JP2003272672A - Electrolyte membrane electrode jointed body and its manufacturing method and fuel cell using the same - Google Patents

Electrolyte membrane electrode jointed body and its manufacturing method and fuel cell using the same

Info

Publication number
JP2003272672A
JP2003272672A JP2002075576A JP2002075576A JP2003272672A JP 2003272672 A JP2003272672 A JP 2003272672A JP 2002075576 A JP2002075576 A JP 2002075576A JP 2002075576 A JP2002075576 A JP 2002075576A JP 2003272672 A JP2003272672 A JP 2003272672A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
membrane electrode
electrode assembly
resin
sulfonated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002075576A
Other languages
Japanese (ja)
Other versions
JP4043264B2 (en
Inventor
Takehiko Onomi
毅彦 尾身
Shigeharu Fujii
重治 藤井
Masaji Tamai
正司 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002075576A priority Critical patent/JP4043264B2/en
Publication of JP2003272672A publication Critical patent/JP2003272672A/en
Application granted granted Critical
Publication of JP4043264B2 publication Critical patent/JP4043264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte membrane electrode jointed body that secures adhesion when a plurality of different materials are compounded to an electrolyte membrane or a polymer electrolyte and used for the electrolyte membrane electrode jointed body in accordance with the usage and function of a fuel cell. <P>SOLUTION: In this electrolyte membrane electrode jointed body, the electrolyte membrane and the electrode are jointed in a state of being dipped in or exposed to, beforehand, a substance that exists in the environment where they are actually used. It is desirable that the ion conductive substance contained in the electrolyte membrane electrode joint body is made of substances of two or more kinds. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電解質膜電極接合
体、その製造方法およびそれを用いた燃料電池に関し、
さらに詳しくは、水素、水、アルコールなどを燃料に用
いる燃料電池などに適用できる電解質膜電極接合体に関
する。
TECHNICAL FIELD The present invention relates to an electrolyte membrane electrode assembly, a method for producing the same, and a fuel cell using the same,
More specifically, the present invention relates to an electrolyte membrane electrode assembly applicable to a fuel cell using hydrogen, water, alcohol, etc. as a fuel.

【0002】[0002]

【従来の技術】近年、環境問題の点から新エネルギー蓄
電あるいは発電素子が社会で強く求められてきている。
燃料電池もその1つとして注目されており、低公害、高
効率という特徴から最も期待される発電素子である。燃
料電池とは、水素やメタノール等の燃料を酸素または空
気を用いて電気化学的に酸化することにより、燃料の化
学エネルギーを電気エネルギーに変換して取り出すもの
である。
2. Description of the Related Art In recent years, new energy storage or power generation elements have been strongly demanded in society from the viewpoint of environmental problems.
Fuel cells are also attracting attention as one of them, and are the most promising power generation elements because of their characteristics of low pollution and high efficiency. A fuel cell is a cell in which a fuel such as hydrogen or methanol is electrochemically oxidized using oxygen or air to convert the chemical energy of the fuel into electric energy and to extract it.

【0003】このような燃料電池は、用いる電解質の種
類によって、りん酸型、溶融炭酸塩型、固体酸化物型お
よび高分子電解質型に分類される。りん酸型燃料電池
は、すでに電力用に実用化されている。しかし、りん酸
型燃料電池は高温(200℃前後)で作用させる必要が
あり、そのため起動時間が長く、システムの小型化が困
難であること、また、りん酸のプロトン伝導度が低いた
めに大きな電流を取り出せないという欠点を有してい
た。
Such fuel cells are classified into phosphoric acid type, molten carbonate type, solid oxide type and polymer electrolyte type depending on the type of electrolyte used. Phosphoric acid fuel cells have already been put to practical use for electric power. However, the phosphoric acid fuel cell needs to be operated at a high temperature (around 200 ° C.), so that the startup time is long, it is difficult to downsize the system, and the proton conductivity of phosphoric acid is low. It has a drawback that it cannot take out an electric current.

【0004】これに対して、高分子型燃料電池は操作温
度が、最高で約80〜100℃程度である。また、用い
る電解質膜を薄くすることによって燃料電池内の内部抵
抗を低減できるため高電流で操作でき、そのため小型化
が可能である。このような利点から高分子型燃料電池の
研究が盛んになってきている。
On the other hand, the operating temperature of the polymer fuel cell is about 80 to 100 ° C. at the maximum. Further, since the internal resistance in the fuel cell can be reduced by thinning the electrolyte membrane used, it is possible to operate at a high current, and therefore the size can be reduced. Due to these advantages, research on polymer fuel cells has been actively conducted.

【0005】この高分子型燃料電池に用いる電解質膜電
極接合体は、電解質膜の両面に、白金等の触媒をイオン
伝導性の結着剤でカーボンペーパーに固定した電極が接
合されている。この接合物をセパレーターで挟んで燃料
電池としている。この接合体には実際に使用される発電
状態で接着部が剥がれない程度の接着力が必要である。
接着力が弱いと十分な出力が取り出せない場合がある。
燃料電池の用途や機能に応じて電解質膜や結着剤に複数
の異なる材料を複合化して用いる場合、この接着力が確
保できず剥離するという問題があった。
In the electrolyte membrane electrode assembly used in this polymer electrolyte fuel cell, electrodes in which a catalyst such as platinum is fixed to carbon paper with an ion conductive binder are joined to both surfaces of the electrolyte membrane. The joined product is sandwiched between separators to form a fuel cell. This bonded body needs an adhesive strength such that the bonded portion does not peel off in the actually used power generation state.
If the adhesive strength is weak, sufficient output may not be obtained.
When a composite of a plurality of different materials is used for the electrolyte membrane and the binder depending on the application and function of the fuel cell, there is a problem that the adhesive force cannot be secured and peeling occurs.

【0006】[0006]

【発明が解決しようとする課題】本発明はこのような従
来技術が持つ問題を解決しようとするものである。すな
わち、燃料電池の用途や機能に応じて、電解質膜や高分
子電解質に異なる複数の材料を複合化し電解質膜電極接
合体に用いる場合に、この接着力を確保することを目的
としている。
SUMMARY OF THE INVENTION The present invention is intended to solve the problems of the prior art. That is, the purpose is to ensure this adhesive force when a plurality of different materials are mixed into the electrolyte membrane and the polymer electrolyte and used for the electrolyte membrane electrode assembly according to the application and function of the fuel cell.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため鋭意検討を進めた結果、電解質膜電極接
合体には、実際に使用される環境において、環境中に存
在する燃料や反応生成物などの物質が、該接合体に含ま
れるイオン伝導性物質に浸透する際の膨張乃至収縮によ
り応力を生じ、その応力により電解質膜電極接合体が電
解質膜と電極に剥離することを見出した。そこで、該電
解質膜並びに電極をそれらが実際に使用される環境に存
在する物質にあらかじめ浸漬あるいは暴露した状態で接
合することにより、実使用時に生じる応力を低減し、よ
り接着力を向上した電解質膜電極接合体を見出し、本発
明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that the electrolyte membrane electrode assembly has a fuel existing in the environment in which it is actually used. A substance such as a reaction product or a reaction product causes stress due to expansion or contraction when permeating the ion conductive substance contained in the bonded body, and the stress causes the electrolyte membrane electrode assembly to be separated from the electrolyte membrane and the electrode. I found it. Therefore, the electrolyte membrane and the electrode are joined by being immersed in or exposed to a substance existing in the environment in which they are actually used, to reduce the stress generated during actual use and to improve the adhesive strength. The inventors have found an electrode assembly and completed the present invention.

【0008】本発明の電解質膜電極接合体は、電解質膜
及び電極を、それらが実際に使用される環境に存在する
物質にあらかじめ浸漬あるいは暴露した状態で接合され
ていることを特徴とする。
The electrolyte membrane electrode assembly of the present invention is characterized in that the electrolyte membrane and the electrode are joined in a state of being immersed or exposed in advance to a substance existing in the environment in which they are actually used.

【0009】本発明の好適な態様においては、電解質膜
電極接合体に含まれるイオン伝導物質が、2種類以上の
物質からなる電解質膜電極接合体であることが好まし
い。
In a preferred aspect of the present invention, the ion conductive material contained in the electrolyte membrane electrode assembly is preferably an electrolyte membrane electrode assembly composed of two or more kinds of substances.

【0010】また、本発明の好適な態様においては、前
記イオン伝導物質の少なくとも1種が、パーフルオロス
ルホン酸樹脂であることが好ましい。
Further, in a preferred aspect of the present invention, it is preferable that at least one kind of the ion conductive material is a perfluorosulfonic acid resin.

【0011】また、本発明の好適な態様においては、前
記イオン伝導物質の少なくとも1種が、スルホン化ポリ
エーテルケトン樹脂、スルホン化ポリエーテルサルホン
樹脂、スルホン化ポリフェニレンサルファイド樹脂、ス
ルホン化ポリイミド樹脂、スルホン化ポリアミド樹脂、
スルホン化エポキシ樹脂、スルホン化ポリオレフィン樹
脂のいずれかであることが好ましい。
Further, in a preferred aspect of the present invention, at least one of the ion conductive materials is a sulfonated polyether ketone resin, a sulfonated polyether sulfone resin, a sulfonated polyphenylene sulfide resin, a sulfonated polyimide resin, Sulfonated polyamide resin,
It is preferably either a sulfonated epoxy resin or a sulfonated polyolefin resin.

【0012】本発明においては、前記浸漬あるいは暴露
時に用いられる物質が、純水又はメタノールあるいはこ
れらの混合溶液であることが好ましい。
In the present invention, the substance used at the time of immersion or exposure is preferably pure water, methanol or a mixed solution thereof.

【0013】また本発明においては、電解質膜と電極の
接合が、プレスで行われた電解質膜電極接合体であるこ
とが好ましい。
Further, in the present invention, it is preferable that the electrolyte membrane and the electrode are joined by an electrolyte membrane electrode assembly which is formed by pressing.

【0014】本発明により、前記電解質膜電極接合体を
用いることを特徴とする燃料電池が提供される。
According to the present invention, there is provided a fuel cell characterized by using the electrolyte membrane electrode assembly.

【0015】本発明に係る電解質膜電極接合体の製造方
法は、電解質膜及び電極を、それらが実際に使用される
環境に存在する物質にあらかじめ浸漬あるいは暴露し、
プレスにより接合することを特徴とする。
The method for producing an electrolyte membrane-electrode assembly according to the present invention comprises preliminarily immersing or exposing the electrolyte membrane and the electrode in a substance existing in the environment in which they are actually used,
It is characterized by being joined by a press.

【0016】[0016]

【発明の実施の形態】以下、本発明に係る電解質膜電極
接合体について具体的に説明する。本発明に係る電解質
膜電極接合体は、イオン伝導性を有する電解質膜とこの
両側に接触して配置される正極および負極から構成され
る。燃料の水素、メタノール等は負極において電気化学
的に酸化されて、プロトンと電子を生成する。このプロ
トンは電解質膜内を通って酸素が供給される正極に移動
する。一方、負極で生成した電子は電池に接続された負
荷を通り正極に流れ、正極においてプロトンと酸素と電
子が反応して水を生成する。
BEST MODE FOR CARRYING OUT THE INVENTION The electrolyte membrane electrode assembly according to the present invention will be specifically described below. The electrolyte membrane electrode assembly according to the present invention is composed of an electrolyte membrane having ion conductivity, and a positive electrode and a negative electrode arranged in contact with both sides of the electrolyte membrane. Fuels such as hydrogen and methanol are electrochemically oxidized at the negative electrode to generate protons and electrons. This proton moves through the electrolyte membrane to the positive electrode to which oxygen is supplied. On the other hand, the electrons generated in the negative electrode flow to the positive electrode through the load connected to the battery, and the proton, oxygen and electrons react in the positive electrode to generate water.

【0017】前記電解質膜電極接合体を構成する電解質
膜は、イオン伝導性のある物質で構成されている。これ
らの例として、フッ素樹脂、ポリエーテルケトン樹脂、
ポリエーテルサルホン樹脂、ポリフェニレンサルファイ
ド樹脂、ポリイミド樹脂、ポリアミド樹脂、エポキシ樹
脂、ポリオレフィン樹脂等にプロトン酸基を付与した樹
脂が挙げられる。プロトン酸基としては、スルホン酸
基、カルボン酸基、リン酸基、スルホンイミド基が挙げ
られる。こららのうち、スルホン酸基が望ましく、パー
フルオロスルホン酸樹脂を用いることが好ましい。
The electrolyte membrane forming the electrolyte membrane electrode assembly is made of a substance having ion conductivity. Examples of these are fluororesins, polyetherketone resins,
Examples of the resin include polyether sulfone resin, polyphenylene sulfide resin, polyimide resin, polyamide resin, epoxy resin, polyolefin resin and the like to which a protonic acid group is added. Examples of the protonic acid group include a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, and a sulfonimide group. Of these, a sulfonic acid group is desirable, and a perfluorosulfonic acid resin is preferably used.

【0018】さらにイオン伝導物質のうち少なくとも1
種に、スルホン化ポリエーテルケトン樹脂、スルホン化
ポリエーテルサルホン樹脂、スルホン化ポリフェニレン
サルファイド樹脂、スルホン化ポリイミド樹脂、スルホ
ン化ポリアミド樹脂、スルホン化エポキシ樹脂、スルホ
ン化ポリオレフィン樹脂を用いることが望ましい。特に
パーフルオロスルホン酸樹脂、スルホン化ポリエーテル
ケトン樹脂を用いることが望ましい。
Further, at least one of the ion conductive materials
It is desirable to use a sulfonated polyether ketone resin, a sulfonated polyether sulfone resin, a sulfonated polyphenylene sulfide resin, a sulfonated polyimide resin, a sulfonated polyamide resin, a sulfonated epoxy resin, or a sulfonated polyolefin resin as the seed. Particularly, it is desirable to use a perfluorosulfonic acid resin or a sulfonated polyetherketone resin.

【0019】また、電解質膜はシリカなどの無機性のイ
オン伝導物質を用いても構わない。さらにこれらは一種
で使用しても、複数種を共重合して使用しても良い。ま
た複数種のブレンドや、繊維などでの複合化を行なった
ものを使用することもできる。
The electrolyte membrane may use an inorganic ion conductive material such as silica. Further, these may be used alone or in combination of plural kinds. It is also possible to use a blend of a plurality of types or a composite of fibers.

【0020】前記電解質膜電極接合体を構成する電極
は、導電材、イオン伝導性結着剤および触媒から成って
いる。導電材としては、電気伝導性物質であればいずれ
のものでもよく、各種金属や炭素材料などが挙げられ
る。例えばアセチレンブラック等のカーボンブラック、
活性炭および黒鉛等が挙げられ、これらは単独あるいは
混合して使用される。
The electrodes constituting the electrolyte membrane electrode assembly are composed of a conductive material, an ion conductive binder and a catalyst. As the conductive material, any material may be used as long as it is an electrically conductive material, and various metals, carbon materials and the like can be mentioned. For example, carbon black such as acetylene black,
Activated carbon, graphite, etc. are mentioned, and these are used individually or in mixture.

【0021】イオン伝導性結着剤としては、前記の電解
質膜と同様の樹脂、なかでもパーフルオロスルホン酸樹
脂、スルホン化ポリエーテルケトン樹脂を溶媒で希釈し
たものを用いるのが好ましいが、これに限らず他の各種
樹脂を用いることもできる。触媒金属としては、水素の
酸化反応および酸素の還元反応を促進する金属であれば
特には限定されないが、例えば鉛、鉄、マンガン、コバ
ルト、クロム、ガリウム、バナジウム、タングステン、
ルテニウム、イリジウム、パラジウム、白金、ロジウム
またはそれらの合金が挙げられる。なかでも白金、ルテ
ニウム、またはそれらの合金が好ましい。
As the ion conductive binder, it is preferable to use the same resins as those for the above-mentioned electrolyte membrane, especially those obtained by diluting a perfluorosulfonic acid resin or a sulfonated polyetherketone resin with a solvent. Not limited to this, other various resins can be used. The catalyst metal is not particularly limited as long as it is a metal that promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen, and for example, lead, iron, manganese, cobalt, chromium, gallium, vanadium, tungsten,
Examples include ruthenium, iridium, palladium, platinum, rhodium or alloys thereof. Of these, platinum, ruthenium, or alloys thereof are preferable.

【0022】本発明に係わる電解質膜電極接合体の接合
前に、あらかじめ浸漬あるいは暴露に用いられる物質と
しては、実際に使用する環境下で燃料電池内に存在する
燃料や反応生成物などの物質の溶液あるいはガスを用い
ことができる。通常は純水又はメタノールあるいはこれ
らの混合溶液を用いることが好ましい。特に水素を燃料
とする燃料電池に該接合体を用いる場合には純水を用
い、メタノールを燃料とする直接メタノール型燃料電池
にはメタノールと純水の混合溶液を用いることが好まし
い。メタノールと純水の混合比は特に制限はないが、燃
料として用いられる溶液の濃度に相当する比率が好まし
く、なかでもメタノール濃度が0.01重量%以上50
重量%以下であると特に好ましい。
Before the joining of the electrolyte membrane electrode assembly according to the present invention, the substances to be used for dipping or exposing in advance include substances existing in the fuel cell in the environment of actual use, such as fuel and reaction products. A solution or gas can be used. Usually, it is preferable to use pure water, methanol, or a mixed solution thereof. In particular, it is preferable to use pure water when the joined body is used for a fuel cell using hydrogen as a fuel, and to use a mixed solution of methanol and pure water for a direct methanol fuel cell that uses methanol as a fuel. The mixing ratio of methanol and pure water is not particularly limited, but a ratio corresponding to the concentration of the solution used as the fuel is preferable, and among them, the methanol concentration is 0.01% by weight or more and 50% or more.
It is particularly preferable that the content is less than or equal to wt%.

【0023】浸漬あるいは暴露する条件は、それらの物
質が十分に浸透すればよく、特に制限はないが、常温・
常圧下での溶液や、高温・高圧下でのガスを用いること
が好ましい。これらの物質が十分浸透した電解質膜並び
に電極は、次の接合時まで乾燥させないで用いることが
好ましいが、取り扱いに方法に応じ、形状が変化しない
範囲で乾燥させても良い。
The conditions of immersion or exposure are not particularly limited as long as those substances can sufficiently penetrate, but at room temperature
It is preferable to use a solution under normal pressure or a gas under high temperature and high pressure. It is preferable to use the electrolyte membrane and the electrode in which these substances have sufficiently penetrated without being dried until the next bonding, but they may be dried in a range in which the shape does not change depending on the handling method.

【0024】電解質膜と電極の接合方法としては、物質
が浸透した形状を保持して接合できるものであれば、特
に制限はないが、熱プレス、コールドプレス、超音波溶
着等が例示できる。なかでも熱プレスを用いることが好
ましい。熱プレスを用いた場合には浸透させた物質がプ
レス中に蒸発・揮散し、収縮してしまうこともあるが、
浸漬・暴露させた状態の形状を保持して電解質膜と電極
が接合されていれば、特に問題となならない。こうして
作成した電解質膜電極接合体を、燃料や酸素の流路の加
工を施したセパレータで挟むことにより燃料電池が形成
される。
The method for joining the electrolyte membrane and the electrode is not particularly limited as long as it can hold the shape in which the substance has permeated and join, but examples include hot pressing, cold pressing and ultrasonic welding. Especially, it is preferable to use a hot press. When a hot press is used, the permeated substance may evaporate and volatilize during the press, causing shrinkage.
If the electrolyte membrane and the electrode are bonded while maintaining the shape of the immersed and exposed state, there is no particular problem. A fuel cell is formed by sandwiching the electrolyte membrane electrode assembly thus created between separators that have been processed for fuel and oxygen flow paths.

【0025】本発明に係る電解質膜電極接合体は、実用
上問題ない接着力を有している。特に、本発明に係る電
解質膜電極接合体を用いて燃料電池を形成すると、耐久
性に優れた、高電流操作可能な燃料電池を得ることがで
きる。
The electrolyte membrane electrode assembly according to the present invention has an adhesive strength that poses no practical problem. In particular, when a fuel cell is formed using the electrolyte membrane electrode assembly according to the present invention, a fuel cell having excellent durability and capable of operating at high current can be obtained.

【0026】[0026]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 (実施例1) 電解質膜の作成 窒素導入管、温度計、還流冷却器および撹拌装置を備え
た5つ口反応器に、5,5’−カルボニルビス(2−フ
ルオロベンゼンスルホン酸ナトリウム)4.22g
(0.01mol)、4,4’−ジフルオロベンゾフェ
ノン2.18g(0.01mol)、2,2−ビス
(3,5−ジメチル−4−ヒドロキシフェニル)プロパ
ン5.69g(0.02mol)および炭酸カリウム
3.46g(0.025mol)秤取した。これにジメ
チルスルホキシド40mlとトルエン30mlを加え、
窒素雰囲気下で撹拌しながら、130℃で2時間加熱
し、生成する水を系外に除去した後、トルエンを留去し
た。引き続き、160℃で14時間反応を行い、粘稠な
ポリマー溶液を得た。得られた溶液にジメチルスルホキ
シド60mlを加えて希釈したのち濾過した。このポリ
マー溶液をアセトン600ml中に排出し、析出したポ
リマー粉を濾過後、160℃で4時間乾燥してポリマー
粉10.39g(収率92%)を得た。得られたポリエ
ーテルケトン粉0.50gをジメチルスルホキシド10
0mlに溶解した後、35℃において測定した対数粘度
は0.85dl/gであった。昇温速度10℃/min
で示差走査熱量測定(DSC、マック・サイエンス社製
DSC3100)を用いて測定したガラス転移温度は2
30℃であった。同様に、空気中にて昇温速度10℃/
minでDTA−TG(マック・サイエンス社製TG−
DTA2000)を用いて測定した5%重量減少温度は
367℃であった。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to these examples. Example 1 Preparation of Electrolyte Membrane A 5-neck reactor equipped with a nitrogen inlet tube, a thermometer, a reflux condenser and a stirrer was charged with 5,5′-carbonylbis (sodium 2-fluorobenzenesulfonate). 22 g
(0.01 mol), 4,4'-difluorobenzophenone 2.18 g (0.01 mol), 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane 5.69 g (0.02 mol) and carbonic acid 3.46 g (0.025 mol) of potassium was weighed out. Add 40 ml of dimethyl sulfoxide and 30 ml of toluene to this,
While stirring under a nitrogen atmosphere, the mixture was heated at 130 ° C. for 2 hours to remove produced water out of the system, and then toluene was distilled off. Subsequently, the reaction was carried out at 160 ° C. for 14 hours to obtain a viscous polymer solution. 60 ml of dimethyl sulfoxide was added to the resulting solution to dilute it, and then the solution was filtered. This polymer solution was discharged into 600 ml of acetone, and the precipitated polymer powder was filtered and dried at 160 ° C. for 4 hours to obtain 10.39 g of polymer powder (yield 92%). 0.50 g of the obtained polyetherketone powder was added to dimethyl sulfoxide 10
After dissolving in 0 ml, the logarithmic viscosity measured at 35 ° C. was 0.85 dl / g. Temperature rising rate 10 ° C / min
The glass transition temperature measured by differential scanning calorimetry (DSC, DSC3100 manufactured by Mac Science Co.) is 2
It was 30 ° C. Similarly, the temperature rise rate in air is 10 ° C /
DTA-TG (TG-made by Mac Science Co., Ltd.)
The 5% weight loss temperature measured using DTA2000) was 367 ° C.

【0027】得られたポリマー粉をジメチルスルホキシ
ドに溶解させガラス基板上にキャストし、200℃で4
時間乾燥してスルホン酸Naを含有するポリエーテルケ
トン膜を得た後、メタルハライドランプを用いて600
0mJ/cm2の光照射を行い、架橋させた。更にこの
膜を2N−硫酸に一晩、次いで蒸留水に一晩浸した後、
150℃で4時間乾燥して、フリーのプロトン酸を含有
する電解質膜1を得た。得られた膜の厚さは50μmで
可とう性に富み、強靭であった。
The obtained polymer powder was dissolved in dimethylsulfoxide and cast on a glass substrate, and the mixture was heated at 200 ° C. for 4 hours.
After drying for an hour to obtain a polyetherketone film containing Na sulfonate, 600 using a metal halide lamp
Light irradiation of 0 mJ / cm 2 was performed to crosslink. Further, after soaking the membrane in 2N-sulfuric acid overnight and then in distilled water overnight,
After drying at 150 ° C. for 4 hours, an electrolyte membrane 1 containing a free protonic acid was obtained. The thickness of the obtained film was 50 μm, which was rich in flexibility and tough.

【0028】電極の作成 田中貴金属製の30wt%Pt担持触媒(品番:TEC
10V30E)0.5gと結着剤のAldrich社製
パーフルオロスルホン酸ポリマー(Nafion(登録
商標))5wt%溶液(品番:27,470−4)10
gを混合し、超音波印加ののち撹拌し、触媒ペーストと
した。東レ製カーボンペーパー(品番:TGP−H−0
60)の上にアプリケータを用いて触媒ペーストを塗工
し、70℃で12時間真空乾燥した後、5cm2に切り
出し電極2とした。触媒塗工量はPt量で2mg/cm
2とした。更に電極2上にAldrich社製パーフル
オロスルホン酸ポリマー(Nafion(登録商標))5
wt%溶液(品番:27,470−4)を噴霧塗工し、
その後常温空気中で1晩乾燥させた。パーフルオロスル
ホン酸ポリマー塗工量は乾燥重量で1mg/cm2とし
た。
Preparation of electrodes Tanaka Kikinzoku's 30 wt% Pt-supported catalyst (product number: TEC
10 V30E) 0.5 g and a 5 wt% solution of a perfluorosulfonic acid polymer (Nafion (registered trademark)) manufactured by Aldrich Co., Ltd. as a binder (product number: 27,470-4) 10
g was mixed, ultrasonic waves were applied and then stirred to obtain a catalyst paste. Toray carbon paper (Part number: TGP-H-0
60) was coated with a catalyst paste using an applicator, dried in vacuum at 70 ° C. for 12 hours, and then cut into 5 cm 2 to obtain an electrode 2. Catalyst coating amount is 2 mg / cm 2 in Pt amount
2 Further, on the electrode 2, a perfluorosulfonic acid polymer (Nafion (registered trademark)) 5 manufactured by Aldrich
spray coating a wt% solution (product number: 27,470-4),
Then, it was dried in normal temperature air overnight. The coating amount of the perfluorosulfonic acid polymer was 1 mg / cm 2 in dry weight.

【0029】接合体の作成 上記で作成した電極2枚と、で作成したスルホン化
ポリエーテルケトン電解質膜を、室温純水中に2時間浸
漬した。浸漬後の電解質膜及び電極は、純水を十分吸収
し膨潤していた。これらを吸水した状態のまま所定の順
番に積層し、あらかじめ80℃に加熱した熱プレスに導
入し、電極面にのみ0.4MPaの圧力で加圧した。そ
の後、加圧した状態のまま、80℃から130℃まで昇
温させた。使用した熱プレスでは15分を要した。接合
後の電解質膜電極接合体はほぼ乾燥状態であったが電極
の剥離はなかった。
Preparation of bonded body The two electrodes prepared above and the sulfonated polyetherketone electrolyte membrane prepared in the above were immersed in pure water at room temperature for 2 hours. The electrolyte membrane and the electrode after the immersion were sufficiently swollen by absorbing pure water. These were laminated in a predetermined order in a water-absorbed state, introduced into a hot press preheated to 80 ° C., and pressed at a pressure of 0.4 MPa only on the electrode surface. Then, the temperature was raised from 80 ° C. to 130 ° C. in the pressurized state. The hot press used took 15 minutes. The electrolyte membrane electrode assembly after bonding was almost dry, but the electrodes were not peeled off.

【0030】発電試験 上記で作成した電解質膜電極接合体を、Electr
ochem社製の燃料電池試験セル(品番:EFC−0
5−REF)に組み込み、図1の燃料電池を組み立て
た。セル組み立て後、図2のような燃料電池評価装置
(燃料電池に加湿した水素と空気を流して電子負荷を用
いて電池特性を測定する。)を使用して、水素を燃料と
して電池特性を測定したところ、約0.19W/cm
の出力を得た。製作した燃料電池の電池特性(電子負荷
を用いて電流を増加させながら燃料電池の電圧を測定し
た。)を図4に示す。また放電特性の測定条件を表1に
示す。
Power Generation Test The electrolyte membrane electrode assembly prepared above was electrified.
fuel cell test cell manufactured by Ochem (product number: EFC-0
5-REF), and the fuel cell of FIG. 1 was assembled. After assembling the cell, a fuel cell evaluation device as shown in FIG. 2 (where humidified hydrogen and air are flown into the fuel cell to measure the cell characteristics using an electronic load) is used to measure the cell characteristics using hydrogen as a fuel. After that, about 0.19 W / cm 2
Got the output of. FIG. 4 shows the cell characteristics of the fabricated fuel cell (the voltage of the fuel cell was measured while increasing the current with an electronic load). Table 1 shows the measurement conditions of the discharge characteristics.

【0031】[0031]

【表1】 [Table 1]

【0032】(比較例1)実施例1のうち、の接合体
の作成において、室温純水中の浸漬を行なわず乾燥状態
で接合した以外は、実施例1と同様に接合体の作成を行
なった。作成された接合体は、接着強度が低く、熱プレ
スからの取り出し時に電解質膜と電極が剥離し、燃料電
池として出力を取り出せなかった。
(Comparative Example 1) A bonded body was prepared in the same manner as in Example 1 except that the bonded body of Example 1 was bonded in a dry state without immersion in pure water at room temperature. It was The produced bonded body had low adhesive strength, and the electrolyte membrane and the electrode were peeled off when taken out from the hot press, and the output could not be taken out as a fuel cell.

【0033】(実施例2) 電解質膜の作成 実施例1のと同様に電解質膜1を作成した。 電極の作成 田中貴金属製の33wt%PtRu担持触媒(品番:T
EC61V33)0.5gと結着剤としてAldric
h社製パーフルオロスルホン酸ポリマー(Nafion
(登録商標))5wt%溶液(品番:27,470−4)
10gを混合し、超音波印加ののち撹拌し、触媒ペース
トとした。東レ製カーボンペーパー(品番:TGP−H
−060)の上にアプリケータを用いて触媒ペーストを
塗工し、70℃で12時間真空乾燥した後、5cm2
切り出し電極2’とした。触媒塗工量はPtRu量で2
mg/cm2とした。更に電極2’上にAldrich
社製パーフルオロスルホン酸ポリマー(Nafion
(登録商標))5wt%溶液(品番:27,470−4)
を噴霧塗工し、その後常温空気中で1晩乾燥させた。パ
ーフルオロスルホン酸ポリマー塗工量は乾燥重量で1m
g/cm2とした。
Example 2 Preparation of Electrolyte Membrane An electrolyte membrane 1 was prepared in the same manner as in Example 1. Preparation of electrodes Tanaka Kikinzoku's 33wt% PtRu supported catalyst (product number: T
EC61V33) 0.5g and Aldric as a binder
h company perfluorosulfonic acid polymer (Nafion
(Registered trademark)) 5 wt% solution (product number: 27,470-4)
10 g was mixed, ultrasonic waves were applied and then stirred to obtain a catalyst paste. Toray carbon paper (product number: TGP-H
-060) was coated with a catalyst paste using an applicator, dried in vacuum at 70 ° C for 12 hours, and then cut into 5 cm 2 to obtain an electrode 2 '. Catalyst coating amount is PtRu 2
It was set to mg / cm 2 . Further on the electrode 2 ', Aldrich
Perfluorosulfonic acid polymer (Nafion
(Registered trademark)) 5 wt% solution (product number: 27,470-4)
Was spray coated and then dried overnight in normal temperature air. Perfluorosulfonic acid polymer coating amount is 1m dry weight
It was set to g / cm 2 .

【0034】接合体の作成 上記で作成したスルホン化ポリエーテルケトン電解質
膜と、で作成した電極2、で作成した電極2’それ
ぞれ1枚ずつを、室温下で1Mメタノール水溶液中に2
時間浸漬した。浸漬後の電解質膜及び電極はメタノール
水溶液を十分吸収し膨潤していた。これらを吸収した状
態のまま所定の順番に積層し、あらかじめ80℃に加熱
した熱プレスに導入し、電極面にのみ0.4MPaの圧
力で加圧した。その後、加圧した状態のまま、80℃か
ら130℃まで昇温させた。使用した熱プレスでは15
分を要した。接合後の電解質膜電極接合体はほぼ乾燥状
態であったが電極の剥離はなかった。
Preparation of bonded body One piece of each of the electrode 2'made of the sulfonated polyetherketone electrolyte membrane prepared above and the electrode 2 prepared in 2 was placed in a 1M aqueous methanol solution at room temperature.
Soak for hours. The electrolyte membrane and the electrode after the immersion were swollen by sufficiently absorbing the aqueous methanol solution. These were laminated in a predetermined order in the state of absorbing them, introduced into a hot press preheated to 80 ° C., and pressed only on the electrode surface with a pressure of 0.4 MPa. Then, the temperature was raised from 80 ° C. to 130 ° C. in the pressurized state. 15 in the heat press used
It took a minute. The electrolyte membrane electrode assembly after bonding was almost dry, but the electrodes were not peeled off.

【0035】発電試験 上記で作成した電解質膜電極接合体を、Electr
ochem社製の燃料電池試験セル(品番:EFC−0
5−REF)に組み込み、図1の燃料電池を組み立て
た。セル組み立て後、図3のような燃料電池評価装置
(燃料電池にメタノール水溶液と空気を流して電子負荷
を用いて電池特性を測定する。)を使用して、1Mメタ
ノール水溶液を燃料として電池特性を測定したところ、
約2.5mW/cmの出力を得た。ここではで作成
したPtRu電極2’をメタノール極に用いた。製作し
た燃料電池の電池特性(電子負荷を用いて電流を増加さ
せながら燃料電池の電圧を測定した。)を図5に示し
た。また放電特性の測定条件を表2に示す。
Power Generation Test The electrolyte membrane electrode assembly prepared above was electrified.
fuel cell test cell manufactured by Ochem (product number: EFC-0
5-REF), and the fuel cell of FIG. 1 was assembled. After assembling the cell, a fuel cell evaluation device as shown in FIG. 3 (a methanol aqueous solution and air are flown into the fuel cell to measure the cell characteristics by using an electronic load) is used to measure the cell characteristics using a 1 M aqueous methanol solution as a fuel. When I measured
An output of about 2.5 mW / cm 2 was obtained. Here, the PtRu electrode 2'created here was used as a methanol electrode. The cell characteristics of the fabricated fuel cell (the voltage of the fuel cell was measured while increasing the current with an electronic load) are shown in FIG. Table 2 shows the measurement conditions of the discharge characteristics.

【0036】[0036]

【表2】 [Table 2]

【0037】(比較例2)実施例2のうち、の接合体
の作成において、室温1Mメタノール水溶液中の浸漬を
行なわず乾燥状態で接合した以外は、実施例2と同様に
接合体の作成を行なった。作成された接合体は、接着強
度が低く、熱プレスからの取り出し時に電解質膜と電極
が剥離し、燃料電池として出力を取り出せなかった。
(Comparative Example 2) A joined body was prepared in the same manner as in Example 2 except that the joined body of Example 2 was joined in a dry state without immersion in a 1 M aqueous methanol solution at room temperature. I did. The produced bonded body had low adhesive strength, and the electrolyte membrane and the electrode were peeled off when taken out from the hot press, and the output could not be taken out as a fuel cell.

【0038】[0038]

【発明の効果】本発明により、接着力を向上した電解質
膜電極接合体が得られ、これを用いて燃料電池を形成す
ると、耐久性に優れた、高電流操作可能な燃料電池を得
ることができる。
EFFECTS OF THE INVENTION According to the present invention, an electrolyte membrane electrode assembly with improved adhesion can be obtained, and when a fuel cell is formed using this, a fuel cell excellent in durability and capable of high current operation can be obtained. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例で用いた燃料電池の断面構造
図である。
FIG. 1 is a cross-sectional structural diagram of a fuel cell used in an example of the present invention.

【図2】 本発明の実施例1、比較例1で用いた燃料電
池評価装置の概略図である。
FIG. 2 is a schematic diagram of a fuel cell evaluation apparatus used in Example 1 and Comparative Example 1 of the present invention.

【図3】 本発明の実施例2、比較例2で用いた燃料電
池評価装置の概略図である。
FIG. 3 is a schematic diagram of a fuel cell evaluation apparatus used in Example 2 and Comparative Example 2 of the present invention.

【図4】 実施例1の燃料電池の電池特性測定結果を示
す図である。
FIG. 4 is a diagram showing a cell characteristic measurement result of the fuel cell of Example 1.

【図5】 実施例2の燃料電池の電池特性測定結果を示
す図である。
5 is a diagram showing the results of measuring the cell characteristics of the fuel cell of Example 2. FIG.

【符号の説明】[Explanation of symbols]

1 電解質膜 2、2’ 触媒付き電極 3 ガスケット 4 セパレーター 5 加圧板 6 ガス流路 7 締め付けボルト 8 燃料電池セル 9 加湿用バブリングタンク 10 電子負荷 11 マスフローコントローラー 12 送液ポンプ 1 electrolyte membrane 2, 2'catalyst electrode 3 gasket 4 separator 5 pressure plate 6 gas flow paths 7 Tightening bolt 8 Fuel cells 9 Bubbling tank for humidification 10 electronic load 11 Mass flow controller 12 Liquid feed pump

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H026 AA08 BB01 BB02 BB03 BB10 CX05 EE18 EE19    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H026 AA08 BB01 BB02 BB03 BB10                       CX05 EE18 EE19

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】電解質膜及び電極を、それらが実際に使用
される環境に存在する物質にあらかじめ浸漬あるいは暴
露した状態で接合されていることを特徴とする電解質膜
電極接合体。
1. An electrolyte membrane electrode assembly, wherein an electrolyte membrane and an electrode are joined in a state where they are immersed or exposed in advance to a substance existing in the environment in which they are actually used.
【請求項2】前記電解質膜電極接合体に含まれるイオン
伝導物質が、2種類以上の物質からなることを特徴とす
る電解質膜電極接合体。
2. The electrolyte membrane electrode assembly, wherein the ion conductive material contained in the electrolyte membrane electrode assembly is composed of two or more kinds of substances.
【請求項3】前記イオン伝導物質の少なくとも1種が、
パーフルオロスルホン酸樹脂であることを特徴とする請
求項2に記載の電解質膜電極接合体。
3. At least one of the ion-conducting substances is
The electrolyte membrane electrode assembly according to claim 2, which is a perfluorosulfonic acid resin.
【請求項4】前記イオン伝導物質の少なくとも1種が、
スルホン化ポリエーテルケトン樹脂、スルホン化ポリエ
ーテルサルホン樹脂、スルホン化ポリフェニレンサルフ
ァイド樹脂、スルホン化ポリイミド樹脂、スルホン化ポ
リアミド樹脂、スルホン化エポキシ樹脂、スルホン化ポ
リオレフィン樹脂のいずれかであることを特徴とする請
求項2または3に記載の電解質膜電極接合体。
4. At least one of the ionic conductive materials is
Characterized by being any one of sulfonated polyetherketone resin, sulfonated polyethersulfone resin, sulfonated polyphenylene sulfide resin, sulfonated polyimide resin, sulfonated polyamide resin, sulfonated epoxy resin, and sulfonated polyolefin resin. The electrolyte membrane electrode assembly according to claim 2 or 3.
【請求項5】前記浸漬あるいは暴露時に用いられる物質
が、純水又はメタノールあるいはこれらの混合溶液であ
ることを特徴とする請求項1〜4のいずれかに記載の電
解質膜電極接合体。
5. The electrolyte membrane electrode assembly according to claim 1, wherein the substance used during the immersion or exposure is pure water, methanol, or a mixed solution thereof.
【請求項6】電解質膜と電極の接合が、熱プレスで行わ
れることを特徴とする請求項1〜5のいずれかに記載の
電解質膜電極接合体。
6. The electrolyte membrane electrode assembly according to any one of claims 1 to 5, wherein the electrolyte membrane and the electrode are joined by hot pressing.
【請求項7】請求項1〜6のいずれかに記載の電解質膜
電極接合体を用いることを特徴とする燃料電池。
7. A fuel cell comprising the electrolyte membrane electrode assembly according to any one of claims 1 to 6.
【請求項8】電解質膜及び電極を、それらが実際に使用
される環境に存在する物質にあらかじめ浸漬あるいは暴
露し、熱プレスにより接合することを特徴とする電解質
膜電極接合体の製造方法。
8. A method for producing an electrolyte membrane electrode assembly, which comprises preliminarily immersing or exposing the electrolyte membrane and the electrode in a substance existing in the environment in which they are actually used, and joining them by hot pressing.
【請求項9】前記浸漬あるいは暴露時に用いられる物質
が、純水又はメタノールあるいはこれらの混合溶液であ
ることを特徴とする請求項8に記載の電解質膜電極接合
体の製造方法。
9. The method for producing an electrolyte membrane electrode assembly according to claim 8, wherein the substance used at the time of immersion or exposure is pure water, methanol, or a mixed solution thereof.
JP2002075576A 2002-03-19 2002-03-19 Electrolyte membrane electrode assembly, production method thereof, and fuel cell using the same Expired - Fee Related JP4043264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002075576A JP4043264B2 (en) 2002-03-19 2002-03-19 Electrolyte membrane electrode assembly, production method thereof, and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002075576A JP4043264B2 (en) 2002-03-19 2002-03-19 Electrolyte membrane electrode assembly, production method thereof, and fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2003272672A true JP2003272672A (en) 2003-09-26
JP4043264B2 JP4043264B2 (en) 2008-02-06

Family

ID=29204610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002075576A Expired - Fee Related JP4043264B2 (en) 2002-03-19 2002-03-19 Electrolyte membrane electrode assembly, production method thereof, and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP4043264B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102713A1 (en) * 2003-05-14 2004-11-25 Toray Industries Inc. Membrane electrode complex and solid polymer type fuel cell using it
JP2005222894A (en) * 2004-02-09 2005-08-18 Aisin Seiki Co Ltd Manufacturing method of membrane electrode junction
JP2005276599A (en) * 2004-03-24 2005-10-06 Jsr Corp Method for manufacturing electrolyte membrane-electrode assembly
JP2006059560A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Polymer electrolyte composition contained polyphenylene sulfide resin
JP2007507067A (en) * 2003-09-26 2007-03-22 パウル・シェラー・インスティトゥート Membrane-electrode assembly, manufacturing method thereof, and manufacturing method of membrane to be combined in membrane-electrode assembly
JP2008311233A (en) * 2008-07-14 2008-12-25 Nec Corp Solid polymer electrolyte membrane, fuel cell using this, and method of manufacturing the solid polymer electrolyte membrane
JP2010238641A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Method and device for manufacturing membrane electrode assembly
WO2015098922A1 (en) * 2013-12-26 2015-07-02 フタムラ化学株式会社 Resin solid acid and production method therefor
JPWO2020026796A1 (en) * 2018-08-01 2021-07-01 東レ株式会社 Membrane / catalyst junction manufacturing method and manufacturing equipment

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824786B2 (en) 2003-05-14 2010-11-02 Toray Industries, Inc. Membrane electrode complex and solid type fuel cell using it
WO2004102713A1 (en) * 2003-05-14 2004-11-25 Toray Industries Inc. Membrane electrode complex and solid polymer type fuel cell using it
JP2007507067A (en) * 2003-09-26 2007-03-22 パウル・シェラー・インスティトゥート Membrane-electrode assembly, manufacturing method thereof, and manufacturing method of membrane to be combined in membrane-electrode assembly
KR101185674B1 (en) * 2003-09-26 2012-09-24 폴 슈레 앙스띠뛰 Membrane electrode assembly mea, methode for its manufacturing and a method for preparing a membrane to be assembled in a mea
JP2005222894A (en) * 2004-02-09 2005-08-18 Aisin Seiki Co Ltd Manufacturing method of membrane electrode junction
JP2005276599A (en) * 2004-03-24 2005-10-06 Jsr Corp Method for manufacturing electrolyte membrane-electrode assembly
JP2006059560A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Polymer electrolyte composition contained polyphenylene sulfide resin
JP4578174B2 (en) * 2004-08-17 2010-11-10 旭化成イーマテリアルズ株式会社 Polymer electrolyte composition, proton exchange membrane, membrane electrode assembly, and solid polymer fuel cell
JP2008311233A (en) * 2008-07-14 2008-12-25 Nec Corp Solid polymer electrolyte membrane, fuel cell using this, and method of manufacturing the solid polymer electrolyte membrane
JP2010238641A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Method and device for manufacturing membrane electrode assembly
WO2015098922A1 (en) * 2013-12-26 2015-07-02 フタムラ化学株式会社 Resin solid acid and production method therefor
JP2015143348A (en) * 2013-12-26 2015-08-06 フタムラ化学株式会社 Resin solid acid and method for producing the same
JPWO2020026796A1 (en) * 2018-08-01 2021-07-01 東レ株式会社 Membrane / catalyst junction manufacturing method and manufacturing equipment
JP7234928B2 (en) 2018-08-01 2023-03-08 東レ株式会社 Membrane-catalyst assembly manufacturing method and manufacturing apparatus

Also Published As

Publication number Publication date
JP4043264B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP4327732B2 (en) Solid polymer fuel cell and manufacturing method thereof
US7662194B2 (en) Binder composition for fuel cell, membrane-electrode assembly for fuel cell, and method for preparing the membrane-electrode assembly
JP3608565B2 (en) Fuel cell and manufacturing method thereof
US20040115516A1 (en) Electrode for fuel cell and fuel cell therewith
JP2006140152A (en) Electrode for fuel cell, and membrane/electrode assembly and fuel cell system including it
JP3973503B2 (en) Ion conductive binder for fuel cell, electrode forming composition and varnish, and fuel cell
JP4043264B2 (en) Electrolyte membrane electrode assembly, production method thereof, and fuel cell using the same
JP4987857B2 (en) Polymer dispersion and electrocatalyst ink
JP4919005B2 (en) Method for producing electrode for fuel cell
JP5233208B2 (en) Cross-linked polymer electrolyte membrane
JP4400212B2 (en) Manufacturing method of membrane / electrode assembly for fuel cell
JP2003115299A (en) Solid polymer fuel cell
JP2008269847A (en) Ink for fuel cell catalyst layer, its manufacturing method, and membrane electrode assembly for fuel cell
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP4202806B2 (en) Electrolyte membrane / electrode assembly, method for producing the same, and fuel cell
JP2005203125A (en) Fuel cell
JP2010199061A (en) Electrolyte membrane for fuel cell, membrane electrode assembly for fuel cell, and fuel cell
JP2008112616A (en) Catalyst layer for fuel cell, catalyst layer transfer sheet for fuel cell, gas diffusion electrode for fuel cell, manufacturing method of membrane electrode assembly for fuel cell, and direct methanol fuel cell using them
US7244280B2 (en) Method for producing electrochemical device
WO2004004050A1 (en) Fuel for solid electrolyte fuel cell, solid electrolyte fuel cell and method of use thereof
JP3960038B2 (en) Liquid fuel direct supply fuel cell
JP2005011590A (en) Membrane electrode junction, and manufacturing method of membrane electrode junction intermediate body using the same
JP2011204468A (en) Membrane-electrode assembly and solid polymer fuel cell
KR100705553B1 (en) Process for forming catalyst layers on a proton exchange membrane within membrane electrode assembly for fuel cell
JP2005285569A (en) Electrolyte membrane/electrode assembly and its manufacturing method, and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Ref document number: 4043264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees