JPS60253171A - Fuel battery power generation system - Google Patents

Fuel battery power generation system

Info

Publication number
JPS60253171A
JPS60253171A JP59108784A JP10878484A JPS60253171A JP S60253171 A JPS60253171 A JP S60253171A JP 59108784 A JP59108784 A JP 59108784A JP 10878484 A JP10878484 A JP 10878484A JP S60253171 A JPS60253171 A JP S60253171A
Authority
JP
Japan
Prior art keywords
flow rate
voltage
detector
value
oxidizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59108784A
Other languages
Japanese (ja)
Other versions
JPH071700B2 (en
Inventor
Hiroyuki Narita
成田 寛行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59108784A priority Critical patent/JPH071700B2/en
Publication of JPS60253171A publication Critical patent/JPS60253171A/en
Publication of JPH071700B2 publication Critical patent/JPH071700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent drop of a performance of battery and improve life span by suppressing an output voltage of battery to an upper limit voltage or less even during low load operation of battery. CONSTITUTION:When a load command value P0 is reduced to a value P2 during operation at the point (a) on the characteristic curve (1) which indicates a battery output voltage-output current characteristic during normal operation, a battery output voltage V moves to the point (b) of the characteristic curve (1), exceeding the upper limit voltage Vm of battery. As a result, a positive voltage deviation 23 for the upper limit voltage Vm can be obtained at a subtractor 22 by such increase of voltage, a load command correction value 26 is obtained through a PID arithmetic unit 24 and a lower zero limiter 25 in accordance with such deviation signal 23, a load command value is increased and a corrected load command value 7 can be obtained by adding a load command value P0 of a load command setter 28 in the adder 27 to such value, and an output can be increased up to the point (c) where the voltage deviation becomes zero and is suppressed and controlled to a voltage lower than the upper limit voltage by giving such value to an invertor 6.

Description

【発明の詳細な説明】 [発明の技術分野] ・本発明は燃料電池発電システムに係り、特に酸化剤極
へ供給する酸化剤の流量を制御する制御手段を備えて成
る燃料電池発電システムに関する。
Detailed Description of the Invention [Technical Field of the Invention] - The present invention relates to a fuel cell power generation system, and particularly to a fuel cell power generation system comprising a control means for controlling the flow rate of an oxidant supplied to an oxidizer electrode.

[発明の技術的背景] 従来、燃料の有しているエネルギーを直接電気的エネル
ギーに変換するものとして燃料電池発電システムが知ら
れている。この燃料電池発電システムは通常、電解質層
を挟んで燃amおよび酸化剤極の一対の電極を配置する
と共に、燃料極の背面に水素等の燃料を接触させ、また
酸化剤極の背面に空気等の酸化剤を接触させ、このとき
起こる電気化学的反応を利用して上記一対の電極間から
電気エネルギーを取り出し、この燃料電池で発生した電
気エネルギーを電力変換装置にて負荷指令値に見合った
電気量(例えば電力)に変換して負荷へ供給するように
したものであり、上記燃料と酸化剤が供給されている限
り高い変換効率で電気エネルギーを取出すことができる
ものである。
[Technical Background of the Invention] Conventionally, fuel cell power generation systems have been known as systems that directly convert energy contained in fuel into electrical energy. This fuel cell power generation system usually arranges a pair of electrodes, a combustion electrode and an oxidizer electrode, with an electrolyte layer in between, and a fuel such as hydrogen is brought into contact with the back of the fuel electrode, and air etc. are placed in contact with the back of the oxidizer electrode. oxidizer is brought into contact with the fuel cell, and the electrochemical reaction that occurs is used to extract electrical energy from between the pair of electrodes, and the electrical energy generated in the fuel cell is converted into electricity corresponding to the load command value by a power converter. The electrical energy is converted into a quantity (for example, electric power) and supplied to the load, and as long as the above-mentioned fuel and oxidizer are supplied, electrical energy can be extracted with high conversion efficiency.

さて、この種の燃料電池発電システムにおいては従来、
燃料電池で発生した電気エネルギーを電力変換装置によ
り負荷指令値に見合った電気量となるように制御し、こ
の結果として変化する電池出力電流を電流検出器で検出
してその大きさに応じて酸化剤の供給流量指令値を得、
かつこれを酸化剤の供給ラインを流れる酸化剤の流山を
検出する流量検出器からの流量検出値と比較し、その偏
差値に応じて上記酸化剤の供給ライン上に設けられた調
節弁の弁開度をv11節することにより、酸化剤極へ供
給する酸化剤の流量を1lJIIlするようにしている
。なお、燃料極には燃料を電池発′111凹に見合って
供給するようにしている。
Now, in this type of fuel cell power generation system, conventionally,
The electrical energy generated by the fuel cell is controlled by a power conversion device so that the amount of electricity matches the load command value, and the resulting battery output current is detected by a current detector and oxidized according to its magnitude. Obtain the supply flow rate command value of the agent,
This is then compared with the flow rate detection value from a flow rate detector that detects the flow peak of the oxidant flowing through the oxidizer supply line, and the control valve installed on the oxidizer supply line is adjusted according to the deviation value. By setting the opening degree to v11, the flow rate of the oxidizer supplied to the oxidizer electrode is set to 1lJIIl. Incidentally, the fuel is supplied to the fuel electrode in an amount commensurate with the recess of the cell generator.

[背現技術の問題点] しかしながら、上述した従来の燃料電池発電システムに
おいては、燃料電池の低負荷運転時に電池出力電圧が、
燃料電池の寿命および性能保持上重要な意味を持つ上限
制限電圧を越えてしまい、燃料電池の電解質として濃リ
ン酸等を使用していることから、結果的にある温度、電
圧以上になると電解質による白金触媒のWI4触を引起
こし、電池の恒久的な性能低下を招くことになり好まし
くない。第2図は、かかる燃料電池の出力電流−出力電
圧特性を示すものであり、図から出力電流1ffi以下
の電池出力状態では、電池の上限制限電圧Vmを越えて
しまうことが理解される。
[Problems with existing technology] However, in the conventional fuel cell power generation system described above, when the fuel cell is operated at low load, the cell output voltage is
The upper limit voltage limit, which is important for the lifespan and performance maintenance of fuel cells, has been exceeded, and since concentrated phosphoric acid is used as the electrolyte in fuel cells, as a result, when the temperature and voltage exceed a certain level, the electrolyte This is undesirable because it causes WI4 deterioration of the platinum catalyst, leading to a permanent deterioration in the performance of the battery. FIG. 2 shows the output current-output voltage characteristics of such a fuel cell, and it is understood from the figure that in a battery output state where the output current is less than 1ffi, the upper limit voltage limit Vm of the battery is exceeded.

[発明の目的] 本発明は上記のような問題を解消するために成されたも
ので、その目的は電池の低負荷運転時におい−(ち電池
出力′Fi紅を上限j)J限電几1?/下に抑制し、7
1池の11能低下を防止するとバにyj#の向上を図る
ことが可能<Z燃料電池発電システムを提供することに
ある。
[Object of the Invention] The present invention has been made in order to solve the above-mentioned problems. 1? / suppress down, 7
It is possible to significantly improve yj# by preventing a decline in the capacity of one tank.An object of the present invention is to provide a fuel cell power generation system.

[発明の11 上記目的を達成するために本発明では、電解質層を挟ん
て燃II極および酸化剤(Φの一対の′l4tiをR5
づると共に上記燃11極に燃nを:Vた上記酸化剤極に
醸化剤を大々供給し5.このとき起こる電気化学的反応
を利用して上記?!tiIi間から電気エネルギーを取
り出す燃料電池と、この燃11電池で光生じた電気1>
ルギーを負荷指令値に見合プた電気量に変換する電力変
換装置と、上記酸化剤の供給うfン上に設けられた調節
弁と、上&!酸化剤の供給ラインを流れる酸化剤の流量
を検出する流量検出器と、上記燃料i’[池の出力電流
を検出器る′R電流検出器、この電流検出器により検出
さ4また出力電流の大きさに応じて上記酸化剤の供給流
量指令値を背る演算器、この演算器からの指令流量と上
記流Il検出器からの検出Rmとを比較しかっこの比較
結果に基づいて上記調節弁へその弁開度を調節すべき調
節信号を与える手段よりなる流量制御手段と、上記燃料
電池の出力電圧を検出する電圧検出器と、この電圧検出
器からの検出電圧と電池の上限制限電圧とを比較する電
圧上昇検出手段と、この電圧上昇検出手段の比較結果に
基づいて負荷指令補正値を得、かつこの負荷指令補正値
と負荷指令値とを比較して補正負荷指令値を得る負荷指
令補正手段と、上記電圧上昇検出手段の比較結果に基づ
いて第1の供給流量補正値を得る第1の流山補正手段と
、または上記電力変換装置からの出力電気量を検出する
電気量検出器、この電気[株]検出器からの電気量検出
値と上記負荷指令値とを比較しかつこの比較結果に基づ
いて第2の供給流量補正値を得る第2の流量補正手段と
を備えて成り、上記第1または第2の各供給流量補正値
のうちの少なくとも一方を上記供給流量指令値へその補
正値として与えるようにしたことを特徴とする。
[Invention 11 In order to achieve the above object, the present invention provides a combustion electrode and an oxidizing agent (a pair of Φ'l4ti with R5
5. At the same time, a large amount of fuel was supplied to the oxidizing agent electrode. The above using the electrochemical reaction that occurs at this time? ! A fuel cell that extracts electrical energy from between the tiII and the electricity generated by this fuel cell.
A power conversion device that converts energy into an amount of electricity commensurate with the load command value, a control valve provided above the oxidizing agent supply channel, and an upper &! A flow rate detector detects the flow rate of the oxidizer flowing through the oxidizer supply line, and a 'R current detector detects the output current of the fuel i'[pool. A computing device that disobeys the supply flow rate command value of the oxidizing agent according to the size, and comparing the command flow rate from this computing device and the detection Rm from the flow Il detector to the control valve based on the comparison result in parentheses. A flow rate control means comprising means for giving an adjustment signal to adjust the valve opening, a voltage detector for detecting the output voltage of the fuel cell, and a detected voltage from the voltage detector and an upper limit voltage of the battery. Load command correction that obtains a load command correction value based on the comparison result between the voltage rise detection means to be compared and the voltage rise detection means, and obtains a corrected load command value by comparing the load command correction value and the load command value. a first flow rate correction means for obtaining a first supply flow rate correction value based on a comparison result of the voltage rise detection means; or an electricity quantity detector for detecting an output quantity of electricity from the power conversion device; a second flow rate correction means for comparing the detected quantity of electricity from the Denki [Co., Ltd.] detector with the load command value and obtaining a second supply flow rate correction value based on the comparison result; The present invention is characterized in that at least one of the first and second supply flow rate correction values is given to the supply flow rate command value as the correction value.

[発明の実施例] まず、本発明の考え方について第3図および第4図を用
いて述べる。第3図は、N演出力電流および燃料利用率
をある一定値に保持した状態での酸化剤利用率に対する
電池出力電圧特性を示すものである。また第4図は、電
池出力電流および酸化剤利用率をある一定値に保持した
状態での燃料利用率に対する電池出力電圧特性を示すも
のである。なお、上記で燃料または酸化剤の利用率とは
、電池に供給される実燃料および酸化剤量に対する電池
出力電流と、ファラデ一定数により決定される電気化学
的な理論燃Fl f/iおよび理論酸化剤量との比を百
分率で表わしたものである。
[Embodiments of the Invention] First, the concept of the present invention will be described using FIGS. 3 and 4. FIG. 3 shows the battery output voltage characteristics with respect to the oxidizer utilization rate in a state where the N output power current and the fuel utilization rate are held at certain constant values. Further, FIG. 4 shows the battery output voltage characteristics with respect to the fuel utilization rate in a state where the battery output current and the oxidizer utilization rate are held at certain constant values. Note that the fuel or oxidizer utilization rate mentioned above refers to the cell output current for the amount of actual fuel and oxidizer supplied to the cell, the electrochemical theoretical fuel Fl f/i determined by the Faraday constant, and the theoretical The ratio to the amount of oxidizing agent is expressed as a percentage.

本発明は、第3図および第4図に示すように利用率が^
くなると出力電圧が低下し、その程度を比較すると酸化
lp1利用率によるものがより強く現われるという事実
より、酸化剤利用率を制御量の一つとして電池低負荷運
転時の電圧上限抑制制御を行なおうとするものである。
The present invention has a high utilization rate as shown in Figs. 3 and 4.
The output voltage decreases when This is what we are trying to do.

以下、上記のような考え方に基づく本発明の一実施例に
ついて図面を参照して説明する。第1図は、本発明によ
る燃料電池発電システムの構成例をブロック的に示した
ものである。図において、1は電解質層を挟んで燃料極
2および酸化剤極3の一対の電極を配置してなる燃料電
池で、上記燃料極2には燃料の供給ライン4を介して水
素等の燃料を、また上記酸化剤極3には酸化剤の供給ラ
イン5を介して空気等の酸化剤を夫々供給し、このとき
起こる電気化学的反応を利用して上記電極間から電気エ
ネルギーである直流電力を〜取り出すようにしている。
An embodiment of the present invention based on the above concept will be described below with reference to the drawings. FIG. 1 is a block diagram showing a configuration example of a fuel cell power generation system according to the present invention. In the figure, reference numeral 1 denotes a fuel cell comprising a pair of electrodes, a fuel electrode 2 and an oxidizer electrode 3, with an electrolyte layer in between.The fuel electrode 2 is supplied with a fuel such as hydrogen via a fuel supply line 4. Further, an oxidizing agent such as air is supplied to the oxidizing agent electrode 3 through an oxidizing agent supply line 5, and the electrochemical reaction that occurs at this time is used to generate DC power, which is electrical energy, from between the electrodes. ~I'm trying to take it out.

6は、後述する補正負荷指令値7を基に上記燃料電池1
で発生した直流電力を交流電力に変換する電力変換装置
としてのインバータである。また、8は上記酸化剤の供
給ライン5上に設けられた調節弁、9は当該酸化剤の供
給ライン5を流れる酸化剤の流量を検出する流量検出器
、10は上記燃料電池1の出力電流■を検出する電流検
出器である。さらに、11はこの電流検出器10により
検出された出力電流Iの大きさに応じて上記酸化剤の供
給流量指令!112を関数にて得る演算器、13はこの
演算器11からの供給流量指令値12と後述する供給流
量補正値14とを比較しその偏差信号15を補正供給流
量指令値として得る減算器、16はこの減算器13から
の偏差信号15と上記流量検出器9からの検出信号17
とを比較して偏差信号18を得る減算器、19はこの減
算器16からの偏差信号18に応じて上記調節弁8へそ
の弁開度を調節すべき調節信号20を与える第1のPI
D演算器であり、これらより流量制御手段を構成してい
る。
6 is the fuel cell 1 based on the corrected load command value 7, which will be described later.
An inverter is a power conversion device that converts the DC power generated by the AC power into AC power. Further, 8 is a control valve provided on the oxidizing agent supply line 5, 9 is a flow rate detector for detecting the flow rate of the oxidizing agent flowing through the oxidizing agent supply line 5, and 10 is the output current of the fuel cell 1. ■It is a current detector that detects. Further, 11 is a supply flow rate command for the oxidizer according to the magnitude of the output current I detected by the current detector 10! 112 is an arithmetic unit that obtains a function, 13 is a subtractor that compares the supply flow rate command value 12 from this arithmetic unit 11 with a supply flow rate correction value 14 to be described later, and obtains the deviation signal 15 as a corrected supply flow rate command value, 16 is the deviation signal 15 from this subtracter 13 and the detection signal 17 from the flow rate detector 9.
a subtractor 19 which obtains a deviation signal 18 by comparing the subtractor 16 with the deviation signal 18; a first PI which provides an adjustment signal 20 to the control valve 8 to adjust its valve opening degree in accordance with the deviation signal 18 from the subtractor 16;
D computing unit, which constitutes a flow rate control means.

一方、21は上記燃料電池1の出力電圧を検出する電圧
検出器、22はこの電圧検出器21からの検出電圧Vと
前述した電池の上限制限電圧vmとを比較して偏差信号
23を得る減算器であり、これらより電圧上昇検出手段
を構成している。また、24はこの減算器22からの偏
差信号23に応じて負荷指令補正値を得、かつこれを下
限零リミッタ25を介し26として出力するリセットワ
インドアップ防止機能付きのPIDmI器、27はこの
負荷指令補正値26と負荷指令設定器28からの負荷指
令値Paとを比較して偏差信号を上記補正負荷指令値7
として得る加算器であり、これらより負荷指令補正手段
を構成している。また、31は上記減算器22からの偏
差信号23に応じて第1の供給流山補正値を(q、かつ
これを下限零リミッタ32を介し33として出力するリ
セットワインドアップ防止機能付きのPID演算器であ
り、これらより第1の流量補正手段を構成している。さ
らに、34は上記インバータ6からの出力電気量(例え
ば電力Ps)を検出する電気量検出器としての電力検出
器、35はこの電力検出器34からの電力検出1i1P
sと上記負荷指令設定器28からの負荷指令値としての
電力指令値POとを比較して偏差信号36を得る減算器
、37はこの減算器35からの偏差信号36に応じて第
2の供給流量補正値を得、かつこれを下限零リミッタ3
8を介し39として出力するリセットワインドアップ防
止機能付きのPID演算器であり、これらより第2の流
量補正手段を構成している。さらにまた、40は上記第
1および第2の各供給流量補正値33および39を加算
する加算器で、その加算信号を上記供給流量補正値14
として出力するようにしている。
On the other hand, 21 is a voltage detector for detecting the output voltage of the fuel cell 1, and 22 is a subtractor that compares the detected voltage V from this voltage detector 21 with the aforementioned upper limit voltage vm of the battery to obtain a deviation signal 23. These constitute the voltage rise detection means. Further, 24 is a PIDmI device with a reset windup prevention function that obtains a load command correction value according to the deviation signal 23 from the subtracter 22 and outputs it as 26 via the lower limit zero limiter 25; The command correction value 26 is compared with the load command value Pa from the load command setter 28, and the deviation signal is set as the above-mentioned correction load command value 7.
These adders constitute load command correction means. Further, 31 is a PID calculator with a reset windup prevention function that outputs the first supply flow mountain correction value (q) as 33 via the lower limit zero limiter 32 in accordance with the deviation signal 23 from the subtracter 22. These constitute the first flow rate correction means.Furthermore, 34 is a power detector as an electric quantity detector for detecting the output electric quantity (for example, electric power Ps) from the inverter 6, and 35 is this electric power detector. Power detection 1i1P from power detector 34
A subtractor 37 obtains a deviation signal 36 by comparing s with the power command value PO as a load command value from the load command setter 28; Obtain the flow rate correction value and set it as the lower limit zero limiter 3.
This is a PID calculator with a reset windup prevention function that outputs as 39 through 8, and these constitute the second flow rate correction means. Furthermore, 40 is an adder for adding the first and second supply flow rate correction values 33 and 39, and the added signal is added to the supply flow rate correction value 14.
I am trying to output it as .

上記で、演算器11における関数は次のように設定され
る。つまり、燃料電池の場合酸化剤利用率が増大すると
電池起電力は減少する傾向にあるため、転極等の現象を
起こさないためには許容下限電圧以下でなければならな
い。そこで、上記のある値以下で利用率を決定すれば、
電池出力電流に対する酸化剤の供給流量が下式よりまる
In the above, the function in the arithmetic unit 11 is set as follows. In other words, in the case of a fuel cell, as the oxidizer utilization rate increases, the cell electromotive force tends to decrease, so in order to prevent phenomena such as polarity reversal, the voltage must be lower than the allowable lower limit voltage. Therefore, if the utilization rate is determined below a certain value above,
The supply flow rate of the oxidizing agent relative to the battery output current is determined by the following formula.

lXNX3600X22.4 4X96500X1000X0.21X77ここで、F
二酸化剤の供給流山(Nm/H)、I:電池出力電流<
A)、N:燃料電池直列接続個数、η二酸化剤利用率で
あり、またファラデ一定数を96500 (c/mo 
l )、酸化剤中(7)II素濃度0.21とする。
lXNX3600X22.4 4X96500X1000X0.21X77 where, F
Supply flow rate of dioxide agent (Nm/H), I: Battery output current <
A), N: number of fuel cells connected in series, η dioxide utilization rate, and constant Faraday number 96500 (c/mo
l), the concentration of (7) II element in the oxidizing agent is 0.21.

次に、かかる構成の燃料電池発電システムの作用につい
て第5図を用いて述べる。第5図において、■は通常運
転時の電池出力電圧−出力電流特性を示すものである。
Next, the operation of the fuel cell power generation system having such a configuration will be described using FIG. 5. In FIG. 5, ■ indicates the battery output voltage-output current characteristics during normal operation.

まず、いま仮に特性曲線■上の8点(負荷指令値PO:
P日)にて運転している時に負荷指令11PoがP2ま
で減少した場合について考えると、電池出力電圧Vは■
の特性曲線上のb点に移行し電池の上限制限電圧Vmを
越える。すると、この電圧上昇により上限制限電圧Vm
に対して正の電圧偏差23が減算器22で得られ、この
偏差信号23に応じPID演算器24および下限零リミ
ッタ25を介して負荷指令補正値26が得られ、これを
負荷指令設定器28からの負荷指令値Paに加算器27
で加算することにより負荷指令値を増加して補正負荷指
令値7を得、かつこれをインバータ6に与えることによ
り電圧偏差が零となる0点まで出力を増加して上限制限
電圧以下に抑制制御される。
First, let's assume that the 8 points on the characteristic curve ■ (load command value PO:
Considering the case where the load command 11Po decreases to P2 during operation on day P), the battery output voltage V is
The voltage shifts to point b on the characteristic curve and exceeds the upper limit voltage limit Vm of the battery. Then, due to this voltage increase, the upper limit voltage Vm
A positive voltage deviation 23 is obtained by the subtracter 22, and a load command correction value 26 is obtained according to this deviation signal 23 via the PID calculator 24 and the lower limit zero limiter 25, which is sent to the load command setter 28. An adder 27 is added to the load command value Pa from
By adding , the load command value is increased to obtain a corrected load command value 7, and by giving this to the inverter 6, the output is increased to the 0 point where the voltage deviation becomes zero, and the output is suppressed to below the upper limit voltage limit. be done.

しかし、このままの状態では目標とする負荷指令値P2
に実出力電力が一致しない。そこで、PID8II算器
31で上記減算器22からの偏差信号23に応じて第1
の供給流量補正値を得て、これを下限零リミッタ32を
介し33として加算器40へ出力し、また一方では減算
器35で得られる実出力電力PI と負荷指令値P2と
の偏差信号36に応じて第2の供給流量補正値を得、か
つこれを下限零リミッタ38を介し39として加算器4
0へ出力することにより、加算器40でこれら第1およ
び第2の各供給流量補正値33および39を加算し、そ
の加算信号を供給流量補正値14として減算器13へ与
えることにより、上記演算器11からの供給流量指令値
12を補正して補正供給流量指令値15が得られる。そ
して、この補正供給流量指令値15と上記流量検出器9
からの流量検出値17との偏差信号18を減算器16で
得てこれをPID演算器19へ与えることにより、PI
D演算器19ではこの減算器16からの偏差信号18に
応じて上記調節弁8へその弁開度を閉方向へ調節すべき
調節信号20を与えて、酸化剤極3へ供給する酸化剤量
を減少させる。その結果、酸化剤利用率が高まって電池
出力電圧が低下し、最終的に第5図の■にて示すような
出力電圧−電流特性に移行させることにより負荷指令値
P2に合致し、かつ電池の上限制限電圧Vm以下の運転
点であるd点に移行して安定に運転を継続することがで
きる。
However, in this state, the target load command value P2
The actual output power does not match. Therefore, the PID8II calculator 31 calculates the first value according to the deviation signal 23 from the subtracter 22.
A correction value for the supply flow rate is obtained, and this is outputted to the adder 40 as 33 via the lower limit zero limiter 32, and on the other hand, the deviation signal 36 between the actual output power PI obtained by the subtracter 35 and the load command value P2 is Accordingly, a second supply flow rate correction value is obtained, and this is passed through the lower limit zero limiter 38 as 39 to the adder 4.
0, the adder 40 adds these first and second supply flow rate correction values 33 and 39, and the added signal is given to the subtractor 13 as the supply flow rate correction value 14, thereby performing the above calculation. A corrected supply flow rate command value 15 is obtained by correcting the supply flow rate command value 12 from the device 11. Then, this corrected supply flow rate command value 15 and the flow rate detector 9
By obtaining a deviation signal 18 from the flow rate detection value 17 from the subtracter 16 and giving it to the PID calculator 19, the PI
In response to the deviation signal 18 from the subtractor 16, the D calculator 19 applies an adjustment signal 20 to the control valve 8 to adjust its valve opening in the closing direction, thereby adjusting the amount of oxidant supplied to the oxidizer electrode 3. decrease. As a result, the oxidizing agent utilization rate increases and the battery output voltage decreases, eventually shifting to the output voltage-current characteristic shown by It is possible to shift to point d, which is the operating point below the upper limit voltage Vm, and continue stable operation.

上述したように、本燃料電池発電システムは電解質層を
挟んで燃料極2および酸化剤極3の一対の電極を配置し
てなり、上記燃料極2には燃料の供給ライン4を介して
水素等の燃料が、また上記酸化剤極3には酸化剤の供給
ライン5を介して空気等の酸化剤か夫々供給され、この
とき起こる電気化学的反応を利用して上記電極間から電
気エネルギーである直流電力を取り出す燃料電池1と、
補正負荷指令値7を基に上記燃料電池1で発生した直流
電力を交流電力に変換する電力変換装置としてのインバ
ータ6と、上記酸化剤の供給ライン5上に設けられた調
節弁8と、当該酸化剤の供給ライン5を流れる酸化剤の
流量を検出する流量検出器9と、上記燃料電池1の出力
電流Iを検出する電流検出器10と、この電流検出器1
0により検出された出力電流Iの大きさに応じて上記酸
化剤の供給流量指令値12を関数にて得る演算器11、
この演算器11からの供給流量指令1112と供給流量
補正値14とを比較しその偏差信号15を補正供給流量
指令値として得る減算器13.この減算器13からの偏
差信号15と上記流量検出器9からの検出信号17とを
比較して偏差信号18を得る減算器16.この減算器1
6からの偏差信号18に応じて上記調節弁8へその弁開
度を調節すべき調節信号20を与える第1のPID演算
器19よりなる流量制御手段と、上記燃料電池1の出力
電圧を検出する電圧検出器21.この電圧検出器21か
らの検出電圧Vと電池の上限制限電圧Vmとを比較して
偏差信号23を得る減算器22よりなる電圧上昇検出手
段と、上記減算器22からの偏差信号23に応じて負荷
指令補正値を得、かつこれを下限零リミッタ25を介し
26として出力するリセットワインドアップ防止鍬能付
きのP I DwAlli 24 、 コ(DfAWJ
指令Wa正値26 ト負荷指令設定器28からの負荷指
令値としての電力指令11Pn とを比較して偏差信号
を上記補正負荷指令値7として得る加算器27よりなる
負荷指令補正手段と、上記減算器22からの偏差信号2
3に応じて第1の供給流量補正値を得、かつこれを下限
零リミッタ32を介し33として出力するリセットワイ
ンドアップ防止機能付きのPID演算器31を備えてな
る第1の流量補正手段と、上記インバータ6からの出力
電気量である出力電力PSを検出する電気l検出器とし
ての電力検出器34、この電力検出器34からの電力検
出値Psと上記負荷指令設定器28からの負荷指令値P
Oとを比較して偏差信号36を得る減算器35.この減
算器35からの偏差信号36に応じて第2の供給流量補
正値を得、かつこれを下限零リミッタ38を介し39と
して出力するリセットワインドアップ防止機能付きのP
ID演算器37よりなる第2の流量補正手段と、上記第
1および第2の各供給流量補正値33および3つを加算
し、その加算信号を上記供給流量補正値14として上記
演算器11へ与える加算器40とから構成したものであ
る。
As described above, this fuel cell power generation system includes a pair of electrodes, a fuel electrode 2 and an oxidizer electrode 3, arranged with an electrolyte layer in between, and the fuel electrode 2 is supplied with hydrogen, etc. via a fuel supply line 4. An oxidizing agent such as air is supplied to the oxidizing agent electrode 3 via an oxidizing agent supply line 5, and the electrochemical reaction that occurs at this time is used to generate electrical energy from between the electrodes. A fuel cell 1 that extracts DC power,
an inverter 6 as a power conversion device that converts DC power generated in the fuel cell 1 into AC power based on the corrected load command value 7; a control valve 8 provided on the oxidizer supply line 5; a flow rate detector 9 for detecting the flow rate of the oxidizer flowing through the oxidizer supply line 5; a current detector 10 for detecting the output current I of the fuel cell 1;
an arithmetic unit 11 that obtains the supply flow rate command value 12 of the oxidizer using a function according to the magnitude of the output current I detected by the output current I;
A subtractor 13 that compares the supply flow rate command 1112 from the calculator 11 with the supply flow rate correction value 14 and obtains the deviation signal 15 as the corrected supply flow rate command value. A subtracter 16 that compares the deviation signal 15 from this subtracter 13 with the detection signal 17 from the flow rate detector 9 to obtain a deviation signal 18. This subtractor 1
a flow rate control means comprising a first PID calculator 19 that provides an adjustment signal 20 to the control valve 8 to adjust its valve opening according to a deviation signal 18 from the control valve 6; and detects the output voltage of the fuel cell 1; Voltage detector 21. Voltage rise detection means includes a subtracter 22 that compares the detected voltage V from the voltage detector 21 with the upper limit voltage Vm of the battery to obtain a deviation signal 23; PI DwAlli 24, Ko (DfAWJ) with a reset windup prevention function that obtains the load command correction value and outputs it as 26 via the lower limit zero limiter 25.
load command correction means comprising an adder 27 which compares the command Wa positive value 26 with the power command 11Pn as a load command value from the load command setter 28 and obtains a deviation signal as the corrected load command value 7; Deviation signal 2 from device 22
a first flow rate correction means comprising a PID calculator 31 with a reset windup prevention function that obtains a first supply flow rate correction value in accordance with 3 and outputs it as 33 via a lower limit zero limiter 32; A power detector 34 as an electric detector detects the output power PS which is the amount of electricity output from the inverter 6, and the power detection value Ps from the power detector 34 and the load command value from the load command setting device 28. P
a subtracter 35 to obtain a deviation signal 36 by comparing with O; A P with a reset windup prevention function obtains a second supply flow rate correction value according to the deviation signal 36 from the subtracter 35 and outputs it as 39 via the lower limit zero limiter 38.
A second flow rate correction means consisting of an ID calculator 37 adds the first and second supply flow rate correction values 33 and the three, and the added signal is sent to the calculator 11 as the supply flow rate correction value 14. It is composed of an adder 40 that provides

従って、電池がいかなる低負荷運転領域においても電池
の出力電圧を上限制限電圧Vm以下に抑制し、電池の性
能低下を防止すると共に寿命の向上を図ることが可能と
なるばかりでなく、負荷指令値に実負荷出力値を常に一
致させた電池運転状態に制御することができる。また、
負荷変化過渡時の電圧上限抑制制御についても、まず応
答の速い電池出力制御にて電圧上限超過が抑制され、次
いで比較的応答の遅い供給酸化剤流量制御にて上限制限
電圧vm以下の定常運転状態への引き戻し制御が行なわ
れることから、過渡変化期間を通じて極力上限制限電圧
■mを超過しないような状態で電池運転を行なうことが
可能となる。
Therefore, it is possible to suppress the output voltage of the battery to below the upper limit voltage Vm in any low load operation range of the battery, prevent a deterioration in battery performance, and improve the life of the battery. It is possible to control the battery operating state so that the actual load output value always matches the actual load output value. Also,
Regarding voltage upper limit suppression control during load change transients, first, battery output control with a quick response suppresses excess of the voltage upper limit, and then supply oxidizer flow rate control, which has a relatively slow response, maintains a steady operating state below the upper limit voltage vm. Since the pullback control is performed, it is possible to operate the battery in a state where the upper limit voltage m is not exceeded as much as possible throughout the transient change period.

尚、上記実施例では供給流層指令値12を補正する手段
として第1および第2の2つの流量補正手段を備えたが
、第1または第2のいずれか一方のみを設けて構成する
ようにしても同様の効果が得られるものである。
In the above embodiment, two flow rate correction means, the first and the second, are provided as means for correcting the supply flow layer command value 12, but it is preferable to provide only one of the first and second flow rate correction means. The same effect can be obtained even if

また、上記実施例では電力変換装置として交流電力を制
御するインバータ6を用いたが、これに限らず直流電力
を制御する例えばチョッパ装置、可変抵抗装置のような
ものを適用することも可能である。
Further, in the above embodiment, the inverter 6 that controls AC power is used as the power conversion device, but it is not limited to this, and it is also possible to apply devices that control DC power, such as a chopper device or a variable resistance device. .

さらに、上記実施例では負荷指令値を電力指令値として
与え、かつ電気量検出器として電力検出器を用いたが、
負荷指令値を電圧指令値あるいは電流指令値として与え
、かつ電気量検出器として電圧検出器あるいは電流検出
器を用いるようにしてもよいものであ−る。
Furthermore, in the above embodiment, the load command value is given as the power command value, and a power detector is used as the quantity of electricity detector.
The load command value may be given as a voltage command value or a current command value, and a voltage detector or a current detector may be used as the electrical quantity detector.

[発明の効果] 以上説明したように本発明によれば、電池の低負荷運転
時においても電池出力電圧を上限制限電圧以下に抑制し
、電池の性能低下を防止すると共に寿命の向上を図るこ
とが可能な極めて信頼性の高い燃料電池発電システムが
提供できる。
[Effects of the Invention] As explained above, according to the present invention, the battery output voltage can be suppressed to below the upper limit voltage even during low load operation of the battery, thereby preventing deterioration in battery performance and improving the battery life. It is possible to provide an extremely reliable fuel cell power generation system that is capable of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
電池の出力電流−出力電圧特性を示す図、第3図および
第4図は本発明の詳細な説明するための図、第5図は実
施例の動作を説明するための図である。 1・・・燃料電池、2・・・燃料極、3・・・酸化剤極
、4・・・燃料供給ライン、5・・・酸化剤供給ライン
、6・・・インバータ、8・・・調節弁、9・・・流量
検出器、10・・・電流検出器、11・・・演算器、1
3.16,22.35・・・減算器、19.24,31
.37・・・PID演算器、21・・・電圧検出器、2
5.32.38・・・下限零リミッタ、27.40・・
・加算器、28・・・負荷指令設定器、34・・・電力
検出器。 出願人代理人 弁理士 鈴 江 武 彦第2図 第3図 第4図 第5図 It ’IL’A5’;12力電乱
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing output current-output voltage characteristics of a battery, FIGS. 3 and 4 are diagrams for explaining the present invention in detail, FIG. 5 is a diagram for explaining the operation of the embodiment. DESCRIPTION OF SYMBOLS 1... Fuel cell, 2... Fuel electrode, 3... Oxidizer electrode, 4... Fuel supply line, 5... Oxidizer supply line, 6... Inverter, 8... Adjustment Valve, 9...Flow rate detector, 10...Current detector, 11...Arithmetic unit, 1
3.16, 22.35...Subtractor, 19.24, 31
.. 37... PID calculator, 21... Voltage detector, 2
5.32.38...lower zero limiter, 27.40...
- Adder, 28... Load command setter, 34... Power detector. Applicant's representative Patent attorney Takehiko Suzue Figure 2 Figure 3 Figure 4 Figure 5 It 'IL'A5';

Claims (2)

【特許請求の範囲】[Claims] (1)電解質層を挟んで燃料極および酸化剤極の一対の
電極を配置すると共に前記燃料極に燃料をまた前記酸化
剤極に酸化剤を夫々供給し、このとき起こる電気化学的
反応を利用して前記電極間から電気エネルギーを取り出
す燃料電池と、この燃料電池で発生した電気エネルギー
を負荷指令値に見合った電気量に変換する電力変換装置
と、前記酸化剤の供給ライン上に設けられた調節弁と、
前記酸化剤の供給ラインを流れる酸化剤の流量を検出す
る流量検出器と、前記燃料電池の出力電流を検出する電
流検出器と、この電流検出器により検出された出力電流
の大きさに応じて前記酸化剤の供給流山指令値を得る演
算器、この演算器からの指令流量と前記流量検出器から
の検出流量とを比較しかつこの比較結果に基づいて前記
調節弁へその弁開度をm節すべき調節信号を与える手段
よりなる流量制御手段と、前記燃料電池の出力電圧を検
出する電圧検出器と、この電圧検出器からの検出電圧と
電池の上限制限電圧とを比較する電圧上昇検出手段と、
この電圧上昇検出手段の比較結果に基づいて供給流量補
正値を得る流量補正手段とを備えて成り、前記流量補正
手段の供給流量補正値を前記供給流量指令値へその補正
値として与えることを特徴とする燃料電池発電システム
(1) Arrange a pair of electrodes, a fuel electrode and an oxidizer electrode, with an electrolyte layer in between, and supply fuel to the fuel electrode and oxidizer to the oxidizer electrode, and utilize the electrochemical reaction that occurs at this time. a fuel cell that extracts electrical energy from between the electrodes, a power converter that converts the electrical energy generated by the fuel cell into an amount of electricity commensurate with a load command value, and a power converter installed on the oxidizing agent supply line. a control valve;
a flow rate detector that detects the flow rate of the oxidizer flowing through the oxidizer supply line; a current detector that detects the output current of the fuel cell; A computing device for obtaining the supply flow rate command value of the oxidizing agent, which compares the command flow rate from this computing device with the detected flow rate from the flow rate detector, and adjusts the valve opening of the control valve based on the comparison result. A flow rate control means comprising means for giving an adjustment signal to be adjusted, a voltage detector for detecting the output voltage of the fuel cell, and a voltage rise detection for comparing the detected voltage from the voltage detector with the upper limit voltage limit of the battery. means and
and a flow rate correction means for obtaining a supply flow rate correction value based on the comparison result of the voltage increase detection means, and is characterized in that the supply flow rate correction value of the flow rate correction means is given to the supply flow rate command value as the correction value. A fuel cell power generation system.
(2)N解質層を挟んで燃料極および酸化剤極の一対の
電極を配置すると共に前記燃料極に燃料をまた前記酸化
剤極に酸化剤を夫々供給し、このとき起こる電気化学的
反応を利用して前記電極間から電気エネルギーを取り出
す燃料電池と、この燃料電池で発生した電気エネルギー
を負荷指令値に見合った電気口に変換する電力変換装置
と、前記酸化剤の供給ライン上に設けられた調節弁と、
前記酸化剤の供給ラインを流れる酸化剤の流量を検出す
る流量検出器と、前記燃料電池の出力′R流を検出する
電流検出器と、この電流検出器により検出された出力電
流の大きさに応じて前記酸化剤の供給流山指令値を1q
る演n器、およびこの演算器からの指令流のと前記流量
検出器からの検出流量とを比較しかつこの比較結果に基
づいて前記調節弁へその弁開度を調節1べき調節信号を
与える手段よりなる流山制御手段と、前記燃料電池の出
力電圧を検出する電圧検出器と、この電圧検出器からの
検出電圧と電池の上限制限電圧とを比較する電圧上昇検
出手段と、この電圧上昇検出手段の比較結果に基づいて
負荷指令補正値を得、かつこの負荷指令補正値と負荷指
令値とを比較して補正この電気量検出器からの電力検出
値と前記負荷指令値とを比較しかつこの比較結果に基づ
いて供給流量補正値を得る流量補正手段とを備えて成り
、前記流量補正手段の供給流量補正値を前記供給流量指
令値へその補正値として与えることを特徴とする燃料電
池発電システム。 〈3)電解質層を挟んで燃料極および酸化剤極の一対の
電極を配置すると共に前記燃料極に燃料をまた前記酸化
剤極に酸化剤を人々供給し、このとき起こる電気化学的
反応を利用して前記電極間から電気エネルギーを取り出
す燃料電池と、この燃料電池で発生した電気エネルギー
を負荷指令値に見合った電気−に変換する電力変換装置
と、前記酸化剤の供給ライン上に設けられた調節弁と、
前記酸化剤の供給ラインを流れる酸化剤の流山を検出す
る流量検出器と、前記燃料電池の出力N流を検出する電
流検出器と、この電流検出器により検出された出力電流
の大きさに応じて前記酸化剤の供給流量指令値を得る演
算器、およびこの演算器からの指令流量と前記流量検出
器からの検出流量とを比較しかつこの比較結果に基づい
て前記調節弁へその弁開度を調節すべき調節信号を与え
る手段よりなるl I IIJ m手段と、前記燃料電
池の出力電圧を検出する電圧検出器と、この電圧検出器
からの検出電圧と電池の上限制限電圧とを比較する電圧
上昇検出手段と、この電圧上昇検出手段の比較結果に基
づいて負荷指令補正値を得、かつこの負荷指令補正値と
負荷指令値とを比較して補正負荷指令値を得る負荷指令
補正手段と、前記電圧上昇検出手段の比較結果に基づい
て第1の供給流量補正値を得る第1の流量補正手段と、
前記電力変換装置からの出力電気量を検出する電気量検
出器、この電気量検出器からの電気量検出値と前記負荷
指令値とを比較しかつこの比較結果に基づいて第2の供
給流量補正値を得る第2の流量補正手段とを備えて成り
、前記第1および第2の各供給流量補正値を前記供給流
量指令値へその補正値として与えることを特徴とする燃
料電池発電システム。
(2) A pair of electrodes, a fuel electrode and an oxidizer electrode, are arranged with an N solute layer in between, and a fuel is supplied to the fuel electrode, and an oxidizer is supplied to the oxidizer electrode, and the electrochemical reaction that occurs at this time a fuel cell that extracts electrical energy from between the electrodes by using a a control valve,
a flow rate detector for detecting the flow rate of the oxidizer flowing through the oxidizer supply line; a current detector for detecting the output 'R flow of the fuel cell; and a magnitude of the output current detected by the current detector. Accordingly, the supply flow rate command value of the oxidizing agent is increased by 1q.
a processor that compares the command flow from this calculator with the detected flow rate from the flow rate detector, and provides an adjustment signal to the control valve to adjust its valve opening degree based on the comparison result. a voltage detector for detecting the output voltage of the fuel cell; a voltage rise detection means for comparing the detected voltage from the voltage detector with an upper limit voltage of the battery; A load command correction value is obtained based on the comparison result of the means, and the load command correction value and the load command value are compared to correct the electric power detection value from the electric quantity detector and the load command value. and a flow rate correction means for obtaining a supply flow rate correction value based on the comparison result, the fuel cell power generation characterized in that the supply flow rate correction value of the flow rate correction means is given to the supply flow rate command value as the correction value. system. (3) Arranging a pair of electrodes, a fuel electrode and an oxidizer electrode, with an electrolyte layer in between, and supplying fuel to the fuel electrode and oxidizer to the oxidizer electrode, and utilizing the electrochemical reaction that occurs at this time. a fuel cell that extracts electrical energy from between the electrodes, a power converter that converts the electrical energy generated by the fuel cell into electricity commensurate with a load command value, and a power converter installed on the oxidizing agent supply line. a control valve;
a flow rate detector that detects a flow mountain of the oxidizer flowing through the oxidizer supply line; a current detector that detects the output N flow of the fuel cell; a computing unit that obtains a command value of the supply flow rate of the oxidizing agent; and a computing unit that compares the command flow rate from the computing unit with the detected flow rate from the flow rate detector, and determines the valve opening of the control valve based on the comparison result. a voltage detector for detecting the output voltage of the fuel cell; and comparing the detected voltage from the voltage detector with the upper limit voltage of the cell. Voltage rise detection means; and load command correction means for obtaining a load command correction value based on a comparison result of the voltage rise detection means and for obtaining a corrected load command value by comparing the load command correction value and the load command value. , a first flow rate correction means for obtaining a first supply flow rate correction value based on the comparison result of the voltage increase detection means;
an electricity quantity detector that detects the output electricity quantity from the power converter; a electricity quantity detection value from the electricity quantity detector and the load command value; and a second supply flow rate correction based on the comparison result. a second flow rate correction means for obtaining a value, and provides each of the first and second supply flow rate correction values to the supply flow rate command value as the correction value.
JP59108784A 1984-05-29 1984-05-29 Fuel cell power generation system Expired - Fee Related JPH071700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59108784A JPH071700B2 (en) 1984-05-29 1984-05-29 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59108784A JPH071700B2 (en) 1984-05-29 1984-05-29 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPS60253171A true JPS60253171A (en) 1985-12-13
JPH071700B2 JPH071700B2 (en) 1995-01-11

Family

ID=14493389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59108784A Expired - Fee Related JPH071700B2 (en) 1984-05-29 1984-05-29 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH071700B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310474A (en) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp Fuel cell power generating system
JP2006032168A (en) * 2004-07-16 2006-02-02 Nissan Motor Co Ltd Fuel cell system
JP2006509348A (en) * 2002-12-06 2006-03-16 デスビエンス,ドナルド,ジェイ Integrated fuel cell power regulation by controlling additional functions
JP2006185750A (en) * 2004-12-27 2006-07-13 Toshiba Fuel Cell Power Systems Corp Operation method of fuel cell power generation system and fuel cell power generation system
JP2008117788A (en) * 2007-12-25 2008-05-22 Ballard Power Syst Inc Control device of fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558524A (en) 2007-05-29 2009-10-14 丰田自动车株式会社 Fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553876A (en) * 1978-10-13 1980-04-19 United Technologies Corp Method of lowering output power of fuel battery
JPS58166670A (en) * 1982-03-27 1983-10-01 Kansai Electric Power Co Inc:The Pressure control method of fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553876A (en) * 1978-10-13 1980-04-19 United Technologies Corp Method of lowering output power of fuel battery
JPS58166670A (en) * 1982-03-27 1983-10-01 Kansai Electric Power Co Inc:The Pressure control method of fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310474A (en) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp Fuel cell power generating system
JP2006509348A (en) * 2002-12-06 2006-03-16 デスビエンス,ドナルド,ジェイ Integrated fuel cell power regulation by controlling additional functions
JP4756155B2 (en) * 2002-12-06 2011-08-24 フェアチャイルド セミコンダクター コーポレイション Integrated fuel cell power regulation by controlling additional functions
JP2006032168A (en) * 2004-07-16 2006-02-02 Nissan Motor Co Ltd Fuel cell system
JP2006185750A (en) * 2004-12-27 2006-07-13 Toshiba Fuel Cell Power Systems Corp Operation method of fuel cell power generation system and fuel cell power generation system
JP2008117788A (en) * 2007-12-25 2008-05-22 Ballard Power Syst Inc Control device of fuel cell

Also Published As

Publication number Publication date
JPH071700B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
Li et al. Control of a solid oxide fuel cell power plant in a grid-connected system
JPH08315841A (en) Output control device of fuel cell power generation device
JP2924673B2 (en) Operation control method for fuel cell power generation system
JP2002319419A (en) Technology and device for controlling transient response of fuel cell
JPH0572071B2 (en)
JPH0715653B2 (en) Fuel cell output controller
JPS61284065A (en) Fuel cell power generating system
JPS6326961A (en) Fuel cell power generating system and its operation method
JPS60253171A (en) Fuel battery power generation system
JPS60177565A (en) Operation method of fuel cell power generating system
JP2005245050A (en) System linkage inverter device
JPS6091569A (en) Air-supply-controlling system for fuel cell plant
JP2520963B2 (en) Fuel cell DC parallel operation system
WO2021261094A1 (en) Dc bus control system
JPH0461464B2 (en)
KR20210147908A (en) Fuel cell system
JP3387234B2 (en) Fuel cell generator
JP2674867B2 (en) Fuel cell generator
JP3433959B2 (en) Operation and control method of fuel cell
JPS60172175A (en) Load control device of fuel cell system
JPS60230364A (en) Fuel cell system
JPH04121971A (en) Method of protective stopping of fuel cell power generator
JP3062654B2 (en) Fuel cell power generation system
JPS62241266A (en) Fuel cell power generating system
JPS62259354A (en) Fuel cell power generating system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees