JPH071700B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPH071700B2
JPH071700B2 JP59108784A JP10878484A JPH071700B2 JP H071700 B2 JPH071700 B2 JP H071700B2 JP 59108784 A JP59108784 A JP 59108784A JP 10878484 A JP10878484 A JP 10878484A JP H071700 B2 JPH071700 B2 JP H071700B2
Authority
JP
Japan
Prior art keywords
flow rate
voltage
fuel cell
oxidant
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59108784A
Other languages
Japanese (ja)
Other versions
JPS60253171A (en
Inventor
寛行 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59108784A priority Critical patent/JPH071700B2/en
Publication of JPS60253171A publication Critical patent/JPS60253171A/en
Publication of JPH071700B2 publication Critical patent/JPH071700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は燃料電池発電システムに係り、特に酸化剤極へ
供給する酸化剤の流量を制御する制御手段を備えて成る
燃料電池発電システムに関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a fuel cell power generation system, and more particularly to a fuel cell power generation system including control means for controlling the flow rate of an oxidant supplied to an oxidant electrode.

[発明の技術的背景] 従来、燃料の有しているエネルギーを直接電気的エネル
ギーに変換するものとして燃料電池発電システムが知ら
れている。この燃料電池発電システムは通常、電解質層
を挟んで燃料極および酸化剤極の一対の電極を配置する
と共に、燃料極の背面に水素等の燃料を接触させ、また
酸化剤極の背面に空気等の酸化剤を接触させ、このとき
起こる電気化学的反応を利用して上記一対の電極間から
電気エネルギーを取り出し、この燃料電池で発生した電
気エネルギーを電力変換装置にて負荷指令値に見合った
電気量(例えば電力)に変換して負荷へ供給するように
したものであり、上記燃料と酸化剤が供給されている限
り高い変換効率で電気エネルギーを取出すことができる
ものである。
[Technical Background of the Invention] Conventionally, a fuel cell power generation system has been known as a device that directly converts the energy of a fuel into electrical energy. In this fuel cell power generation system, usually, a pair of electrodes of a fuel electrode and an oxidant electrode are arranged with an electrolyte layer sandwiched between them, fuel such as hydrogen is brought into contact with the back surface of the fuel electrode, and air or the like is contacted with the back surface of the oxidant electrode. Oxidizer is contacted, and the electrochemical reaction that takes place at this time is used to take out electrical energy from between the pair of electrodes, and the electrical energy generated by this fuel cell is converted into an electrical energy corresponding to the load command value by the power converter. It is configured to be converted into a quantity (for example, electric power) and supplied to a load, and as long as the fuel and the oxidant are supplied, electric energy can be extracted with high conversion efficiency.

さて、この種の燃料電池発電システムにおいては従来、
燃料電池で発生した電気エネルギーを電力変換装置によ
り負荷指令値に見合った電気量となるように制御し、こ
の結果として変化する電池出力電流を電流検出器で検出
してその大きさに応じて酸化剤の供給流量指令値を得、
かつこれを酸化剤の供給ラインを流れる酸化剤の流量を
検出する流量検出器からの流量検出値と比較し、その偏
差値に応じて上記酸化剤の供給ライン上に設けられた調
節弁の弁開度を調節することにより、酸化剤極へ供給す
る酸化剤の流量を制御するようにしている。なお、燃料
極には燃料を電池発電量に見合って供給するようにして
いる。
By the way, in this type of fuel cell power generation system,
The electric energy generated in the fuel cell is controlled by the power converter so that the amount of electricity is commensurate with the load command value.As a result, the changing battery output current is detected by the current detector and is oxidized according to its magnitude. Obtain the agent supply flow rate command value,
And this is compared with the flow rate detection value from the flow rate detector that detects the flow rate of the oxidant flowing through the oxidant supply line, and the valve of the control valve provided on the above oxidant supply line according to the deviation value. The flow rate of the oxidant supplied to the oxidant electrode is controlled by adjusting the opening degree. The fuel is supplied to the fuel electrode in proportion to the amount of power generated by the cell.

[背景技術の問題点] しかしながら、上述した従来の燃料電池発電システムに
おいては、燃料電池の低負荷運転時に電池出力電圧が、
燃料電池の寿命および性能保持上重要な意味を持つ上限
制限電圧を越えてしまい、燃料電池の電解質として濃リ
ン酸等を使用していることから、結果的にある温度,電
圧以上になると電解質による白金触媒の腐蝕を引起こ
し、電池の恒久的な性能低下を招くことになり好ましく
ない。第2図は、かかる燃料電池の出力電流−出力電圧
特性を示すものであり、図から出力電流Il以下の電池出
力状態では、電池の上限制限電圧Vmを越えてしまうこと
が理解される。
[Problems of Background Art] However, in the above-described conventional fuel cell power generation system, the cell output voltage during the low load operation of the fuel cell is
Since the upper limit voltage, which is important for maintaining the life and performance of the fuel cell, is exceeded and concentrated phosphoric acid, etc. is used as the electrolyte of the fuel cell, if the temperature or voltage exceeds a certain value, the Corrosion of the platinum catalyst causes permanent deterioration of battery performance, which is not preferable. FIG. 2 shows the output current-output voltage characteristics of such a fuel cell. From the figure, it is understood that the upper limit voltage Vm of the cell is exceeded in a cell output state in which the output current is less than Il.

[発明の目的] 本発明は上記のような問題を解消するために成されたも
ので、その目的は電池の低負荷運転時においても電池出
力電圧を上限制限電圧以下に抑制し、電池の性能低下を
防止すると共に寿命の向上を図ることが可能な燃料電池
発電システムを提供することにある。
[Object of the Invention] The present invention has been made to solve the above problems, and an object of the present invention is to suppress the battery output voltage to the upper limit voltage or lower even during low load operation of the battery to improve the battery performance. It is an object of the present invention to provide a fuel cell power generation system capable of preventing the deterioration and improving the life.

[発明の概要] 上記目的を達成するために本発明では、電解質層を挟ん
で燃料極および酸化剤極の一対の電極を配置すると共に
上記燃料極に燃料をまた上記酸化剤極に酸化剤を夫々供
給し、このとき起こる電気化学的反応を利用して上記電
極間から電気エネルギーを取り出す燃料電池と、この燃
料電池で発生した電気エネルギーを負荷指令値に見合っ
た電気量に変換する電力変換装置と、上記酸化剤の供給
ライン上に設けられた調節弁と、上記酸化剤の供給ライ
ンを流れる酸化剤の流量を検出する流量検出器と、上記
燃料電池の出力電流を検出する電流検出器と、この電流
検出器により検出された出力電流の大きさに応じて上記
酸化剤の供給流量指令値を得る演算器,この演算器から
の指令流量と上記流量検出器からの検出流量とを比較し
かつこの比較結果に基づいて上記調節弁へその弁開度を
調節すべき調節信号を与える手段よりなる流量制御手段
と、上記燃料電池の出力電圧を検出する電圧検出器と、
この電圧検出器からの検出電圧と電池の上限制限電圧と
を比較する電圧上昇検出手段と、この電圧上昇検出手段
の比較結果に基づいて負荷指令補正値を得、かつこの負
荷指令補正値と負荷指令値とを比較して補正負荷指令値
を得る負荷指令補正手段と、上記電圧上昇検出手段の比
較結果に基づいて第1の供給流量補正値を得る第1の流
量補正手段と、または上記電力変換装置からの出力電気
量を検出する電気量検出器,この電気量検出器からの電
気量検出値と上記負荷指令値とを比較しかつこの比較結
果に基づいて第2の供給流量補正値を得る第2の流量補
正手段とを備えて成り、上記第1または第2の各供給流
量補正値のうちの少なくとも一方を上記供給流量指令値
へその補正値として与えるようにしたことを特徴とす
る。
[Summary of the Invention] In order to achieve the above object, in the present invention, a pair of electrodes of a fuel electrode and an oxidant electrode are arranged with an electrolyte layer sandwiched between them, and a fuel is applied to the fuel electrode and an oxidant is applied to the oxidant electrode. A fuel cell for supplying electric power to each of the electrodes, which takes out electric energy from between the electrodes by utilizing an electrochemical reaction occurring at this time, and a power conversion device for converting the electric energy generated by the fuel cell into an electric quantity corresponding to a load command value. A control valve provided on the oxidant supply line, a flow rate detector for detecting the flow rate of the oxidant flowing through the oxidant supply line, and a current detector for detecting the output current of the fuel cell. An arithmetic unit that obtains the oxidant supply flow rate command value according to the magnitude of the output current detected by the current detector, and compares the command flow rate from this arithmetic unit with the detection flow rate from the flow rate detector. Flow rate control means consisting of means for giving a control signal to adjust the valve opening to the control valve based on the comparison result, a voltage detector for detecting the output voltage of the fuel cell,
A voltage rise detection means for comparing the detection voltage from the voltage detector with the upper limit voltage of the battery, and a load command correction value based on the comparison result of the voltage rise detection means, and the load command correction value and the load Load command correction means for obtaining a corrected load command value by comparing with a command value; first flow rate correction means for obtaining a first supply flow rate correction value based on the comparison result of the voltage rise detection means; An electricity quantity detector for detecting the electricity quantity output from the converter, comparing the electricity quantity detection value from the electricity quantity detector with the load command value, and based on the comparison result, a second supply flow rate correction value. And a second flow rate correction means for obtaining the flow rate, and at least one of the first and second supply flow rate correction values is given to the supply flow rate command value as a correction value thereof. .

[発明の実施例] まず、本発明の考え方について第3図および第4図を用
いて述べる。第3図は、電池出力電流および燃料利用率
をある一定値に保持した状態での酸化剤利用率に対する
電池出力電圧特性を示すものである。また第4図は、電
池出力電流および酸化剤利用率をある一定値に保持した
状態での燃料利用率に対する電池出力電圧特性を示すも
のである。なお、上記で燃料または酸化剤の利用率と
は、電池に供給される実燃料および酸化剤量に対する電
池出力電流と、ファラデー定数により決定される電気化
学的な理論燃料量および理論酸化剤量との比を百分率で
表わしたものである。
[Embodiment of the Invention] First, the concept of the present invention will be described with reference to FIG. 3 and FIG. FIG. 3 shows the cell output voltage characteristics with respect to the oxidant utilization rate in a state where the cell output current and the fuel utilization rate are maintained at a certain constant value. Further, FIG. 4 shows the cell output voltage characteristics with respect to the fuel utilization rate in the state where the cell output current and the oxidant utilization rate are held at a certain constant value. In the above, the utilization rate of the fuel or the oxidant is the cell output current with respect to the actual fuel and the oxidant amount supplied to the cell, and the electrochemical theoretical fuel amount and the theoretical oxidant amount determined by the Faraday constant. Is expressed as a percentage.

本発明は、第3図および第4図に示すように利用率が高
くなると出力電圧が低下し、その程度を比較すると酸化
剤利用率によるものがより強く現われるという事実よ
り、酸化剤利用率を制御量の一つとして電池低負荷運転
時の電圧上限抑制制御を行なおうとするものである。
According to the present invention, as shown in FIGS. 3 and 4, the output voltage decreases as the utilization rate increases, and the oxidant utilization rate is more strongly manifested by the fact that the oxidant utilization rate appears more strongly when the degree is compared. As one of the control amounts, it is intended to perform the upper limit voltage suppression control during battery low load operation.

以下、上記のような考え方に基づく本発明の一実施例に
ついて図面を参照して説明する。第1図は、本発明によ
る燃料電池発電システムの構成例をブロック的に示した
ものである。図において、1は電解質層を挟んで燃料極
2および酸化剤極3の一対の電極を配置してなる燃料電
池で、上記燃料極2には燃料の供給ライン4を介して水
素等の燃料を、また上記酸化剤極3には酸化剤の供給ラ
イン5を介して空気等の酸化剤を夫々供給し、このとき
起こる電気化学的反応を利用して上記電極間から電気エ
ネルギーである直流電力を取り出すようにしている。6
は、後述する補正負荷指令値7を基に上記燃料電池1で
発生した直流電力を交流電力に変換する電力変換装置と
してのインバータである。また、8は上記酸化剤の供給
ライン5上に設けられた調節弁、9は当該酸化剤の供給
ライン5を流れる酸化剤の流量を検出する流量検出器、
10は上記燃料電池1の出力電流Iを検出する電流検出器
である。さらに、11はこの電流検出器10により検出され
た出力電流Iの大きさに応じて上記酸化剤の供給流量指
令値12を関数にて得る演算器、13はこの演算器11からの
供給流量指令値12と後述する供給流量補正値14とを比較
しその偏差信号15を補正供給流量指令値として得る減算
器、16はこの減算器13からの偏差信号15と上記流量検出
器9からの検出信号17とを比較して偏差信号18を得る減
算器、19はこの減算器16からの偏差信号18に応じて上記
調節弁8へその弁開度を調節すべき調節信号20を与える
第1のPID演算器であり、これらより流量制御手段を構
成している。
An embodiment of the present invention based on the above concept will be described below with reference to the drawings. FIG. 1 is a block diagram showing a configuration example of a fuel cell power generation system according to the present invention. In the figure, reference numeral 1 is a fuel cell in which a pair of electrodes of a fuel electrode 2 and an oxidizer electrode 3 are arranged with an electrolyte layer sandwiched between them, and a fuel such as hydrogen is supplied to the fuel electrode 2 through a fuel supply line 4. Further, an oxidant such as air is supplied to the oxidant electrode 3 through an oxidant supply line 5, and direct current electric power, which is electric energy, is generated between the electrodes by utilizing an electrochemical reaction occurring at this time. I try to take it out. 6
Is an inverter as a power converter that converts DC power generated in the fuel cell 1 into AC power based on a corrected load command value 7 described later. Further, 8 is a control valve provided on the oxidant supply line 5, 9 is a flow rate detector for detecting the flow rate of the oxidant flowing through the oxidant supply line 5,
Reference numeral 10 is a current detector for detecting the output current I of the fuel cell 1. Further, 11 is a calculator for obtaining a supply flow rate command value 12 of the oxidizer by a function according to the magnitude of the output current I detected by the current detector 10, and 13 is a supply flow rate command from the calculator 11. A subtracter 16 for comparing the value 12 with a supply flow rate correction value 14 described later to obtain a deviation signal 15 as a corrected supply flow rate command value, 16 is a deviation signal 15 from the subtracter 13 and a detection signal from the flow rate detector 9 A subtractor 19 for comparing with 17 to obtain a deviation signal 18, and a first PID 19 for giving a control signal 20 for adjusting the valve opening degree to the control valve 8 according to the deviation signal 18 from the subtractor 16. It is an arithmetic unit, and constitutes flow rate control means from these.

一方、21は上記燃料電池1の出力電圧を検出する電圧検
出器、22はこの電圧検出器21からの検出電圧Vと前述し
た電池の上限制限電圧Vmとを比較して偏差信号23を得る
減算器であり、これらより電圧上昇検出手段を構成して
いる。また、24はこの減算器22からの偏差信号23に応じ
て負荷指令補正値を得、かつこれを下限零リミッタ25を
介し26として出力するリセットワインドアップ防止機能
付きのPID演算器、27はこの負荷指令補正値26と負荷指
令設定器28からの負荷指令値P0とを比較して偏差信号を
上記補正負荷指令値7として得る加算器であり、これら
より負荷指令補正手段を構成している。また、31は上記
減算器22からの偏差信号23に応じて第1の供給流量補正
値を得、かつこれを下限零リミッタ32を介し33として出
力するリセットワインドアップ防止機能付きのPID演算
器であり、これらより第1の流量補正手段を構成してい
る。さらに、34は上記インバータ6からの出力電気量
(例えば電力Ps)を検出する電気量検出器としての電力
検出器、35はこの電力検出器34からの電力検出値Psと上
記負荷指令設定器28からの負荷指令値としての電力指令
値P0とを比較して偏差信号36を得る減算器、37はこの減
算器35からの偏差信号36に応じて第2の供給流量補正値
を得、かつこれを下限零リミッタ38を介し39として出力
するリセットワインドアップ防止機能付きのPID演算器
であり、これらより第2の流量補正手段を構成してい
る。さらにまた、40は上記第1および第2の各供給流量
補正値33および39を加算する加算器で、その加算信号を
上記供給流量補正値14として出力するようにしている。
On the other hand, 21 is a voltage detector for detecting the output voltage of the fuel cell 1, and 22 is a subtraction for obtaining a deviation signal 23 by comparing the detected voltage V from the voltage detector 21 with the above-mentioned upper limit voltage Vm of the battery. And constitutes a voltage rise detecting means. Further, 24 is a PID calculator with a reset windup prevention function that obtains a load command correction value according to the deviation signal 23 from the subtractor 22 and outputs this as a 26 via a lower limit zero limiter 25. It is an adder that compares the load command correction value 26 and the load command value P 0 from the load command setter 28 to obtain a deviation signal as the corrected load command value 7, and constitutes a load command correction means. . Further, 31 is a PID calculator with a reset windup prevention function that obtains a first supply flow rate correction value in accordance with the deviation signal 23 from the subtractor 22 and outputs this as a 33 via a lower limit zero limiter 32. Yes, these constitute the first flow rate correction means. Further, 34 is an electric power detector as an electric quantity detector that detects the output electric quantity (for example, electric power Ps) from the inverter 6, and 35 is the electric power detection value Ps from the electric power detector 34 and the load command setter 28. , A subtracter for obtaining a deviation signal 36 by comparing with a power instruction value P 0 as a load instruction value from 37, 37 obtains a second supply flow rate correction value in accordance with the deviation signal 36 from the subtractor 35, and This is a PID calculator with a reset windup prevention function that outputs this as 39 via the lower limit zero limiter 38, and these constitute the second flow rate correction means. Furthermore, 40 is an adder for adding the first and second supply flow rate correction values 33 and 39, and the addition signal is output as the supply flow rate correction value 14.

上記で、演算器11における関数は次のように設定され
る。つまり、燃料電池の場合酸化剤利用率が増大すると
電池起電力は減少する傾向にあるため、転極等の現象を
起こさないためには許容下限電圧以下でなければならな
い。そこで、上記のある値以下で利用率を決定すれば、
電池出力電流に対する酸化剤の供給流量が下式より求ま
る。
In the above, the function in the arithmetic unit 11 is set as follows. That is, in the case of a fuel cell, the cell electromotive force tends to decrease as the oxidant utilization rate increases, and therefore the voltage must be lower than the allowable lower limit voltage in order to prevent phenomena such as reversal. So, if you decide the usage rate below a certain value,
The oxidant supply flow rate with respect to the battery output current can be obtained from the following equation.

I×N×3600×22.4 4×96500×1000×0.21×η ここで、F:酸化剤の供給流量(Nm/H)、I:電池出力電流
(A)、N:燃料電池直列接続個数、η:酸化剤利用率で
あり、またファラデー定数を96500(c/mol)、酸化剤中
の酸素濃度0.21とする。
I × N × 3600 × 22.4 4 × 96 500 × 1000 × 0.21 × η where F: oxidizer supply flow rate (Nm / H), I: cell output current (A), N: number of fuel cells connected in series, η : Oxidizing agent utilization rate, Faraday constant is 96500 (c / mol), and oxygen concentration in the oxidizing agent is 0.21.

次に、かかる構成の燃料電池発電システムの作用につい
て第5図を用いて述べる。第5図において、は通常運
転時の電池出力電圧−出力電流特性を示すものである。
まず、いま仮に特性曲線上のa点(負荷指令値P0
P0)にて運転している時に負荷指令値P0がP2まで減少し
た場合について考えると、電池出力電圧Vはの特性曲
線上のb点に移行し電池の上限制限電圧Vmを越える。す
ると、この電圧上昇により上限制限電圧Vmに対して正の
電圧偏差23が減算器22で得られ、この偏差信号23に応じ
PID演算器24および下限零リミッタ25を介して負荷指令
補正値26が得られ、これを負荷指令設定器28からの負荷
指令値P0に加算器27で加算することにより負荷指令値を
増加して補正負荷指令値7を得、かつこれをインバータ
6に与えることにより電圧偏差が零となるc点まで出力
を増加して上限制限電圧以下に抑制制御される。
Next, the operation of the fuel cell power generation system having such a configuration will be described with reference to FIG. FIG. 5 shows the battery output voltage-output current characteristics during normal operation.
First, suppose that point a on the characteristic curve (load command value P 0 :
Considering the case where the load command value P 0 decreases to P 2 during operation at P 0 ), the battery output voltage V shifts to point b on the characteristic curve of and exceeds the upper limit voltage Vm of the battery. Then, due to this voltage increase, a positive voltage deviation 23 with respect to the upper limit voltage Vm is obtained by the subtractor 22, and according to this deviation signal 23
The load command correction value 26 is obtained via the PID calculator 24 and the lower limit zero limiter 25, and the load command value is increased by adding it to the load command value P 0 from the load command setter 28 by the adder 27. The corrected load command value 7 is obtained by applying the corrected load command value 7 to the inverter 6, and the output is increased to the point c where the voltage deviation becomes zero, and is controlled to be equal to or lower than the upper limit voltage.

しかし、このままの状態では目標とする負荷指令値P2
実出力電力が一致しない。そこで、PID演算器31で上記
減算器22からの偏差信号23に応じて第1の供給流量補正
値を得て、これを下限零リミッタ32を介し33として加算
器40へ出力し、また一方では減算器35で得られる実出力
電力P1と負荷指令値P2との偏差信号36に応じて第2の供
給流量補正値を得、かつこれを下限零リミッタ38を介し
39として加算器40へ出力することにより、加算器40でこ
れら第1および第2の各供給流量補正値33および39を加
算し、その加算信号を供給流量補正値14として減算器13
へ与えることにより、上記演算器11からの供給流量指令
値12を補正して補正供給流量指令値15が得られる。そし
て、この補正供給流量指令値15と上記流量検出器9から
の流量検出値17との偏差信号18を減算器16で得てこれを
PID演算器19へ与えることにより、PID演算器19ではこの
減算器16からの偏差信号18に応じて上記調節弁8へその
弁開度を閉方向へ調節すべき調節信号20を与えて、酸化
剤極3へ供給する酸化剤量を減少させる。その結果、酸
化剤利用率が高まって電池出力電圧が低下し、最終的に
第5図のにて示すような出力電圧−電流特性に移行さ
せることにより負荷指令値P2に合致し、かつ電池の上限
制限電圧Vm以下の運転点であるd点に移行して安定に運
転を継続することができる。
However, in this state, the actual output power does not match the target load command value P 2 . Therefore, the PID calculator 31 obtains the first supply flow rate correction value according to the deviation signal 23 from the subtractor 22 and outputs it to the adder 40 as 33 via the lower limit zero limiter 32. A second supply flow rate correction value is obtained according to the deviation signal 36 between the actual output power P 1 and the load command value P 2 obtained by the subtractor 35, and this is supplied via the lower limit zero limiter 38.
By outputting it to the adder 40 as 39, the adder 40 adds the first and second supply flow rate correction values 33 and 39, and the addition signal is supplied as the supply flow rate correction value 14 to the subtracter 13
To correct the supply flow rate command value 12 from the arithmetic unit 11 to obtain a corrected supply flow rate command value 15. Then, the difference signal 18 between the corrected supply flow rate command value 15 and the flow rate detection value 17 from the flow rate detector 9 is obtained by the subtractor 16 and is obtained.
By giving it to the PID calculator 19, the PID calculator 19 gives the control valve 8 a control signal 20 for adjusting its valve opening in the closing direction in accordance with the deviation signal 18 from the subtractor 16 to oxidize it. The amount of oxidizing agent supplied to the agent electrode 3 is reduced. As a result, the battery output voltage drops increasingly oxidant utilization, finally output voltage shown similar in Figure 5 - conform to the load command value P 2 by shifting the current characteristics, and a battery The operation can be continued stably by shifting to the point d, which is the operating point of the upper limit voltage Vm or less.

上述したように、本燃料電池発電システムは電解質層を
挟んで燃料極2および酸化剤極3の一対の電極を配置し
てなり、上記燃料極2には燃料の供給ライン4を介して
水素等の燃料が、また上記酸化剤極3には酸化剤の供給
ライン5を介して空気等の酸化剤か夫々供給され、この
とき起こる電気化学的反応を利用して上記電極間から電
気エネルギーである直流電力を取り出す燃料電池1と、
補正負荷指令値7を基に上記燃料電池1で発生した直流
電力を交流電力に変換する電力変換装置としてのインバ
ータ6と、上記酸化剤の供給ライン5上に設けられた調
節弁8と、当該酸化剤の供給ライン5を流れる酸化剤の
流量を検出する流量検出器9と、上記燃料電池1の出力
電流Iを検出する電流検出器10と、この電流検出器10に
より検出された出力電流Iの大きさに応じて上記酸化剤
の供給流量指令値12を関数にて得る演算器11,この演算
器11からの供給流量指令値12と供給流量補正値14とを比
較しその偏差信号15を補正供給流量指令値として得る減
算器13,この減算器13からの偏差信号15と上記流量検出
器9からの検出信号17とを比較して偏差信号18を得る減
算器16,この減算器16からの偏差信号18に応じて上記調
節弁8へその弁開度を調節すべき調節信号20を与える第
1のPID演算器19よりなる流量制御手段と、上記燃料電
池1の出力電圧を検出する電圧検出器21,この電圧検出
器21からの検出電圧Vと電池の上限制限電圧Vmとを比較
して偏差信号23を得る減算器22よりなる電圧上昇検出手
段と、上記減算器22からの偏差信号23に応じて負荷指令
補正値を得、かつこれを下限零リミッタ25を介し26とし
て出力するリセットワインドアップ防止機能付きのPID
演算器24,この負荷指令補正値26と負荷指令設定器28か
らの負荷指令値としての電力指令値P0とを比較して偏差
信号を上記補正負荷指令値7として得る加算器27よりな
る負荷指令補正手段と、上記インバータ6からの出力電
気量である出力電力Psを検出する電気量検出器としての
電力検出器34,この電力検出器34からの電力検出値Psと
上記負荷指令設定器28からの負荷指令値P0とを比較して
偏差信号36を得る減算器35,この減算器35からの偏差信
号36に応じて第2の供給流量補正値を得、かつこれを下
限零リミッタ38を介し39として出力するリセットワイン
ドアップ防止機能付きのPID演算器37よりなる第2の流
量補正手段と、上記第2の供給流量補正値39を上記供給
流量補正値14として上記減算器13に与える構成としたも
のである。
As described above, the present fuel cell power generation system has a pair of electrodes of the fuel electrode 2 and the oxidizer electrode 3 with the electrolyte layer sandwiched therebetween, and hydrogen or the like is supplied to the fuel electrode 2 via the fuel supply line 4. Is supplied to the oxidant electrode 3 via the oxidant supply line 5, respectively, and an oxidant such as air is supplied to the oxidant electrode 3 to generate electric energy from between the electrodes by utilizing an electrochemical reaction occurring at this time. A fuel cell 1 for extracting DC power,
An inverter 6 as a power converter for converting the DC power generated in the fuel cell 1 into AC power based on the corrected load command value 7; a control valve 8 provided on the oxidant supply line 5; A flow rate detector 9 for detecting the flow rate of the oxidant flowing through the oxidant supply line 5, a current detector 10 for detecting the output current I of the fuel cell 1, and an output current I detected by the current detector 10. Calculating the supply flow rate command value 12 of the above oxidant by a function according to the size of the calculation unit 11, comparing the supply flow rate command value 12 from this calculation unit 11 with the supply flow rate correction value 14, and calculating the deviation signal 15 thereof. From the subtracter 13 that obtains the corrected supply flow rate command value, the deviation signal 15 from this subtractor 13 and the detection signal 17 from the above flow rate detector 9 to obtain the deviation signal 18, and from this subtracter 16 The valve opening of the control valve 8 should be adjusted according to the deviation signal 18 of A flow rate control means comprising a first PID calculator 19 for giving a node signal 20, a voltage detector 21 for detecting the output voltage of the fuel cell 1, a detection voltage V from this voltage detector 21 and an upper limit voltage of the battery. A voltage rise detection means consisting of a subtractor 22 that obtains a deviation signal 23 by comparing with Vm, and a load command correction value is obtained according to the deviation signal 23 from the subtractor 22, and this is also passed through a lower limit zero limiter 25. PID with reset windup prevention function that outputs as 26
A load consisting of an adder 27 that obtains a deviation signal as the corrected load command value 7 by comparing the load command correction value 26 with the power command value P 0 as the load command value from the load command setting device 28. A command correcting means, a power detector 34 as an electric quantity detector for detecting an output electric power Ps which is an output electric quantity from the inverter 6, a detected electric power value Ps from the electric power detector 34 and the load command setter 28. Subtractor 35 that obtains the deviation signal 36 by comparing the load command value P 0 from No. 2, the second supply flow rate correction value is obtained according to the deviation signal 36 from this subtractor 35, and this is the lower limit zero limiter 38. A second flow rate correction means composed of a PID calculator 37 with a reset windup prevention function for outputting 39 as a supply flow rate correction value, and the second supply flow rate correction value 39 is given to the subtractor 13 as the supply flow rate correction value 14. It is configured.

従って、電池がいかなる低負荷運転領域においても電池
の出力電圧を上限制限電圧Vm以下に抑制し、電池の性能
低下を防止すると共に寿命の向上を図ることが可能とな
るばかりでなく、負荷指令値に実負荷出力値を常に一致
させた電池運転状態に制御することができる。また、上
記構成に加えて、減算器22からの偏差信号23に応じて第
1の供給流量補正値を得、かつこれを下限零リミッタ32
を介し33として出力するリセットワインドアップ防止機
能付きのPID演算器31を備えてなる第1の流量補正手段
を設け、この第1の流量補正手段と第2の流量補正手段
より得られる第1及び第2の供給流量補正値33及び39を
加算器40により加算し、その加算信号を供給流量補正値
14として減算器13に与える構成としたものである。
Therefore, in any low load operation range of the battery, not only the output voltage of the battery is suppressed to the upper limit limit voltage Vm or less, it is possible to prevent the performance of the battery from being deteriorated and also to improve the life, but also the load command value. It is possible to control the battery operating state in which the actual load output value is always matched. In addition to the above configuration, a first supply flow rate correction value is obtained according to the deviation signal 23 from the subtractor 22, and this is also set as the lower limit zero limiter 32.
A first flow rate correction means provided with a PID calculator 31 having a reset windup prevention function for outputting as a signal 33 via the first flow rate correction means and the second flow rate correction means. The second supply flow rate correction values 33 and 39 are added by the adder 40, and the addition signal is added to the supply flow rate correction value.
It is configured such that 14 is given to the subtractor 13.

このような構成とすれば、検出電圧が上限制限電圧を越
えた場合には、まず第1の供給流量補正値が電池への酸
化剤供給流量を減少させる方向に働くと同時にインバー
タ6への負荷指令補正値が出力され、インバータ6の出
力が増加する方向に働き、前述の第1の供給流量補正値
の働きと同じく電池電圧を上限制限電圧以下に引戻す。
With such a configuration, when the detected voltage exceeds the upper limit voltage, the first supply flow rate correction value first acts to decrease the oxidant supply flow rate to the battery, and at the same time the load on the inverter 6 is reduced. The command correction value is output, the output of the inverter 6 works in the direction of increasing, and the battery voltage is returned to the upper limit voltage or less like the function of the first supply flow rate correction value described above.

しかし、このままでは電池電圧は上限制限電圧以下に速
やかに抑制することができるが、インバータ6の出力電
気量は負荷指令値より増加したままの運転状態を継続し
てしまう。このため、電気量検出値が負荷指令値を越え
た場合には電池への酸化剤供給流量を減少させる方向に
働く第2の供給流量補正値により電池電圧を第1の供給
流量補正値と同一方向に働くよう作用させ、電池出力電
圧が上限制限電圧以下で負荷指令値と出力電気量が一致
する運転点に移行させている。
However, if the battery voltage is left as it is, the battery voltage can be promptly suppressed to the upper limit voltage or lower, but the output electricity amount of the inverter 6 continues to be in the operating state while being increased from the load command value. Therefore, when the detected amount of electricity exceeds the load command value, the battery voltage is made equal to the first supply flow rate correction value by the second supply flow rate correction value that works to decrease the oxidant supply flow rate to the battery. The battery is operated so that the load command value and the output electricity amount match when the battery output voltage is equal to or lower than the upper limit voltage.

従って、応答の速い電池出力制御にて電圧上限超過が抑
制され、次いで比較的応答の遅い供給酸化剤流量制御に
て上限制限電圧Vm以下の定常運転状態への引き戻し制御
が行なわれることから、過渡変化期間を通じて極力上限
制限電圧Vmを超過しないような状態で電池運転を行なう
ことが可能となる。
Therefore, the voltage upper limit is suppressed by the battery output control with a fast response, and then the pullback control to the steady operation state of the upper limit voltage Vm or less is performed by the supply oxidant flow rate control with a relatively slow response. It is possible to operate the battery in a state where the upper limit voltage Vm is not exceeded as much as possible throughout the change period.

尚、上記実施例では電力変換装置として交流電力を制御
するインバータ6を用いたが、これに限らず直流電力を
制御する例えばチョッパ装置、可変抵抗装置のようなも
のを適用することも可能である。
Although the inverter 6 for controlling the AC power is used as the power converter in the above embodiment, the invention is not limited to this, and a device such as a chopper device or a variable resistance device for controlling the DC power may be applied. .

[発明の効果] 以上説明したように本発明によれば、電池の低負荷運転
時においても電池出力電圧を上限制限電圧以下に抑制
し、電池の性能低下を防止すると共に寿命の向上を図る
ことが可能な極めて信頼性の高い燃料電池発電システム
が提供できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to suppress the battery output voltage to the upper limit voltage or less even during low load operation of the battery, prevent the performance of the battery from decreasing, and improve the life of the battery. It is possible to provide an extremely reliable fuel cell power generation system capable of achieving the above.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
電池の出力電流−出力電圧特性を示す図、第3図および
第4図は本発明の考え方を説明するための図、第5図は
実施例の動作を説明するための図である。 1……燃料電池、2……燃料極、3……酸化剤極、4…
…燃料供給ライン、5……酸化剤供給ライン、6……イ
ンバータ、8……調節弁、9……流量検出器、10……電
流検出器、11……演算器、13,16,22,35……減算器、19,
24,31,37……PID演算器、21……電圧検出器、25,32,38
……下限零リミッタ、27,40……加算器、28……負荷指
令設定器、34……電力検出器。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing output current-output voltage characteristics of a battery, FIGS. 3 and 4 are diagrams for explaining the concept of the present invention, FIG. 5 is a diagram for explaining the operation of the embodiment. 1 ... Fuel cell, 2 ... Fuel electrode, 3 ... Oxidizer electrode, 4 ...
… Fuel supply line, 5 …… Oxidizer supply line, 6 …… Inverter, 8 …… Control valve, 9 …… Flow rate detector, 10 …… Current detector, 11 …… Calculator, 13,16,22, 35 …… Subtractor, 19,
24,31,37 …… PID calculator, 21 …… Voltage detector, 25,32,38
...... Lower limit zero limiter, 27,40 …… Adder, 28 …… Load command setter, 34 …… Power detector.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】燃料供給ラインを通して燃料が供給される
燃料極及び酸化剤供給ラインを通して酸化剤が供給され
る酸化剤極を備えた燃料電池で発生する電気エネルギー
を電力変換装置により負荷指令値に見合った電気量に変
換して出力する燃料電池発電システムにおいて、前記燃
料電池の出力電流を検出する電流検出器と、この電流検
出器により検出された出力電流の大きさに応じて前記酸
化剤の供給流量指令値を求める演算器、この演算器から
の供給流量指令値と前記酸化剤供給ラインを流れる酸化
剤流量の検出値とを比較し、その偏差に基いて前記酸化
剤供給ラインに設けられた調節弁に弁開度調節信号を与
える流量制御手段と、前記燃料電池の出力電圧を検出す
る電圧検出器と、この電圧検出器の検出電圧と前記燃料
電池の上限制限電圧とを比較し、検出電圧が上限制限電
圧を越えると前記電力変換装置への負荷指令値を増加さ
せる負荷指令補正値を出力する負荷指令補正手段と、前
記電圧検出器の検出電圧が前記燃料電池の上限制限電圧
を越えると前記電力変換装置の出力電気量と前記負荷指
令値との偏差により前記流量制御手段で求められた供給
流量指令値を減少させる供給流量補正値を出力する流量
補正手段とを備えたことを特徴とする燃料電池発電シス
テム。
1. A load command value for an electric energy generated in a fuel cell provided with a fuel electrode supplied with fuel through a fuel supply line and an oxidant electrode supplied with oxidant through an oxidant supply line. In a fuel cell power generation system that converts and outputs the corresponding amount of electricity, a current detector that detects the output current of the fuel cell, and the oxidizer of the oxidizer according to the magnitude of the output current detected by the current detector. An arithmetic unit that obtains a supply flow rate command value, compares the supply flow rate command value from this arithmetic unit with a detected value of the oxidant flow rate flowing through the oxidant supply line, and is provided in the oxidant supply line based on the deviation. Flow control means for giving a valve opening adjustment signal to the control valve, a voltage detector for detecting the output voltage of the fuel cell, a detection voltage of the voltage detector and an upper limit limiting voltage of the fuel cell. And load command correction means for outputting a load command correction value for increasing the load command value to the power converter when the detected voltage exceeds the upper limit voltage, and the detected voltage of the voltage detector is the fuel cell. Flow rate correction means for outputting a supply flow rate correction value for decreasing the supply flow rate command value obtained by the flow rate control means due to a deviation between the output electric quantity of the power converter and the load command value when the upper limit voltage is exceeded. A fuel cell power generation system comprising:
【請求項2】燃料供給ラインを通して燃料が供給される
燃料極及び酸化剤供給ラインを通して酸化剤が供給され
る酸化剤極を備えた燃料電池で発生する電気エネルギー
を電力変換装置により負荷指令値に見合った電気量に変
換して出力する燃料電池発電システムにおいて、前記燃
料電池の出力電流を検出する電流検出器と、この電流検
出器により検出された出力電流の大きさに応じて前記酸
化剤の供給流量指令値を求める演算器、この演算器から
の供給流量指令値と前記酸化剤供給ラインを流れる酸化
剤流量の検出値とを比較し、その偏差に基いて前記酸化
剤供給ラインに設けられた調節弁に弁開度調節信号を与
える流量制御手段と、前記燃料電池の出力電圧を検出す
る電圧検出器と、この電圧検出器の検出電圧と前記燃料
電池の上限制限電圧とを比較し、検出電圧が上限制限電
圧を越えると前記電力変換装置への負荷指令値を増加さ
せる負荷指令補正値を出力する負荷指令補正手段と、前
記電圧検出器の検出電圧が前記燃料電池の上限制限電圧
を越えると前記供給流量指令値を減少させる第1の供給
流量補正値を出力する第1の流量補正手段と、前記電力
変換装置からの出力電気量を検出し、この電気量検出値
が前記負荷指令値を越えると前記燃料電池への酸化剤供
給流量を減少させ、且つ燃料電池の出力電圧が上限制限
電圧以下で負荷指令値と出力電気量が一致するように前
記第1の供給流量補正値に加算される第2の供給流量補
正値を出力する第2の流量補正手段とを備えたことを特
徴とする燃料電池発電システム。
2. A power converter converts electric energy generated in a fuel cell having a fuel electrode supplied with fuel through a fuel supply line and an oxidant electrode supplied with oxidant through an oxidant supply line into a load command value by a power converter. In a fuel cell power generation system that converts and outputs the corresponding amount of electricity, a current detector that detects the output current of the fuel cell, and the oxidizer of the oxidizer according to the magnitude of the output current detected by the current detector. An arithmetic unit that obtains a supply flow rate command value, compares the supply flow rate command value from this arithmetic unit with a detected value of the oxidant flow rate flowing through the oxidant supply line, and is provided in the oxidant supply line based on the deviation. Flow control means for giving a valve opening adjustment signal to the control valve, a voltage detector for detecting the output voltage of the fuel cell, a detection voltage of the voltage detector and an upper limit limiting voltage of the fuel cell. And load command correction means for outputting a load command correction value for increasing the load command value to the power converter when the detected voltage exceeds the upper limit voltage, and the detected voltage of the voltage detector is the fuel cell. When a voltage exceeds the upper limit voltage of the above, the first flow rate correction means for outputting the first supply flow rate correction value for decreasing the supply flow rate command value, and the output electric quantity from the power conversion device are detected, and the electric quantity is detected. When the value exceeds the load command value, the oxidant supply flow rate to the fuel cell is decreased, and the load command value and the output electricity amount match when the output voltage of the fuel cell is equal to or lower than the upper limit voltage. A fuel cell power generation system, comprising: a second flow rate correction means for outputting a second supply flow rate correction value to be added to the supply flow rate correction value.
JP59108784A 1984-05-29 1984-05-29 Fuel cell power generation system Expired - Fee Related JPH071700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59108784A JPH071700B2 (en) 1984-05-29 1984-05-29 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59108784A JPH071700B2 (en) 1984-05-29 1984-05-29 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPS60253171A JPS60253171A (en) 1985-12-13
JPH071700B2 true JPH071700B2 (en) 1995-01-11

Family

ID=14493389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59108784A Expired - Fee Related JPH071700B2 (en) 1984-05-29 1984-05-29 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH071700B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9118049B2 (en) 2007-05-29 2015-08-25 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105623B2 (en) * 1986-07-01 1994-12-21 三菱電機株式会社 Fuel cell power generation system
DE10393844B4 (en) * 2002-12-06 2014-07-24 Fairchild Semiconductor Corporation Integrated fuel cell power conditioning with additional function control
JP4977947B2 (en) * 2004-07-16 2012-07-18 日産自動車株式会社 Fuel cell system
JP4852241B2 (en) * 2004-12-27 2012-01-11 東芝燃料電池システム株式会社 Operation method of fuel cell power generation system
JP2008117788A (en) * 2007-12-25 2008-05-22 Ballard Power Syst Inc Control device of fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202933A (en) * 1978-10-13 1980-05-13 United Technologies Corporation Method for reducing fuel cell output voltage to permit low power operation
JPS58166670A (en) * 1982-03-27 1983-10-01 Kansai Electric Power Co Inc:The Pressure control method of fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9118049B2 (en) 2007-05-29 2015-08-25 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Also Published As

Publication number Publication date
JPS60253171A (en) 1985-12-13

Similar Documents

Publication Publication Date Title
JP4877656B2 (en) Fuel cell system and current control method thereof
CA2362061C (en) Fuel cell power supply unit
JP4320686B2 (en) Fuel cell system and current limiting method thereof
US8027759B2 (en) Fuel cell vehicle system
US20070129859A1 (en) Control apparatus for fuel cell vehicle
JPH05151983A (en) Hybrid fuel cell system
KR102551676B1 (en) External power supply system and supply method of fuel cell vehicle
JP5435320B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
KR20100061757A (en) Fuel cell system
JP4314165B2 (en) Hybrid fuel cell system
JPS61284065A (en) Fuel cell power generating system
JP2009032418A (en) Operating method for fuel battery
JPH0715653B2 (en) Fuel cell output controller
JPH071700B2 (en) Fuel cell power generation system
JP2000357526A (en) Fuel cell power generating system and deterioration diagnostic method of its cell stack
JP2007179749A (en) Control method of fuel cell and its control device
JP4055409B2 (en) Fuel cell control device
JPH0955219A (en) Fuel cell power generating device and operation method
JP2005245050A (en) System linkage inverter device
JPS60177565A (en) Operation method of fuel cell power generating system
US10854897B2 (en) Temperature control system and method for fuel cell system and fuel cell system
JP2520963B2 (en) Fuel cell DC parallel operation system
JPH06267577A (en) Control device for fuel cell
JP3879631B2 (en) Fuel cell system
WO2021261094A1 (en) Dc bus control system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees