt% was mixed uniformly and press-formed at a temperature of 370°C to obtain a laminate sheet with a thickness of about 3 cm.Furthermore, 5 sheets of this were laminated and molded at a press pressure of 150 kg/cd to form a flat plate. Separator A (110×114 nn) was obtained.

第2図に示した単セルを構成を考慮し、燃料極1、酸化
剤極2そしてセパレータA(2枚)の合計の重量を測定
した。その重量は72.8gであった。
Considering the configuration of the single cell shown in FIG. 2, the total weight of fuel electrode 1, oxidizer electrode 2, and separator A (two sheets) was measured. Its weight was 72.8g.

く比較例−1〉 両面が平面の厚み0.45nnのカーボンベーパ(E−
715:呉羽化学製)100X120mを。
Comparative Example-1> Carbon vapor (E-
715: Kureha Chemical) 100X120m.

PTFE4+’tで40wt%になるよう実施例−1と
同様に撥水化する。以下、実施例−1と同様に燃料極と
酸化剤様を得た。それぞれ、燃料極3、酸化剤極4とす
る。
Water repellency was made using PTFE4+'t to a content of 40 wt% in the same manner as in Example-1. Thereafter, a fuel electrode and an oxidizer were obtained in the same manner as in Example-1. They are respectively referred to as a fuel electrode 3 and an oxidizer electrode 4.

セパレータは、ラミネートシートを15枚積層及び形状
が第1図のタイプであり表裏に平向流タイプの溝がそれ
ぞれ20列あるものである。これをセパレータBとする
The separator was made by laminating 15 laminate sheets and had the shape shown in FIG. 1, with 20 rows of horizontal counterflow type grooves on each of the front and back sides. This will be referred to as separator B.

第1図の単セルの構成を考慮し、燃料f42.酸化剤極
3及びセパレータB (2枚)の合計の重量を測定した
。その重量は113.8gであった。
Considering the configuration of the single cell shown in FIG. 1, the fuel f42. The total weight of oxidizer electrode 3 and separator B (two sheets) was measured. Its weight was 113.8g.

〈実施例−2〉 燃料極1と酸化剤極2を用い、電極間に電解質として3
 m o n / Q硫酸水溶液を保持したイオン交換
膜(CMV:M硝子層)を介在させ、セパレータAを使
用し、第2図タイプの単セル(1)を構成した。単セル
(1)の電流密度−電圧(i −V)特性を測定した結
果を第5図(1)に示す。
<Example-2> Using fuel electrode 1 and oxidizer electrode 2, 3 was used as an electrolyte between the electrodes.
A single cell (1) of the type shown in Fig. 2 was constructed using a separator A with an ion exchange membrane (CMV: M glass layer) holding an aqueous solution of mon/Q sulfuric acid interposed therebetween. The results of measuring the current density-voltage (i-V) characteristics of the single cell (1) are shown in FIG. 5 (1).

測定条件は、燃料としてアノライト(1mon/Qメタ
ノール+1.5moQ/Q硫酸水溶液)2Qを500m
Q/m1nf循環させ、酸化剤としては空気を1rnQ
/rninで供給した。電池温度は60℃一定とした。
The measurement conditions were 2Q of anolite (1 mon/Q methanol + 1.5 moQ/Q sulfuric acid aqueous solution) as fuel at 500 m
Q/m1nf is circulated, and air is used as an oxidizing agent at 1rnQ.
/rnin. The battery temperature was kept constant at 60°C.

〈比較例−2〉 燃料極3と酸化剤極4及びセパレータBを用いる以外は
実施例−2と同様に第1図タイプの単セル(■)を構成
し、i−V特性を測定した。その結果を、第5図(II
)に示す。
<Comparative Example-2> A single cell of the type shown in FIG. The results are shown in Figure 5 (II
).

〈実施例−3及び比較例−3〉 燃料極1、酸化剤極2、セパレータAを用いた単セル(
1)を33セル積層した電池(m)及び燃料極3酸化剤
極4.セパレータBを用いた単セル(II)を33セル
積層した電池(IV)を構成し、電流密度60 m A
 / alにおける電池の1000時間の連続運転を行
なった。出力電力と運転時間の関係を第6図(m) 、
  (IV)に示す、運転条件は、7ノライト(1mo
Q/Qメタノール+1.5mo Q / Q硫酸水溶液
)1.59を電池に循環供給し、メタ ・ノール濃度を
1 m o Q / Q±0,3moQ/Qになるよう
、また液面は±5%になるように調整し。
<Example-3 and Comparative Example-3> Single cell using fuel electrode 1, oxidizer electrode 2, and separator A (
A battery (m) consisting of 33 stacked cells of 1), 3 fuel electrodes, 3 oxidizer electrodes, and 4. A battery (IV) is constructed by stacking 33 single cells (II) using separator B, and the current density is 60 mA.
The battery was operated continuously for 1000 hours at /al. The relationship between output power and operating time is shown in Figure 6 (m).
The operating conditions shown in (IV) are 7nolite (1mo
Circulate Q/Q methanol + 1.5mo Q/Q sulfuric acid aqueous solution) 1.59 to the battery, adjust the methanol concentration to 1moQ/Q±0,3moQ/Q, and keep the liquid level at ±5. Adjust it so that it is %.

空気はファンにより供給した。電池温度は55±2℃で
あった。
Air was supplied by a fan. Battery temperature was 55±2°C.

また、電池の重量を比較したところ、電池(m)は電池
(IV)の63%であった。
Further, when the weights of the batteries were compared, the weight of the battery (m) was 63% of that of the battery (IV).

〔発明の効果〕〔Effect of the invention〕

本発明による電極に電気化学的反応層と気・液の供給・
排出機能をかね備え、平板のセパレータと組み合せて電
池を構成することによって、次のような効果がある。
The electrode according to the present invention has an electrochemical reaction layer and gas/liquid supply/
By configuring a battery that also has a discharge function and is combined with a flat separator, the following effects can be achieved.

(1)電池構成部材が軽く、電池を軽量化できる。(1) The battery components are light, and the battery can be made lighter.

(2)生産性のよく安価なセパレータ材料(膨張黒鉛、
樹脂モールド黒鉛を使用でき、平板タイプであることか
ら成年浸透性も良好である・・・(電池電圧の向上、長
寿命化)。
(2) Highly productive and inexpensive separator materials (expanded graphite,
Resin-molded graphite can be used, and since it is a flat plate type, it has good permeability to adults (improved battery voltage and extended life).

(3)膨張黒鉛を用いる場合は、セパレータ及び電極と
も可撓性を有していることから接触抵抗が小さい・・・
(電池電圧の向上、長寿命化)。
(3) When using expanded graphite, the contact resistance is low because both the separator and the electrode are flexible.
(Improved battery voltage, longer life).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料電池の単セル構成図、第2図は本発明の単
セル構成図、第3図は燃料極の基材PTFE量と電位図
、第4図は酸化剤極の基材PTFE量と電位図、第5図
は単セルの電流密度−電圧特性図、第6図は33セル積
層電池の連続運転図である。 1・・・燃料極、2・・・酸化剤極、3・・・電解質、
4・・・溝、5・・・セパレータ。 第 +12] 第2図 第 3 図 芥27  F’丁F4  量  (wt Z)芥 4□
□□ −J!材MFh量  (wt%) 第 5図 電うL化度 (−/C互り
Figure 1 is a configuration diagram of a single cell of a fuel cell, Figure 2 is a configuration diagram of a single cell of the present invention, Figure 3 is the amount and potential diagram of the base material PTFE of the fuel electrode, and Figure 4 is the diagram of the base material PTFE of the oxidizer electrode. Fig. 5 is a current density-voltage characteristic diagram of a single cell, and Fig. 6 is a continuous operation diagram of a 33-cell stacked battery. 1... Fuel electrode, 2... Oxidizer electrode, 3... Electrolyte,
4...Groove, 5...Separator. +12] Figure 2 Figure 3 Figure 27 F' F4 Quantity (wt Z) 4□
□□ -J! Material MFh amount (wt%) Figure 5 L degree of electric current (-/C mutually

Claims (1)

【特許請求の範囲】 1、電解質を挟んで配置された一対の電極を有する単セ
ルを、セパレータを介して複数個積層した燃料電池にお
いて、前記電極が導電性材料と撥水性物質の混合物を基
材とし、その片面が導電性材料と撥水性物質及び1種以
上の白金属元素を含む電気化学的反応層と、もう片面が
燃料及び酸化剤を供給・排出する溝の構造を1つ以上有
することを特徴とする液体燃料電池。 2、前記電解質が、電解液を保有したイオン交換膜から
成ることを特徴とした特許請求の範囲第1項記載の液体
燃料電池。 3、前記セパレータが、平板であり膨張黒鉛と撥水性物
質の混合物を加圧成形したもの又は不浸透化炭素物質か
ら成ることを特徴とする特許請求の範囲第1項記載の液
体燃料電池。 4、前記導電性材料が、炭素基材及び/あるいは炭素担
体からなることを特徴とする特許請求の範囲第1項記載
の液体燃料電池。 5、前記撥水性物質が、フッ素樹脂又はフッ化炭素のう
ち1種以上であることを特徴とする特許請求の範囲第1
項又は第3項記載の液体燃料電池。 6、前記撥水性物質の混合量が10〜50wt%である
ことを特徴とする特許請求の範囲第1項又は第3項記載
の液体燃料電池。
[Claims] 1. A fuel cell in which a plurality of single cells each having a pair of electrodes arranged with an electrolyte sandwiched therein are stacked with a separator in between, wherein the electrodes are based on a mixture of a conductive material and a water-repellent substance. One side has an electrochemical reaction layer containing a conductive material, a water repellent substance, and one or more white metal elements, and the other side has one or more groove structures for supplying and discharging fuel and oxidizing agent. A liquid fuel cell characterized by: 2. The liquid fuel cell according to claim 1, wherein the electrolyte comprises an ion exchange membrane containing an electrolytic solution. 3. The liquid fuel cell according to claim 1, wherein the separator is a flat plate made of a pressure-molded mixture of expanded graphite and a water-repellent material or an impermeable carbon material. 4. The liquid fuel cell according to claim 1, wherein the conductive material comprises a carbon base material and/or a carbon carrier. 5. Claim 1, wherein the water-repellent substance is one or more of fluororesin and fluorocarbon.
The liquid fuel cell according to item 1 or 3. 6. The liquid fuel cell according to claim 1 or 3, wherein the amount of the water-repellent substance mixed is 10 to 50 wt%.
JP62311988A 1987-12-11 1987-12-11 Liquid fuel cell Pending JPH01154467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62311988A JPH01154467A (en) 1987-12-11 1987-12-11 Liquid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62311988A JPH01154467A (en) 1987-12-11 1987-12-11 Liquid fuel cell

Publications (1)

Publication Number Publication Date
JPH01154467A true JPH01154467A (en) 1989-06-16

Family

ID=18023849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62311988A Pending JPH01154467A (en) 1987-12-11 1987-12-11 Liquid fuel cell

Country Status (1)

Country Link
JP (1) JPH01154467A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002612A1 (en) * 1995-07-05 1997-01-23 Nisshinbo Industries, Inc. Separator for fuel cells of solid polyelectrolyte type and processes of the production thereof
EP0778631A1 (en) * 1995-12-06 1997-06-11 Honda Giken Kogyo Kabushiki Kaisha Direct methanol type fuel cell
KR100308605B1 (en) * 1993-04-30 2001-11-30 미켈 테타만티 Electrochemical cell consisting of ion exchange membrane and bipolar metal plate
WO2003099711A1 (en) * 2002-05-27 2003-12-04 Sony Corporation Fuel reformer and method of manufacturing the fuel reformer, electrode for electrochemical device, and electrochemical device
WO2007086404A1 (en) * 2006-01-25 2007-08-02 Dic Corporation Fuel cell separator, process for producing the same, and fuel cell including the separator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308605B1 (en) * 1993-04-30 2001-11-30 미켈 테타만티 Electrochemical cell consisting of ion exchange membrane and bipolar metal plate
WO1997002612A1 (en) * 1995-07-05 1997-01-23 Nisshinbo Industries, Inc. Separator for fuel cells of solid polyelectrolyte type and processes of the production thereof
EP0778631A1 (en) * 1995-12-06 1997-06-11 Honda Giken Kogyo Kabushiki Kaisha Direct methanol type fuel cell
EP0978892A3 (en) * 1995-12-06 2001-06-27 Honda Giken Kogyo Kabushiki Kaisha Direct methanol type fuel cell
WO2003099711A1 (en) * 2002-05-27 2003-12-04 Sony Corporation Fuel reformer and method of manufacturing the fuel reformer, electrode for electrochemical device, and electrochemical device
US7942944B2 (en) 2002-05-27 2011-05-17 Sony Corporation Fuel reformer and method for producing the same, electrode for use in electrochemical device, and electrochemical device
US8882864B2 (en) 2002-05-27 2014-11-11 Sony Corporation Fuel reformer including a two layer integrated article
WO2007086404A1 (en) * 2006-01-25 2007-08-02 Dic Corporation Fuel cell separator, process for producing the same, and fuel cell including the separator
US7704624B2 (en) 2006-01-25 2010-04-27 Dic Corporation Fuel cell bipolar plate, process for producing the same, and fuel cell including the bipolar plate

Similar Documents

Publication Publication Date Title
JPH10302812A (en) Solid oxide fuel cell stack having composite electrode and production thereof
JP3755840B2 (en) Electrode for polymer electrolyte fuel cell
JP2001057218A (en) Solid polymer type fuel cell and manufacture thereof
KR100599667B1 (en) Separator for fuel cell using the metal coated with TiN, method to prepare thereit, and polymer electrolyte membrane fuel cell comprising the same
JP3448550B2 (en) Polymer electrolyte fuel cell stack
JPH07326363A (en) Ion conductivity imparting electrode and jointing material for electrode and electrolyte and cell using the ion conductivity imparting electrode
JPH06231781A (en) Solid high polymer electrolytic type fuel cell
CN1697222A (en) Fuel cell
US4461813A (en) Electrochemical power generator
JPH01154467A (en) Liquid fuel cell
JP2001307749A (en) Solid polymer fuel battery and stack of the same
JP2002170581A (en) Polymer electrolyte type fuel battery
JPH05315000A (en) Polymer solid electrolyte-type fuel cell
US8460840B2 (en) Separator for fuel cell and fuel cell comprising the same
JP2948453B2 (en) Solid oxide fuel cell
JPH0479163A (en) Solid electrolyte type fuel cell
JPH05151979A (en) Solid electrolyte fuel cell
JP2003142121A (en) Solid high polymer type fuel cell
JP2004349013A (en) Fuel cell stack
JPS6398965A (en) Fuel cell
JPH0346951B2 (en)
JPS59154771A (en) Fuel cell
JP2008270019A (en) Fuel cell and jointed body for fuel cell
JPS62254363A (en) Fuel cell
JPS61253769A (en) Fuel cell