JPH0298063A - Operation control device for fuel cell - Google Patents

Operation control device for fuel cell

Info

Publication number
JPH0298063A
JPH0298063A JP63250153A JP25015388A JPH0298063A JP H0298063 A JPH0298063 A JP H0298063A JP 63250153 A JP63250153 A JP 63250153A JP 25015388 A JP25015388 A JP 25015388A JP H0298063 A JPH0298063 A JP H0298063A
Authority
JP
Japan
Prior art keywords
power
fuel cell
voltage
output voltage
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63250153A
Other languages
Japanese (ja)
Other versions
JP2621424B2 (en
Inventor
Noriyuki Nakajima
中島 憲之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63250153A priority Critical patent/JP2621424B2/en
Publication of JPH0298063A publication Critical patent/JPH0298063A/en
Application granted granted Critical
Publication of JP2621424B2 publication Critical patent/JP2621424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce the loss in a power converter by comparing the voltage of the transmission power after the start of the power generation with the desired voltage value at the start of the power generation obtained from a memory, and controlling the cell temperature via a cooling medium is accordance with the deviation therebetween. CONSTITUTION:The relation between the output voltage and the load current at the start of the power generation is stored in a memory 23. As to the transmission power after the start of the power generation, the output voltage at the start corresponding to the load current thereof is output from the memory 23 as a desired value, and this desired output voltage value and the output voltage at the transmission power are input to a temperature controller 24, and the rotating speed of a circulating fan 3 is controlled according to the deviation between these two voltages to control the cooling air flow rate and hence the cell temperature in a cell stack. In this case, the cooling air flow rate is controlled so that, after the start, the cell temperature is higher i.e., the cooling air flow rate is smaller than those at the start. Thus, even after the start, the high output voltage at the start can be maintained for the power, so that the set load power can be transmitted with a reduced load current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料および酸化剤の供給による電池反応によ
る発電する電力を外部負荷に供給する燃料電池の運転制
御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an operation control device for a fuel cell that supplies electric power generated by a cell reaction caused by supply of fuel and an oxidizing agent to an external load.

〔従来の技術〕[Conventional technology]

燃料電池は単電池を積層してなるセルスタックヲ備工、
セルスタックの単電池に反応ガスとしての燃料ガスと酸
化剤ガスとを供給して電池反応を起こさせて発電する。
Fuel cells are equipped with a cell stack consisting of stacked single cells.
Fuel gas and oxidant gas as reaction gases are supplied to the single cells of the cell stack to cause a cell reaction and generate electricity.

この際、電池反応に伴って熱が発生するので、セルスタ
ックlこ供給する冷却媒体により除熱してセルスタック
を冷却して燃料電池の運転温度を保持している。このよ
うにして燃料電池にて発電した電力は燃料電池から外部
負荷に送電される。
At this time, heat is generated as a result of the cell reaction, so the heat is removed by a cooling medium supplied to the cell stack to cool the cell stack and maintain the operating temperature of the fuel cell. The power generated by the fuel cell in this manner is transmitted from the fuel cell to an external load.

このような燃料電池の発電システムとして従来第2図1
こ示すものが知られている。図において1は燃料電池で
あり、燃料ガスと酸化剤ガスとをそれぞれ供給する燃料
ガス供給装置と酸化剤ガス供給装置とからなる反応ガス
供給装置2から供給される燃料ガスと酸化剤ガスとによ
り電池反応を起こして発電する。この際、電池反応によ
り発生する熱は、循環ファン3を備え、燃料電池の冷却
流路1aを径由する循環流路4を有する冷却空気供給系
5により、循環ファン3を駆動して冷却空気を大気より
吸込んで循環流路4に循環させる冷却空気により除去さ
れ、燃料電池1の運転温度が保持される。
As such a fuel cell power generation system, the conventional power generation system is shown in Fig. 2.1.
This is known. In the figure, reference numeral 1 denotes a fuel cell, which is powered by fuel gas and oxidant gas supplied from a reaction gas supply device 2 consisting of a fuel gas supply device and an oxidant gas supply device that supply fuel gas and oxidant gas, respectively. Generates electricity by causing a battery reaction. At this time, the heat generated by the cell reaction is removed by a cooling air supply system 5, which is equipped with a circulation fan 3 and has a circulation flow path 4 passing through the cooling flow path 1a of the fuel cell. is removed by the cooling air sucked in from the atmosphere and circulated through the circulation channel 4, and the operating temperature of the fuel cell 1 is maintained.

運転温度はセルスタックに取付けられた温度セン廿81
こより検出された電池温度の出力信号と温度設定器10
で設定した電池温度の出力信号が温度調節器9Iこ入力
され、その偏差により循環ファン3の回転数を回転数制
御装置を介して制御して設定された運転温度に保持され
る。
The operating temperature is determined by the temperature sensor 廿81 attached to the cell stack.
The output signal of the battery temperature detected from this and the temperature setting device 10
The output signal of the battery temperature set in is inputted to the temperature controller 9I, and the rotation speed of the circulation fan 3 is controlled via the rotation speed control device based on the deviation thereof, and is maintained at the set operating temperature.

ところで燃料電池1で発電した直流電力は外部負荷に必
要な形lこ変換する電力用半導体素子からなる電力変換
器11に例えば直流から交流に変換された後外部負荷1
2に送電される。
By the way, the DC power generated by the fuel cell 1 is converted into the form necessary for the external load by a power converter 11 consisting of a power semiconductor element, for example, from DC to AC.
Power is transmitted to 2.

送電される電力は負荷設定器13により負荷設定され、
この設定負荷指令が制御装置141こ入力される。制御
装置14は設定負荷に対応して燃料ガス流量と酸化剤ガ
ス流量をそれぞれ演算し、この演算された燃料ガス流量
と酸化剤ガス流量とを・燃料電池1に供給するように反
応ガス供給装置2の燃料ガス供給装置と酸化剤ガス供給
装置とを制御する。そして燃料電池1はこの供給される
燃料ガス流量と酸化剤ガス流量とにより発電し、外部負
荷12に設定した電力が送゛邂される。
The power to be transmitted is set as a load by a load setting device 13,
This set load command is input to the control device 141. The control device 14 calculates the fuel gas flow rate and the oxidant gas flow rate in accordance with the set load, and controls the reaction gas supply device so as to supply the calculated fuel gas flow rate and oxidant gas flow rate to the fuel cell 1. The fuel gas supply device and the oxidizing gas supply device of No. 2 are controlled. The fuel cell 1 generates power using the supplied fuel gas flow rate and oxidant gas flow rate, and the electric power set to the external load 12 is transmitted.

ところで、燃料電池の出力特性、すなわち出力電圧と負
荷電流との関係は、縦軸に出力電圧を、横軸に負荷′電
流の燃料電池の定格電流に対する比をとって示した第3
図の発電初期の特性曲線15゜長期運転後の特性曲線1
6が示すように発電初期と長期運転後とでは異なり、運
転時間が増すに従って除々に特性が低下し、一定電流値
で比較すると出力電圧は運転時間が長くなる程低下する
。したがって運転の経過により出力電圧が低下した場合
、負荷電流を増すことにより設定した電力が送電される
By the way, the output characteristics of the fuel cell, that is, the relationship between the output voltage and the load current, are shown in the third graph, where the vertical axis is the output voltage and the horizontal axis is the ratio of the load' current to the rated current of the fuel cell.
Characteristic curve 15° at the beginning of power generation in the figure Characteristic curve 1 after long-term operation
As shown in 6, the characteristics are different between the initial stage of power generation and after long-term operation, and as the operating time increases, the characteristics gradually deteriorate, and when compared at a constant current value, the output voltage decreases as the operating time increases. Therefore, when the output voltage decreases as the operation progresses, the set power is transmitted by increasing the load current.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

電力変換器11は電力用半導体素子から構成されている
が、素子の数や容量は燃料電池の発電システムの定格出
力における最大電流値により決定され、電流値が大きく
なる種牛導体素子の数や容量は増加する。
The power converter 11 is composed of power semiconductor elements, and the number and capacity of the elements are determined by the maximum current value at the rated output of the fuel cell power generation system, and the number and capacity of the stud conductor elements that increase the current value. increases.

ところで燃料電池の出力特性は運転時間の増加に伴って
前述のようfこ低下するので、所定の電力を送電するた
めには目標とする長期の運転時間における出力電圧の低
下による電流増加を見込んで電力変換器には電力用半導
体素子を条目に組み込む必要がある。このため電力用半
導体素子の数を増加したり、あるいは素子の容量をより
大きくするなどする必要があり、これに伴って電力変換
器における損失が増す等の欠点がある。
By the way, the output characteristics of a fuel cell decrease by f as the operating time increases, so in order to transmit a specified amount of power, it is necessary to take into account the increase in current due to the decrease in output voltage during the target long-term operating time. In a power converter, it is necessary to incorporate power semiconductor elements into the lines. For this reason, it is necessary to increase the number of power semiconductor elements or to increase the capacity of the elements, resulting in disadvantages such as increased loss in the power converter.

本発明の目的は、燃料電池から電力を送電する際に使用
される電力変換器の損失を小さくすることのできる燃料
電池の運転制御装置を提供することである。
An object of the present invention is to provide a fuel cell operation control device that can reduce loss in a power converter used when transmitting power from a fuel cell.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明によれば単電池を積
層してなるセルスタックに反応ガスを供給して起きる電
池反応により発生する電力を電力変換器を経て外部負荷
に送電し、電池反応に伴って発生する熱をセルスタック
に供給される冷却媒体により除熱してセルスタックを冷
却する燃料電池において、送電時の燃料電池の出力電圧
を検出する電圧計と、負荷電流を検出する電流計と、こ
の電圧計および電流計で検出した発電初期の電力の電圧
と電流との関係を記憶し、この関係から初期以降の送電
電力の電流に対応する電圧を目標値として取出し可能な
メモリーと、初期以降の送電電力の電圧とメモリーから
の電圧の目標値との偏差により冷却媒体を介してセルス
タックの電池温度を制御する制御手段を設けるものとす
る。
In order to solve the above problems, according to the present invention, the power generated by the battery reaction that occurs when a reactive gas is supplied to a cell stack formed by stacking single cells is transmitted to an external load via a power converter, and the battery reaction In a fuel cell that cools the cell stack by removing the heat generated by the cell stack with a cooling medium supplied to the cell stack, a voltmeter that detects the output voltage of the fuel cell during power transmission and an ammeter that detects the load current are used. and a memory capable of storing the relationship between the voltage and current of the electric power at the initial stage of power generation detected by the voltmeter and the ammeter, and extracting the voltage corresponding to the current of the transmitted power after the initial stage from this relationship as a target value; A control means is provided for controlling the battery temperature of the cell stack via a cooling medium based on the deviation between the voltage of the transmitted power after the initial stage and the target value of the voltage from the memory.

〔作用〕 燃料電池で発電した電力を外部負荷に送電する際、運転
の経過に伴って燃料電池の出力特性は前述のように低下
し、長時間運転後の送電電力の電流に対する電圧は低下
する。したがってこの低下した電圧とメモリーで記憶さ
れた発電初期の電圧と電流との関係から取出される前記
送電電力の電流に対する              
、電圧の目標値との偏差によりセルスタックの電池温度
を冷却媒体を介して制御する、例えば冷却媒体の流量の
制御により電池温度を上昇させて電圧を発電初期の電圧
まで上昇させることにより送電する電力の電流値を低下
させて所定の電力を送電する。
[Operation] When power generated by a fuel cell is transmitted to an external load, the output characteristics of the fuel cell decrease as described above as the operation progresses, and the voltage relative to the current of the transmitted power decreases after long-term operation. . Therefore, from the relationship between this reduced voltage and the voltage and current at the initial stage of power generation stored in memory, the current of the transmitted power is extracted.
, control the battery temperature of the cell stack via a cooling medium based on the deviation from the target voltage value; for example, increase the battery temperature by controlling the flow rate of the cooling medium and increase the voltage to the voltage at the initial stage of power generation, thereby transmitting power. A predetermined amount of power is transmitted by lowering the current value of the power.

ここで、電池温度を上昇させることIこより電圧が上昇
するのは、第4図の燃料電池の電池温度と出力電圧との
関係を示すグラフにおける特性曲線18で示すように電
池温度が上昇するにつれて出力電圧が上昇する特性を有
しているからである。
Here, as the battery temperature increases, the voltage increases as the battery temperature increases, as shown by characteristic curve 18 in the graph showing the relationship between the battery temperature and output voltage of the fuel cell in FIG. This is because it has a characteristic that the output voltage increases.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例による燃料電池の運転制御装置
の制御系統図である。なお、第1図において第2図の従
来例と同一部品には同じ符号を付し、その説明を省略す
る。第1図において従来例と異なるのは燃料電池1から
電力変換器11を経て外部負荷12に送電する電力の電
圧と電流、すなわち燃料電池1の出力電圧と負荷電流と
をそれぞれ検出する電圧計21とt流計22とを設け、
電圧計21と電流計22とで検出した出力電圧と負荷1
!流とを入力し、燃料電池1の電力を外部負荷12に送
電する時の発電初期の出力電圧と負荷電流との関係を記
憶し、さらにこの関係に基づいて送電時の発電初期以降
の電力の負荷電流に対する出力電圧を目標値として取出
し可能なメモリー23を設け、初期以降の前記電力の負
荷電流に対する出力電圧とメモリー23からのこの負荷
電流に対する出力電圧の目標値との偏差(こより循環フ
ァン3の回転数を制御して冷却空気の流量を制御するこ
とによりセルスタックの電池温度を制御する温度調節器
24を設けたことである。
FIG. 1 is a control system diagram of a fuel cell operation control device according to an embodiment of the present invention. In FIG. 1, parts that are the same as those in the conventional example shown in FIG. 2 are given the same reference numerals, and their explanations will be omitted. What is different from the conventional example in FIG. 1 is a voltmeter 21 that detects the voltage and current of the power transmitted from the fuel cell 1 to the external load 12 via the power converter 11, that is, the output voltage and load current of the fuel cell 1, respectively. and a t-flow meter 22,
Output voltage detected by voltmeter 21 and ammeter 22 and load 1
! The relationship between the output voltage and load current at the initial stage of power generation when the power of the fuel cell 1 is transmitted to the external load 12 is stored, and based on this relationship, the power output after the initial stage of power generation at the time of power transmission is calculated. A memory 23 is provided from which the output voltage for the load current can be retrieved as a target value, and the deviation between the output voltage for the load current of the electric power after the initial stage and the target value of the output voltage for this load current from the memory 23 (from this, the circulation fan 3 A temperature regulator 24 is provided to control the battery temperature of the cell stack by controlling the rotation speed of the cell stack and the flow rate of cooling air.

このような制御系統により、燃料電池1が発電して外部
負荷12に送電する際、発電初期の出力電圧と負荷電流
との関係はメモリー23に記憶される。そして初期以降
の送電する電力は、その負荷電流1こ対応する初期時の
出力電圧がメモリー23から目標値として出力され、こ
の出力電圧の目標値と送電する前記電力の出力電圧とは
温度調節器24に入力され、この両者の偏差により循環
ファン3の回転数が制御されて冷却空気の流量が制御さ
れ、セルスタックの電池温度が制御される。この場合、
第4図に示す電池温度と出力電圧との関係から明らかな
ように初期以降では初期に比べて電池温度が高くなるよ
うに冷却空気の流量は減小するように制御される。
With such a control system, when the fuel cell 1 generates power and transmits the power to the external load 12, the relationship between the output voltage and the load current at the initial stage of power generation is stored in the memory 23. For the power to be transmitted after the initial stage, the initial output voltage corresponding to one load current is output as a target value from the memory 23, and the target value of the output voltage and the output voltage of the power to be transmitted are determined by the temperature controller. 24, and the rotation speed of the circulation fan 3 is controlled by the deviation between the two, the flow rate of cooling air is controlled, and the battery temperature of the cell stack is controlled. in this case,
As is clear from the relationship between the battery temperature and the output voltage shown in FIG. 4, after the initial stage, the flow rate of the cooling air is controlled to decrease so that the battery temperature becomes higher than that at the initial stage.

このようにして燃料電池1が設定負荷の電力を送電する
際、初期以降の電力lこ対しても初期の高い出力電圧が
保持されるので負荷電流を少なくして設定負荷の電力を
送電することができる。
In this way, when the fuel cell 1 transmits power for the set load, the initial high output voltage is maintained even if the power is increased after the initial stage, so the load current can be reduced to transmit the power for the set load. Can be done.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば燃料電
池の発電初期の送電電力の電圧と電流との関係をメモリ
ーで記憶し、発電初期以降の送電電力の電圧をメモリー
からの発電初期の電圧の目標値と比較し、その偏差によ
り電池温度を冷却媒体を介して制御するようにしたこと
により、発電初期以降の送電電力は発電初期の電圧まで
上昇して外部負荷に送電され、このため送電する所定の
電力の電流値は小さくなるので、電力変換器の電力用半
導体素子を必要最小数にすることができ、幸 あるいは素子の容器を大きくする必要がなくなり、これ
に伴って電力変換器の損失が小さくなるという効果があ
る。
As is clear from the above description, according to the present invention, the relationship between the voltage and current of the transmitted power at the initial stage of power generation by the fuel cell is stored in the memory, and the voltage of the transmitted power after the initial stage of power generation is stored in the memory at the beginning of power generation. By comparing the voltage with the target value and controlling the battery temperature via the cooling medium based on the deviation, the transmitted power after the initial generation increases to the voltage at the initial generation and is transmitted to the external load. Since the current value of the predetermined power to be transmitted becomes smaller, the number of power semiconductor elements in the power converter can be reduced to the minimum required number, and fortunately, there is no need to increase the size of the element container, which makes it possible to reduce the number of power semiconductor elements in the power converter. This has the effect of reducing loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による燃料電池の運転制御装置
の制御系統図、第2図は従来の燃料電池の運転制御装置
の制御系統図、第2図は燃料電池の発電初期と長期運転
後の出力電圧と負荷電流との関係である出力特性を示す
図、第4図は燃料電池の電池反応時の電池温度と出力電
圧との関係を示す図である。 1:燃料電池、11:を力変換器、12;外部負荷、2
1:[圧計、22:ij電流計23:メモ−゛−/
Fig. 1 is a control system diagram of a fuel cell operation control device according to an embodiment of the present invention, Fig. 2 is a control system diagram of a conventional fuel cell operation control device, and Fig. 2 is a diagram showing the initial stage of power generation and long-term operation of the fuel cell. FIG. 4 is a diagram showing the output characteristic, which is the relationship between the output voltage and the load current, and FIG. 4 is a diagram showing the relationship between the battery temperature and the output voltage during the cell reaction of the fuel cell. 1: Fuel cell, 11: Force transducer, 12; External load, 2
1: [pressure gauge, 22: ij ammeter 23: memo-゛-/

Claims (1)

【特許請求の範囲】[Claims] 1)単電池を積層してなるセルスタックに反応ガスを供
給して起きる電池反応により発生する電力を電力変換器
を経て外部負荷に送電し、電池反応に伴って発生する熱
をセルスタックに供給される冷却媒体により除熱してセ
ルスタックを冷却する燃料電池において、送電時の燃料
電池の出力電圧を検出する電圧計と、負荷電流を検出す
る電流計と、この電圧計と電流計で検出した発電初期の
電圧と電流との関係を記憶し、この関係から発電初期以
降の送電電力の電流に対する電圧を目標値として取出し
可能なメモリーと、初期以降の送電電力の電圧とメモリ
ーからの電圧の目標値との偏差により冷却媒体を介して
セルスタックの電池温度を制御する制御手段とを備えた
ことを特徴とする燃料電池の運転制御装置。
1) Power generated by the battery reaction that occurs when a reactive gas is supplied to the cell stack made of stacked single cells is transmitted to an external load via a power converter, and the heat generated by the battery reaction is supplied to the cell stack. In a fuel cell that cools the cell stack by removing heat with a cooling medium, there is a voltmeter that detects the output voltage of the fuel cell during power transmission, an ammeter that detects the load current, and the voltage detected by the voltmeter and ammeter. A memory that stores the relationship between voltage and current at the initial stage of power generation and can retrieve the voltage for the current of the transmitted power after the beginning of power generation as a target value from this relationship, and a target value of the voltage of the transmitted power after the initial stage and the voltage from the memory. What is claimed is: 1. A fuel cell operation control device comprising: control means for controlling cell temperature of a cell stack via a cooling medium according to a deviation from a value of the fuel cell.
JP63250153A 1988-10-04 1988-10-04 Operation control device for fuel cell Expired - Lifetime JP2621424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250153A JP2621424B2 (en) 1988-10-04 1988-10-04 Operation control device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250153A JP2621424B2 (en) 1988-10-04 1988-10-04 Operation control device for fuel cell

Publications (2)

Publication Number Publication Date
JPH0298063A true JPH0298063A (en) 1990-04-10
JP2621424B2 JP2621424B2 (en) 1997-06-18

Family

ID=17203611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250153A Expired - Lifetime JP2621424B2 (en) 1988-10-04 1988-10-04 Operation control device for fuel cell

Country Status (1)

Country Link
JP (1) JP2621424B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053041A (en) * 1991-06-24 1993-01-08 Hitachi Ltd Controlling method for fuel cell device
US6847188B2 (en) 1999-07-06 2005-01-25 General Motors Corporation Fuel cell stack monitoring and system control
KR100725253B1 (en) * 2006-08-02 2007-06-04 (주)퓨얼셀 파워 Fuel cell system and cooling control method thereof
CN113451610A (en) * 2020-03-25 2021-09-28 北京亿华通科技股份有限公司 Control method, control device, computer equipment and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053041A (en) * 1991-06-24 1993-01-08 Hitachi Ltd Controlling method for fuel cell device
US6847188B2 (en) 1999-07-06 2005-01-25 General Motors Corporation Fuel cell stack monitoring and system control
KR100725253B1 (en) * 2006-08-02 2007-06-04 (주)퓨얼셀 파워 Fuel cell system and cooling control method thereof
CN113451610A (en) * 2020-03-25 2021-09-28 北京亿华通科技股份有限公司 Control method, control device, computer equipment and storage medium

Also Published As

Publication number Publication date
JP2621424B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
US7790303B2 (en) Storage of fuel cell energy during startup and shutdown or other power transitions
US8917051B2 (en) Integrated fuel processor and fuel cell system control method
JP2002216818A (en) Fuel cell power source device
JP2008103250A (en) Fuel cell system, and its operation method
JP2007250374A (en) Fuel cell system
JP3353406B2 (en) Fuel cell generator
JP2003243008A (en) Fuel cell system
CN105190976A (en) Fuel-cell system and method for controlling fuel-cell system
JPS6030062A (en) Output controller of fuel cell
JPH0298063A (en) Operation control device for fuel cell
JPH0324744B2 (en)
JPH1150945A (en) Method for controlling power generating amount of wind power generator
US20190207230A1 (en) Temperature control system and method for fuel cell system and fuel cell system
JPS60208067A (en) Fuel cell power generating system
JP2674867B2 (en) Fuel cell generator
JP2006109650A (en) Vehicle control unit and vehicle control method
JPH0745298A (en) Power supply device utilizing fuel cell
JPH0298062A (en) Operation control device for fuel cell
JPH07320760A (en) Fuel cell power generation plant
JP2702402B2 (en) Fuel cell power generation system and operation method thereof
JPH0536429A (en) Power source device for internal reformed type fuel cell
JPS60172175A (en) Load control device of fuel cell system
JP3387234B2 (en) Fuel cell generator
JP2000182648A (en) Solid polymer fuel cell system and information recording medium
JPH0766827B2 (en) Air-cooled fuel cell