JPH053041A - Controlling method for fuel cell device - Google Patents

Controlling method for fuel cell device

Info

Publication number
JPH053041A
JPH053041A JP3150724A JP15072491A JPH053041A JP H053041 A JPH053041 A JP H053041A JP 3150724 A JP3150724 A JP 3150724A JP 15072491 A JP15072491 A JP 15072491A JP H053041 A JPH053041 A JP H053041A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
control
cell
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3150724A
Other languages
Japanese (ja)
Inventor
Tomio Nakamura
富男 中村
Hideo Ooyanai
英雄 大谷内
Susumu Horiuchi
進 堀内
Genichi Ikeda
元一 池田
Makoto Okuda
誠 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Gas Co Ltd
Original Assignee
Hitachi Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP3150724A priority Critical patent/JPH053041A/en
Publication of JPH053041A publication Critical patent/JPH053041A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04798Concentration; Density of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a stable electrical output by computing and controlling incremental opening of respective regulating valves for a primary fuel, a cathode air, and a steam from the deviation between the initial cell voltage and the present cell voltage corresponding to the present output power value. CONSTITUTION:The present power value is computed from a cell output voltage and a cell output current, the corresponding initial cell voltage is computed in a function generator FG4, the deviation between the initial cell voltage and the present cell voltage is input into function generators FG'1, FD'2, and FG'3. The generators FG'1, FG'2, and FG'3 compute the valve opening increment, namely flow increment, corresponding to voltage deviations of a primary fuel regulating valve 9, a cathode air regulating valve 10, and a steam regulating valve 11, and are subsequently added to respective regulating valves to control them. Whereby, the deterioration in battery cell characteristics can automatically be detected and increase the quantity of hydrogen being supplied to a hydrogen electrode in the cell main body so as to stably provide an electrical output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池装置の制御方
法に係り、特に、燃料電池本体のセル劣化および燃料改
質系の触媒劣化を検出して、これを補うようにプロセス
流量を制御することにより、安定した電気出力を得るの
に好適な燃料電池装置の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling a fuel cell device, and more particularly, to detecting a cell deterioration of a fuel cell body and a catalyst deterioration of a fuel reforming system and controlling a process flow rate so as to compensate for them. By doing so, the present invention relates to a method for controlling a fuel cell device suitable for obtaining a stable electric output.

【0002】[0002]

【従来の技術】従来の一般的な燃料電池システムの構成
例を図1を参照して説明する。図1は、一般的な燃料電
池システムの構成を示す系統図であり、太い実線矢印は
天然ガスおよび反応ガスの径路、一点鎖線矢印は燃焼用
の空気の径路、二点鎖線矢印は排ガスの径路、破線矢印
は水蒸気の径路、細い実線は冷却水の径路を示してい
る。また、点線矢印は制御信号系である。図1におい
て、1は、燃料電池本体で、水素極1a,酸素極1b,
および電池冷却装置1cからなっている。2は、燃料改
質系で、天然ガス等の炭化水素化合物と水蒸気とから水
蒸気改質反応により水素を発生させる系統である。3
は、電池冷却系で循環ポンプ7により燃料電池本体1の
電池冷却装置1cに接続され、電池反応により発生する
熱を除去する役割と同時に、この熱により水蒸気を発生
させ、前記燃料改質系2での水蒸気改質反応に必要な水
蒸気を供給する。4は、エジェクタ(または混合器)
で、天然ガス等の燃料と前記電池冷却系3から発生する
水蒸気とを混合して燃料改質系2に供給する役割を有す
る。
2. Description of the Related Art A configuration example of a conventional general fuel cell system will be described with reference to FIG. FIG. 1 is a system diagram showing the configuration of a general fuel cell system. Thick solid arrows indicate paths of natural gas and reaction gas, one-dot chain arrows indicate paths for combustion air, and two-dot chain arrows indicate exhaust gas paths. , The broken line arrow indicates the steam path, and the thin solid line indicates the cooling water path. In addition, a dotted arrow indicates a control signal system. In FIG. 1, 1 is a fuel cell main body, which is a hydrogen electrode 1a, an oxygen electrode 1b,
And a battery cooling device 1c. A fuel reforming system 2 is a system for generating hydrogen from a hydrocarbon compound such as natural gas and steam by a steam reforming reaction. Three
Is connected to the cell cooling device 1c of the fuel cell main body 1 by the circulation pump 7 in the cell cooling system, and has a role of removing heat generated by the cell reaction, and at the same time generates steam by the heat, thereby the fuel reforming system 2 The steam required for the steam reforming reaction is supplied. 4 is an ejector (or mixer)
Then, it has a role of mixing fuel such as natural gas and water vapor generated from the cell cooling system 3 and supplying it to the fuel reforming system 2.

【0003】5はインバータで、燃料電池本体1からの
直流電気出力を交流に変換して負荷に供給するためのも
のである。6は、例えば、コンピュータの中央制御装置
(CPU)など演算制御手段を有する制御装置で、この
制御装置6は、燃料電池本体1からの直流電圧,直流電
流値から負荷状態を判断して、主燃料調節弁9,カソー
ド空気調節弁10,水蒸気調節弁11(または可変エジ
ェクタ)を制御する機能を有する。ここで、主燃料調節
弁9は、天然ガス供給路に具備され、カソード空気調節
弁10は、空気供給路に具備され、水蒸気調節弁11
は、破線で示す水蒸気供給路に具備されている。その
他、8は給水ポンプ、12は、水蒸気改質反応に必要な
熱源として燃料電池本体1の水素極1aから排出される
アノード排ガスを燃焼させるための、バーナ空気調節弁
である。
Reference numeral 5 is an inverter for converting the DC electric output from the fuel cell main body 1 into AC and supplying it to a load. Reference numeral 6 denotes a control device having an arithmetic control unit such as a central control unit (CPU) of a computer. The control device 6 judges the load state from the direct current voltage and direct current value from the fuel cell main body 1, It has a function of controlling the fuel control valve 9, the cathode air control valve 10, and the water vapor control valve 11 (or the variable ejector). Here, the main fuel control valve 9 is provided in the natural gas supply passage, the cathode air control valve 10 is provided in the air supply passage, and the steam control valve 11 is provided.
Is provided in the water vapor supply path indicated by the broken line. Besides, 8 is a feed water pump, and 12 is a burner air control valve for burning the anode exhaust gas discharged from the hydrogen electrode 1a of the fuel cell body 1 as a heat source necessary for the steam reforming reaction.

【0004】以上の構成からなる従来の燃料電池システ
ムの制御方法について図1に合わせて図9および図10
を参照して説明する。図9は、従来の燃料電池システム
の制御系統図、図10は、図9の制御系における負荷に
対応した弁開度(または流量)の線図である。図9に示
すように、燃料電池本体1からの直流電池出力電圧と電
池出力電流との積により負荷量を演算し、この負荷量に
対応する主燃料調節弁9,カソード空気調節弁10,蒸
気調節弁11の各調節弁での必要弁開度(または各流
量)を、制御装置6内の各関数発生器FG1,FG2,F
3により演算して前記各調節弁を制御する。各関数発
生器FG1〜FG3内では、図10に示すように、負荷量
に対応する弁開度(または流量)が燃料電池本体1およ
び燃料改質系2の初期特性により設定されている。
A conventional method for controlling a fuel cell system having the above-described structure is shown in FIGS.
Will be described with reference to. FIG. 9 is a control system diagram of a conventional fuel cell system, and FIG. 10 is a diagram of valve opening (or flow rate) corresponding to load in the control system of FIG. As shown in FIG. 9, the load amount is calculated by the product of the DC cell output voltage from the fuel cell main body 1 and the cell output current, and the main fuel control valve 9, the cathode air control valve 10 and the steam corresponding to this load amount are calculated. The required valve opening degree (or each flow rate) of each control valve of the control valve 11 is determined by each function generator FG 1 , FG 2 , F in the control device 6.
The control valves are controlled by calculation by G 3 . In each of the function generators FG 1 to FG 3 , as shown in FIG. 10, the valve opening degree (or flow rate) corresponding to the load amount is set by the initial characteristics of the fuel cell body 1 and the fuel reforming system 2. .

【0005】[0005]

【発明が解決しようとする課題】このような従来の燃料
電池システムの制御方法において、前記図10の負荷量
に対応した弁開度(または流量)を設定する基になる燃
料電池本体1の電池セル特性の初期特性を図11に示
す。図11は、電池セルの初期特性線図、図12は、電
池セル特性の劣化時を示す特性線図である。図11は、
横軸に電池電流密度Ai(mA/cm2)をとり、縦軸
に電池セル電圧Vc(V)をとって初期特性を示したも
ので、ある負荷量が定まれば、特性曲線上の作動点aが
定まる。ハッチングで示した面積Aが1セル当りの電力
(=負荷)となる。
In the conventional fuel cell system control method as described above, the battery of the fuel cell main body 1 serving as the basis for setting the valve opening (or flow rate) corresponding to the load amount shown in FIG. The initial characteristics of the cell characteristics are shown in FIG. FIG. 11 is an initial characteristic diagram of a battery cell, and FIG. 12 is a characteristic diagram showing a case where the battery cell characteristic is deteriorated. FIG. 11 shows
The horizontal axis represents the battery current density Ai (mA / cm 2 ) and the vertical axis represents the battery cell voltage Vc (V), showing the initial characteristics. If a certain load amount is determined, the operation on the characteristic curve is performed. The point a is set. The area A indicated by hatching is the electric power (= load) per cell.

【0006】以上のような燃料電池システムの制御方法
において、電池セル特性が劣化した場合を考える。図1
2は、電池セル特性が劣化した場合を示したもので、破
線で示した特性が劣化時特性である。このように電池セ
ル特性が劣化したものに対して、初期特性時と同一の電
力(=負荷)が要求された場合、破線ハッチングの面積
A´は第11図に示すAと同じになるように特性曲線上
の作動点a´に移行する。すなわち、同一電力を得るた
めには、電池セル電圧の低下分を電池電流値を増加させ
て補うことになる。このことは、燃料電池本体1の水素
極1aでの水素の消費量が増加することを意味する。
Consider the case where the battery cell characteristics are deteriorated in the above fuel cell system control method. Figure 1
2 shows the case where the battery cell characteristics deteriorated, and the characteristics shown by the broken line are the characteristics at the time of deterioration. When the same electric power (= load) as that in the initial characteristic is required for the deteriorated battery cell characteristic, the area A'in the hatching of the broken line should be the same as A shown in FIG. The process moves to the operating point a'on the characteristic curve. That is, in order to obtain the same electric power, the decrease in the battery cell voltage is compensated by increasing the battery current value. This means that the amount of hydrogen consumed at the hydrogen electrode 1a of the fuel cell body 1 increases.

【0007】この場合、上記従来の電池セル特性の初期
性能を基にした制御方法では、水素の消費量の増加に対
して対応することができず、水素極1aでの水素不足に
よる電池損傷、また燃料改質系2に供給するバーナ燃料
の不足による改質性能低下、バーナ失火等の問題があっ
た。また、従来の燃料電池システムの制御方法では、燃
料改質系の触媒劣化による改質ガス中の水素量低下が考
慮されておらず、燃料電池本体における水素不足の問題
があった。
In this case, the conventional control method based on the initial performance of the battery cell characteristics cannot cope with an increase in the consumption of hydrogen, and battery damage due to lack of hydrogen in the hydrogen electrode 1a, Further, there are problems such as deterioration of reforming performance and burner misfire due to insufficient burner fuel supplied to the fuel reforming system 2. Further, in the conventional control method of the fuel cell system, the decrease in the amount of hydrogen in the reformed gas due to the catalyst deterioration of the fuel reforming system is not taken into consideration, and there is a problem of hydrogen shortage in the fuel cell main body.

【0008】本発明は、上記従来技術の問題点を解決す
るためになされたもので、電池セル特性の劣化に対応し
て、劣化時に、燃料電池本体の水素極に供給する水素量
を増加することにより、安定した電気出力が得られる燃
料電池装置の制御方法を提供することを、その第1の目
的とするものである。また、本発明の第2の目的は、燃
料改質系の触媒劣化に対応して、燃料改質系への主燃料
流量と水蒸気流量を増加することにより安定した電気出
力が得られる燃料電池装置の制御方法を提供することに
ある。
The present invention has been made to solve the above-mentioned problems of the prior art. In response to deterioration of battery cell characteristics, the amount of hydrogen supplied to the hydrogen electrode of the fuel cell body at the time of deterioration is increased. Accordingly, it is a first object of the present invention to provide a method for controlling a fuel cell device that can obtain a stable electric output. A second object of the present invention is to provide a fuel cell device capable of obtaining stable electric output by increasing the main fuel flow rate and steam flow rate to the fuel reforming system in response to catalyst deterioration of the fuel reforming system. It is to provide a control method of.

【0009】[0009]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明の燃料電池装置の制御方法に係る第1
の発明の構成は、燃料電池本体と、この燃料電池本体に
対する燃料改質系,空気供給系,電池冷却系と、排ガス
系と、これらを制御する制御系とを備え、前記燃料電池
本体における電池反応に必要な水素,酸素の供給量を制
御する主燃料調節弁,カソード空気調節弁,および水蒸
気調節手段の制御機能を有する燃料電池装置の制御方法
において、現在の出力電力値に対する初期の電池電圧値
と現在電池電圧値との偏差から、主燃料流量,カソード
空気流量,水蒸気流量のそれぞれの必要増加分を演算す
る機能を加えた制御系により、前記主燃料調節弁,カソ
ード空気調節弁,水蒸気調節手段の制御を行うようにし
たものである。
In order to achieve the above-mentioned first object, a first method according to a control method of a fuel cell device of the present invention is provided.
According to another aspect of the present invention, there is provided a fuel cell main body, a fuel reforming system for the fuel cell main body, an air supply system, a cell cooling system, an exhaust gas system, and a control system for controlling these. In a control method of a fuel cell device having a control function of a main fuel control valve for controlling the supply amount of hydrogen and oxygen required for a reaction, a cathode air control valve, and a steam control means, an initial cell voltage with respect to a current output power value The main fuel control valve, the cathode air control valve, and the steam are controlled by a control system that has a function of calculating the necessary increase amounts of the main fuel flow rate, the cathode air flow rate, and the steam flow rate from the deviation between the current value and the current cell voltage value. The adjusting means is controlled.

【0010】また、上記第2の目的を達成するために、
本発明の燃料電池装置の制御方法に係る第2の発明の構
成は、燃料電池本体と、この燃料電池本体に対する燃料
改質系,空気供給系,電池冷却系と、排ガス系と、これ
らを制御する制御系とを備え、少なくとも、前記燃料電
池本体における電池反応に必要な水素の供給量を制御す
る主燃料調節弁,水蒸気調節手段の制御機能を有する燃
料電池装置の制御方法において、燃料改質系の燃焼ガス
出口の水素濃度の初期値と現在値との偏差から、主燃料
流量および水蒸気流量のそれぞれの必要増加分を演算す
る機能を加えた制御系により、前記主燃料調節弁,水蒸
気調節手段の制御を行うようにしたものである。
In order to achieve the above second object,
The configuration of the second invention relating to the control method of the fuel cell device of the present invention is to control a fuel cell main body, a fuel reforming system, an air supply system, a cell cooling system, and an exhaust gas system for the fuel cell main body. A control system for a fuel cell device, comprising at least a main fuel control valve for controlling a supply amount of hydrogen required for a cell reaction in the fuel cell main body, and a control function of a steam control means. The main fuel control valve and steam control are controlled by a control system that adds a function to calculate the required increase in each of the main fuel flow rate and steam flow rate from the deviation between the initial value and the current value of the hydrogen concentration at the combustion gas outlet of the system. The means is controlled.

【0011】[0011]

【作用】燃料電池本体の初期の負荷に対する電池電圧の
特性を関数として制御装置内に記憶させておく。さら
に、上記関数より、現在の出力電力値に対する初期の電
池電圧と現在電池電圧値との偏差から、主燃料調節弁,
カソード空気調節弁,水蒸気調節弁の増加開度(または
増加流量)をあらかじめ関数として制御装置内に記憶さ
せておく。これにより、電池出力電圧と出力電流から求
められる現在電力値と電圧とで自動的に最適な上記各調
節弁の開度制御(または流量制御)を行うことができ
る。これにより、燃料電池本体の水素極における水素不
足、燃料改質系における改質性能低下、バーナ失火等の
問題を起すことがない。
The characteristic of the cell voltage with respect to the initial load of the fuel cell body is stored as a function in the control device. Further, from the above function, from the deviation between the initial battery voltage and the current battery voltage value with respect to the current output power value, the main fuel control valve,
The increased opening degree (or increased flow rate) of the cathode air control valve and the steam control valve is stored as a function in the control device in advance. As a result, it is possible to automatically perform the optimum opening degree control (or flow rate control) of each of the control valves based on the current power value and the voltage obtained from the battery output voltage and the output current. As a result, problems such as lack of hydrogen in the hydrogen electrode of the fuel cell body, deterioration of reforming performance in the fuel reforming system, burner misfire, etc. do not occur.

【0012】燃料改質系の初期の負荷に対する改質ガス
出口の水素濃度の特性を関数として制御装置内に記憶さ
せておき、この関数より、現在の改質ガス水素濃度と初
期値との偏差から、主燃料調節弁と水蒸気調節弁の増加
開度(または増加流量)をあらかじめ関数として制御装
置内に記憶させておく。これにより、燃料改質系の改質
ガス出口の水素濃度から自動的に最適な主燃料調節弁と
水蒸気調節弁の開度精度(または流量制御)を行うこと
ができる。
The characteristic of the hydrogen concentration at the reformed gas outlet with respect to the initial load of the fuel reforming system is stored in the control device as a function, and from this function, the deviation between the present reformed gas hydrogen concentration and the initial value is stored. Therefore, the increased opening degree (or increased flow rate) of the main fuel control valve and the steam control valve is stored in advance in the control device as a function. As a result, it is possible to automatically perform optimum opening accuracy (or flow rate control) of the main fuel control valve and the steam control valve from the hydrogen concentration at the reformed gas outlet of the fuel reforming system.

【0013】[0013]

【実施例】以下、本発明の各実施例を図1ないし図8を
参照して説明する。図1は、先に説明したように一般的
な燃料電池システムの構成を示す系統図で、本実施例の
燃料電池システムの機器構成および系統は、基本的には
図1に示すものと同等であるから、その構成の説明を省
略する。まず、第1の発明の実施例を図1に合わせて図
2ないし図5を参照して説明する。図2は、本発明の一
実施例に係る燃料電池システムの制御系統図、図3は、
図図の制御系における負荷に対応した弁開度(または流
量)の線図、図4は、図2の関数発生器FG4の初期特
性線図、図5は、図2の関数発生器FG1´ないしFG3
´の設定例を示した線図である。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a system diagram showing the configuration of a general fuel cell system as described above, and the device configuration and system of the fuel cell system of this embodiment are basically the same as those shown in FIG. Therefore, the description of the configuration is omitted. First, an embodiment of the first invention will be described with reference to FIGS. 2 to 5 in addition to FIG. 2 is a control system diagram of a fuel cell system according to an embodiment of the present invention, and FIG.
A diagram of the valve opening (or flow rate) corresponding to the load in the control system in the figure, FIG. 4 is an initial characteristic diagram of the function generator FG 4 in FIG. 2, and FIG. 5 is a function generator FG in FIG. 1 'to FG 3
It is a diagram showing a setting example of '.

【0014】図2において、先の図9と同一符号,記号
部は従来技術の制御系統と同等部分であるから、その説
明を省略する。図2に示す関数発生器FG4は、電池セ
ル特性の初期特性時の負荷と電池電圧との関係を関数化
したもので、図4に示すような関数が設定されている。
ここに図4は、横軸に負荷(%)、縦軸に電池トータル
電圧(V)をとって初期性能の関数(曲線)を示したも
のである。図2に示すように、電池出力電圧と電池出力
電流値との積から現在の出力電力値を演算し、その電力
値(負荷)に対応する初期の電池電圧を関数発生器FG
4により演算する。この演算結果すなわち初期の電池電
圧と、現在の電池出力電圧との差を演算し、関数発生器
FG1´,FG2´,FG3´に入力する。
In FIG. 2, the same reference numerals and symbols as those in FIG. 9 are equivalent to those in the conventional control system, and therefore their explanations are omitted. The function generator FG 4 shown in FIG. 2 is a function of the relationship between the load and the battery voltage at the initial characteristic of the battery cell characteristic, and the function as shown in FIG. 4 is set.
Here, FIG. 4 shows the function (curve) of the initial performance with the load (%) on the horizontal axis and the battery total voltage (V) on the vertical axis. As shown in FIG. 2, the current output power value is calculated from the product of the battery output voltage and the battery output current value, and the initial battery voltage corresponding to the power value (load) is calculated as the function generator FG.
Calculate with 4 . The calculation result, that is, the difference between the initial battery voltage and the current battery output voltage is calculated and input to the function generators FG 1 ′, FG 2 ′, FG 3 ′.

【0015】FG1´は、主燃料調節弁9の電圧偏差分
に対応する弁開度増加分、すなわち流量増加量を演算す
るための関数発生器、FG2´は、カソード空気調節弁
10の電圧偏差分に対応する弁開度増加分、すなわち流
量増加量を演算するための関数発生器、FG3´は、上
記調節弁11の電圧偏差分に対応する弁開度増加分、す
なわち流量増加量を演算するための関数発生器である。
これらの関数発生器は、図5に示すような設定となって
いる。ここで図5は、横軸に電圧偏差分(ΔV)をと
り、縦軸に弁開度または流量増加分(%)をとって、設
定される関数がリニアに変化することを示している。関
数設定は、弁の種類,流体条件によって異なることはい
うまでもない。
FG 1 ′ is a function generator for calculating the valve opening increase corresponding to the voltage deviation of the main fuel control valve 9, that is, the flow rate increase amount, and FG 2 ′ is the cathode air control valve 10. The function generator for calculating the increase in valve opening corresponding to the voltage deviation, that is, the flow rate increase amount, FG 3 ′, is the increase in valve opening corresponding to the voltage deviation of the control valve 11, that is, the increase in flow rate. It is a function generator for calculating a quantity.
These function generators are set as shown in FIG. Here, FIG. 5 shows that the horizontal axis indicates the voltage deviation (ΔV) and the vertical axis indicates the valve opening or the flow rate increase (%), and the set function changes linearly. It goes without saying that the function setting differs depending on the type of valve and fluid conditions.

【0016】関数発生器FG1´,FG2´,FG3´の
それぞれで得られた主燃料調節弁9,カソード空気調節
弁10,蒸気調節弁11の弁開度(流量)増加分を、関
数発生器FG1,FG2,FG3で得られた各調節弁の弁
開度(流量)に加算して、前記各調節弁を制御すること
により、図3に破線で示したような制御値が得られる。
The valve opening (flow rate) increments of the main fuel control valve 9, the cathode air control valve 10 and the steam control valve 11 obtained by the function generators FG 1 ′, FG 2 ′ and FG 3 ′, respectively, By controlling the control valves by adding them to the valve opening (flow rate) of each control valve obtained by the function generators FG 1 , FG 2 , and FG 3 , the control shown by the broken line in FIG. 3 is performed. The value is obtained.

【0017】本実施例によれば、経年的に劣化する電池
性能、具体的には電池セル特性の劣化に対して、その劣
化を自動的に検出して、燃料電池本体水素極に供給する
水素量を増加させることができるので、電池性能劣化に
よる水素不足,改質性能低下、バーナ失火等の問題が解
決され、安定した電気出力が得られる燃料電池システム
の制御方法を提供することができる。なお、上記の実施
例では、水蒸気供給流量の制御は水蒸気調節弁11の弁
開度によって調節する例を説明したが、可変エジェクタ
などの水蒸気調節手段を制御するようにしても差支えな
い。
According to this embodiment, with respect to the deterioration of the battery performance, that is, the deterioration of the battery cell characteristics, which is deteriorated over time, the deterioration is automatically detected and the hydrogen supplied to the hydrogen electrode of the fuel cell body is supplied. Since the amount can be increased, it is possible to provide a control method for a fuel cell system that solves problems such as hydrogen shortage due to cell performance deterioration, reforming performance deterioration, burner misfire, and the like, and a stable electric output can be obtained. In the above embodiment, the steam supply flow rate is controlled by adjusting the valve opening of the steam control valve 11. However, steam control means such as a variable ejector may be controlled.

【0018】次に、第2の発明の実施例を図1に合わせ
て図6ないし図8を参照して説明する。図6は、本発明
の他の実施例に係る燃料電池システムの制御系統図、図
7は、図6の関数発生器FG5の初期特性線図、図8
は、図6の制御系における関数発生器FG1″ないしF
3″の設定例を示した線図である。図6において、図
9と同一符号,記号部は従来技術の制御系統と同等部分
であるから、その説明を省略する。図1において、13
は水素濃度検出器で、この水素濃度検出器13は、燃料
改質系2の燃焼ガス出口の水素濃度を検出し、その検出
値を制御装置6に送る。
Next, an embodiment of the second invention will be described with reference to FIGS. 6 to 8 in combination with FIG. FIG. 6 is a control system diagram of a fuel cell system according to another embodiment of the present invention, FIG. 7 is an initial characteristic diagram of the function generator FG 5 of FIG. 6, and FIG.
Is a function generator FG 1 ″ to F in the control system of FIG.
9 is a diagram showing a setting example of G 3 ″. In FIG. 6, the same reference numerals and symbols as those in FIG. 9 are the same as those in the control system of the conventional art, and thus the description thereof will be omitted.
Is a hydrogen concentration detector, and this hydrogen concentration detector 13 detects the hydrogen concentration at the combustion gas outlet of the fuel reforming system 2 and sends the detected value to the control device 6.

【0019】図6に示す関数発生器FG5は、燃料改質
系2の燃焼ガス出口における水素濃度の初期特性時の負
荷と水素濃度との関係を図7に示す関数に設定したもの
である。ここに図7は、横軸に負荷(%)、縦軸に水素
濃度をとって初期性能の関数を実線で、偏差がΔH2
ある水素濃度の現在値を破線で示したものである。図6
に示すように、電池電力電圧と電池出力電流値との積か
ら現在の出力電力値を演算し、その電力値(負荷)に対
応する初期の水素濃度を関数発生器FG5により演算す
る。この演算結果すなわち水素濃度の初期値と、前記の
水素濃度検出器13が検出した燃料改質系2の燃焼ガス
出口における水素濃度の現在値との差を演算し、関数発
生器FG1″,FG2″,FG3″に入力する。
The function generator FG 5 shown in FIG. 6 sets the relationship between the load and the hydrogen concentration at the initial characteristic of the hydrogen concentration at the combustion gas outlet of the fuel reforming system 2 to the function shown in FIG. . In FIG. 7, the load (%) is plotted on the horizontal axis and the hydrogen concentration is plotted on the vertical axis, and the function of the initial performance is shown by a solid line, and the present value of the hydrogen concentration having a deviation of ΔH 2 is shown by a broken line. Figure 6
As shown in, the current output power value is calculated from the product of the battery power voltage and the battery output current value, and the initial hydrogen concentration corresponding to the power value (load) is calculated by the function generator FG 5 . The difference between this calculation result, that is, the initial value of the hydrogen concentration and the present value of the hydrogen concentration at the combustion gas outlet of the fuel reforming system 2 detected by the hydrogen concentration detector 13 is calculated, and the function generator FG 1 ″, Input to FG 2 ″ and FG 3 ″.

【0020】FG1″は、主燃料調節弁9の水素濃度偏
差分に対応する弁開度増加分、すなわち流量増加量を演
算するための関数発生器、FG2″は、カソード空気調
節弁10の水素濃度偏差分に対応する弁開度増加分、す
なわち流量増加量を演算するための関数発生器、F
3″は、蒸気調節弁11の水素濃度偏差分に対応する
弁開度増加分、すなわち流量増加量を演算するための関
数発生器である。
FG 1 ″ is a function generator for calculating the valve opening increase corresponding to the hydrogen concentration deviation of the main fuel control valve 9, that is, the flow rate increase amount, and FG 2 ″ is the cathode air control valve 10. Function generator for calculating the valve opening increase corresponding to the hydrogen concentration deviation of
G 3 ″ is a function generator for calculating the valve opening increase corresponding to the hydrogen concentration deviation of the steam control valve 11, that is, the flow rate increase.

【0021】これらの関数発生器は、図8に示すような
設定となっている。ここで図8は、横軸に水素濃度偏差
分、縦軸に弁開度または流量増加分(%)をとって、設
定される関数がリニアに変化することを示している。関
数発生器FG1″,FG2″,FG3″のそれぞれで得ら
れた主燃料調節弁9,カソード空気調節弁10,蒸気調
節弁11の弁開度(流量)増加分を、関数発生器F
1,FG2,FG3で得られた各調節弁の弁開度(流
量)に加算して、前記各調節弁を制御することにより、
適正な制御値が得られる。
These function generators are set as shown in FIG. Here, FIG. 8 shows that the abscissa represents the hydrogen concentration deviation and the ordinate represents the valve opening or the flow rate increase (%), and the set function changes linearly. The function generators FG 1 ″, FG 2 ″, and FG 3 ″ are used to calculate the valve opening (flow rate) increments of the main fuel control valve 9, the cathode air control valve 10, and the steam control valve 11, respectively. F
By adding to the valve opening (flow rate) of each control valve obtained in G 1 , FG 2 , and FG 3 to control each control valve,
A proper control value can be obtained.

【0022】このように第2の発明の実施例によれば、
燃料改質系の触媒劣化による水素量不足を自動的に検出
し、燃料電池本体へ必要水素量を供給することができる
ので、先の第1の発明の実施例と同様の効果が期待さ
れ、安定した電気出力が得られる。なお、上記の実施例
では、水素濃度の初期値と現在値との偏差から、主燃料
調節弁9,カソード空気調節弁10,蒸気調節弁11を
制御する例を説明したが、少なくとも、主燃料調節弁,
水蒸気調節手段の制御を行えば、目的が達せられるもの
である。
Thus, according to the embodiment of the second invention,
Since the shortage of hydrogen amount due to catalyst deterioration of the fuel reforming system can be automatically detected and the required amount of hydrogen can be supplied to the fuel cell main body, the same effect as that of the first embodiment of the invention is expected, A stable electric output can be obtained. In the above embodiment, an example in which the main fuel control valve 9, the cathode air control valve 10, and the steam control valve 11 are controlled based on the deviation between the initial value and the current value of the hydrogen concentration has been described. Control valve,
The purpose can be achieved by controlling the water vapor control means.

【0023】[0023]

【発明の効果】以上詳細に説明したように、本発明によ
れば、電池セル特性の劣化に対応して、劣化時に燃料電
池本体の水素極に供給する水素量を増加することによ
り、安定した電気出力が得られる燃料電池装置の制御方
法を提供することができる。また、燃料改質系の触媒劣
化に対応して、燃料改質系への主燃料流量と水蒸気流量
を増加することにより安定した電気出力が得られる燃料
電池装置の制御方法を提供することができる。
As described in detail above, according to the present invention, in response to the deterioration of battery cell characteristics, by increasing the amount of hydrogen supplied to the hydrogen electrode of the fuel cell main body at the time of deterioration, stable operation is achieved. It is possible to provide a method for controlling a fuel cell device that can obtain an electric output. Further, it is possible to provide a method of controlling a fuel cell device that can obtain a stable electric output by increasing the main fuel flow rate and the steam flow rate to the fuel reforming system in response to catalyst deterioration of the fuel reforming system. .

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的な燃料電池システムの構成を示す系統図
である。
FIG. 1 is a system diagram showing a configuration of a general fuel cell system.

【図2】本発明の一実施例に係る燃料電池システムの制
御系統図である。
FIG. 2 is a control system diagram of a fuel cell system according to an embodiment of the present invention.

【図3】図2の制御系における負荷に対応した弁開度
(または流量)の線図である。
3 is a diagram of a valve opening (or flow rate) corresponding to a load in the control system of FIG.

【図4】図2の関数発生器FG4の初期特性線図であ
る。
FIG. 4 is an initial characteristic diagram of the function generator FG 4 of FIG.

【図5】図2の関数発生器FG1´ないしFG3´の設定
例を示した線図である。
5 is a diagram showing a setting example of the function generators FG 1 ′ to FG 3 ′ of FIG.

【図6】本発明の他の実施例に係る燃料電池システムの
制御系統図である。
FIG. 6 is a control system diagram of a fuel cell system according to another embodiment of the present invention.

【図7】図6の関数発生器FG5の初期特性線図であ
る。
7 is an initial characteristic diagram of the function generator FG 5 of FIG.

【図8】図6の制御系における関数発生器FG1″ない
しFG3″の設定例を示した線図である。
8 is a diagram showing a setting example of function generators FG 1 ″ to FG 3 ″ in the control system of FIG.

【図9】従来の燃料電池システムの制御系統図である。FIG. 9 is a control system diagram of a conventional fuel cell system.

【図10】図9の制御系における負荷対応した弁開度
(または流量)の線図である。
10 is a diagram of a valve opening (or flow rate) corresponding to a load in the control system of FIG.

【図11】電池セルの初期特性線図である。FIG. 11 is an initial characteristic diagram of a battery cell.

【図12】電池セル特性の劣化時を示す特性線図であ
る。
FIG. 12 is a characteristic diagram showing when the battery cell characteristics are deteriorated.

【符号の説明】[Explanation of symbols]

1 燃料電池本体 2 燃料改質系 3 電池冷却系 4 エジェクタ 6 制御装置 9 主燃料調節弁 10 カソード空気調節弁 11 水蒸気調節弁 13 水素濃度検出器 1 Fuel cell body 2 Fuel reforming system 3 Battery cooling system 4 ejectors 6 control device 9 Main fuel control valve 10 Cathode air control valve 11 Water vapor control valve 13 Hydrogen concentration detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀内 進 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 (72)発明者 池田 元一 神奈川県逗子市久木二丁目6番地 B−9 (72)発明者 奥田 誠 東京都葛飾区高砂三丁目2番7号−144   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Susumu Horiuchi             603 Jinmachi-cho, Tsuchiura-shi, Ibaraki Japan Co., Ltd.             Tachiura Tsuchiura Factory (72) Inventor Genichi Ikeda             6-9 Hisagi, Zushi City, Kanagawa Prefecture B-9 (72) Inventor Makoto Okuda             3-2 Takasago 3-72, Katsushika-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池本体と、この燃料電池本体に対
する燃料改質系,空気供給系,電池冷却系と、排ガス系
と、これらを制御する制御系とを備え、前記燃料電池本
体における電池反応に必要な水素,酸素の供給量を制御
する主燃料調節弁,カソード空気調節弁,および水蒸気
調節手段の制御機能を有する燃料電池装置の制御方法に
おいて、現在の出力電力値に対する初期の電池電圧値と
現在電池電圧値との偏差から、主燃料流量,カソード空
気流量,水蒸気流量のそれぞれの必要増加分を演算する
機能を加えた制御系により、前記主燃料調節弁,カソー
ド空気調節弁,水蒸気調節手段の制御を行うことを特徴
とする燃料電池装置の制御方法。
1. A cell reaction in the fuel cell body, comprising a fuel cell body, a fuel reforming system for the fuel cell body, an air supply system, a cell cooling system, an exhaust gas system, and a control system for controlling these. In the control method of the fuel cell device having the control functions of the main fuel control valve for controlling the supply amount of hydrogen and oxygen required for the fuel cell, the cathode air control valve, and the steam control means, the initial cell voltage value with respect to the current output power value Of the main fuel flow rate, cathode air flow rate, and steam flow rate based on the deviation between the current fuel cell voltage value and the current cell voltage A method for controlling a fuel cell device, comprising controlling the means.
【請求項2】 燃料電池本体と、この燃料電池本体に対
する燃料改質系,空気供給系,電池冷却系と、排ガス系
と、これらを制御する制御系とを備え、少なくとも、前
記燃料電池本体における電池反応に必要な水素の供給量
を制御する主燃料調節弁,水蒸気調節手段の制御機能を
有する燃料電池装置の制御方法において、燃料改質系の
燃焼ガス出口の水素濃度の初期値と現在値との偏差か
ら、主燃料流量および水蒸気流量のそれぞれの必要増加
分を演算する機能を加えた制御系により、前記主燃料調
節弁,水蒸気調節手段の制御を行うことを特徴とする燃
料電池装置の制御方法。
2. A fuel cell main body, a fuel reforming system for the fuel cell main body, an air supply system, a cell cooling system, an exhaust gas system, and a control system for controlling these, at least in the fuel cell main body. In a control method of a fuel cell device having a control function of a main fuel control valve and a steam control means for controlling a hydrogen supply amount required for a cell reaction, an initial value and a current value of hydrogen concentration at a combustion gas outlet of a fuel reforming system. Of the main fuel flow rate and the steam flow rate, the control system having a function of calculating the required increase amounts of the main fuel flow rate and the steam flow rate controls the main fuel control valve and the steam control means. Control method.
JP3150724A 1991-06-24 1991-06-24 Controlling method for fuel cell device Pending JPH053041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3150724A JPH053041A (en) 1991-06-24 1991-06-24 Controlling method for fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3150724A JPH053041A (en) 1991-06-24 1991-06-24 Controlling method for fuel cell device

Publications (1)

Publication Number Publication Date
JPH053041A true JPH053041A (en) 1993-01-08

Family

ID=15503027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3150724A Pending JPH053041A (en) 1991-06-24 1991-06-24 Controlling method for fuel cell device

Country Status (1)

Country Link
JP (1) JPH053041A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179404A (en) * 2000-12-08 2002-06-26 Toho Gas Co Ltd Operation control system for fuel reformer
JP2006331761A (en) * 2005-05-25 2006-12-07 Hitachi Ltd Fuel cell power generation system
JP4474688B1 (en) * 2009-03-31 2010-06-09 Toto株式会社 Solid oxide fuel cell
WO2010114042A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114048A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114045A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114047A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114049A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114046A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
JP2010238618A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel battery
JP2012054110A (en) * 2010-09-01 2012-03-15 Honda Motor Co Ltd Fuel cell system
JP2012142120A (en) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp Fuel cell system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292575A (en) * 1987-05-26 1988-11-29 Toshiba Corp Fuel cell power generating system
JPH0256864A (en) * 1988-08-22 1990-02-26 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generating system capable of monitoring state of reforming catalyst
JPH0298063A (en) * 1988-10-04 1990-04-10 Fuji Electric Co Ltd Operation control device for fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292575A (en) * 1987-05-26 1988-11-29 Toshiba Corp Fuel cell power generating system
JPH0256864A (en) * 1988-08-22 1990-02-26 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generating system capable of monitoring state of reforming catalyst
JPH0298063A (en) * 1988-10-04 1990-04-10 Fuji Electric Co Ltd Operation control device for fuel cell

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179404A (en) * 2000-12-08 2002-06-26 Toho Gas Co Ltd Operation control system for fuel reformer
JP2006331761A (en) * 2005-05-25 2006-12-07 Hitachi Ltd Fuel cell power generation system
JP2010238618A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel battery
WO2010114043A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
JP4622005B2 (en) * 2009-03-31 2011-02-02 Toto株式会社 Solid oxide fuel cell
JP4656610B2 (en) * 2009-03-31 2011-03-23 Toto株式会社 Solid oxide fuel cell
WO2010114045A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114047A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114049A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114046A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
JP2010238627A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel cell
JP2010238619A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel cell
JP2010238616A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel cell
JP2010238601A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel cell
US9184457B2 (en) 2009-03-31 2015-11-10 Toto Ltd. Solid oxide fuel cell device
WO2010114042A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114048A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
JP4656611B2 (en) * 2009-03-31 2011-03-23 Toto株式会社 Solid oxide fuel cell
US20120028153A1 (en) * 2009-03-31 2012-02-02 Toto Ltd. Solid oxide fuel cell
JP4474688B1 (en) * 2009-03-31 2010-06-09 Toto株式会社 Solid oxide fuel cell
CN102414895A (en) * 2009-03-31 2012-04-11 Toto株式会社 Solid electrolyte fuel cell
US8980496B2 (en) 2009-03-31 2015-03-17 Toto Ltd. Solid oxide fuel cell
US8426074B2 (en) 2009-03-31 2013-04-23 Toto Ltd. Solid oxide fuel cell
US8492041B2 (en) 2009-03-31 2013-07-23 Toto Ltd. Solid oxide fuel cell
US8859156B2 (en) 2009-03-31 2014-10-14 Toto Ltd. Solid oxide fuel cell
US8968953B2 (en) 2009-03-31 2015-03-03 Toto Ltd. Solid oxide fuel cell
JP2012054110A (en) * 2010-09-01 2012-03-15 Honda Motor Co Ltd Fuel cell system
JP2012142120A (en) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp Fuel cell system

Similar Documents

Publication Publication Date Title
US5637414A (en) Method and system for controlling output of fuel cell power generator
US7824814B2 (en) Power generation control system for fuel cell
JPH053041A (en) Controlling method for fuel cell device
JP2924673B2 (en) Operation control method for fuel cell power generation system
JP2013140715A (en) Fuel cell system
JP3651927B2 (en) Load control device for fuel cell power generator
JP2011233439A (en) Operation control method and system for fuel cell
JP3661826B2 (en) Fuel cell power generation control method
JP4944597B2 (en) Solid oxide fuel cell power generation system and operation control method thereof
JPH0444391B2 (en)
JP2671523B2 (en) Operation control method for fuel cell power generator
JPH07105965A (en) Fuel cell power generating device and method for controlling same
JP2001325975A (en) Fuel cell power generation apparatus and its control method
JP2003217627A (en) Fuel feed control device, fuel feed control method, and power supply system
JPH0461464B2 (en)
JP2006059685A (en) Fuel cell power supply device and control method for fuel cell power supply device
JP3570355B2 (en) Fuel cell system
JPS6229868B2 (en)
JPS6345763A (en) Operation controller of fuel cell power generating plant
JPH079813B2 (en) Fuel cell power plant
JPS60253171A (en) Fuel battery power generation system
JP2004199978A (en) Fuel cell combined cycle power generation system
JPS6332868A (en) Fuel cell power generating system
JP2000067894A (en) Fuel cell power generating system, and power generating system
JP3915934B2 (en) Output control method and circuit of fuel cell inverter