JPH05302139A - High strength aluminum alloy sheet excellent in bendability - Google Patents

High strength aluminum alloy sheet excellent in bendability

Info

Publication number
JPH05302139A
JPH05302139A JP13151892A JP13151892A JPH05302139A JP H05302139 A JPH05302139 A JP H05302139A JP 13151892 A JP13151892 A JP 13151892A JP 13151892 A JP13151892 A JP 13151892A JP H05302139 A JPH05302139 A JP H05302139A
Authority
JP
Japan
Prior art keywords
strength
bendability
rolling
diameter
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13151892A
Other languages
Japanese (ja)
Other versions
JP3255963B2 (en
Inventor
Shinji Teruda
伸二 照田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP13151892A priority Critical patent/JP3255963B2/en
Publication of JPH05302139A publication Critical patent/JPH05302139A/en
Application granted granted Critical
Publication of JP3255963B2 publication Critical patent/JP3255963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To provide the objective high strength aluminum alloy sheet excellent in bendability and suitable for a can-top, particularly, for an easy open-end. CONSTITUTION:The aluminum alloy sheet contg., by weight, 3 to 5% Mg, 0.1 to 1.0% Mn, <=0.3% Si, 0.005 5o 0.20% Ti and 0.0005 to 0.04% B and furthermore contg. one or >= two kinds among 0.05 to 0.5% Cu, 0.05 to 0.3% Cr, 0.1 to 0.5% Zn and 0.05 to 0.7% Fe as well as <=1% Fe+Mn, and in which the maximum grain diameter is regulated to <=40mum, the number of intermetallic compounds with >=3mum diameter present within a visual field of 50mum diameter is regulated to <=5 pieces in any place and the number of intermetallic compound grains with >=1mum diameter is regulated to <=4000 pieces/0.2mm<2> is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はビール缶、炭酸飲料缶等
の蓋材、特にイージーオープンエンド(EOE)材に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lid material for beer cans, carbonated beverage cans and the like, and more particularly to an easy open end (EOE) material.

【0002】[0002]

【従来の技術】現在、ビール缶、炭酸飲料缶等の飲料缶
の開口方法には、缶切りなどの器具を使わずに手で容易
に開缶できるイージーオープンエンド(EOE)が一般
的に用いられている。このイージーオープンエンドに使
用されるアルミニウム合金としては、従来5182合金
が主に使用され、その時の耐力で300N/mm2(引
張強さと耐力の平均で335N/mm2)程度である。
これらの材料では高強度化のためにその製造方法が従来
のバッチタイプの中間焼鈍から連続焼鈍炉(CAL)に
よる中間焼鈍へと変りつつある。しかし連続焼鈍炉を用
いた場合でも、冷間圧延率が70%以上では成形性、特
に曲げ性が悪くなる傾向にあり、もはや強度の面でも限
界に近づきつつある。
2. Description of the Related Art At present, as an opening method for beverage cans such as beer cans and carbonated beverage cans, an easy open end (EOE) that can be easily opened by hand without using a device such as a can opener is generally used. ing. As the aluminum alloy used for this easy open end, the conventional 5182 alloy has been mainly used, and the yield strength at that time is about 300 N / mm 2 (average tensile strength and yield strength is 335 N / mm 2 ).
The manufacturing method of these materials is changing from conventional batch type intermediate annealing to intermediate annealing by a continuous annealing furnace (CAL) in order to increase the strength. However, even when a continuous annealing furnace is used, if the cold rolling ratio is 70% or more, the formability, especially the bendability tends to deteriorate, and the strength is approaching the limit.

【0003】[0003]

【発明が解決しようとする課題】そこで近年の薄肉化対
策として、蓋材に用いられるアルミニウム合金そのもの
の高強度化はもちろんであるが、蓋の形状の面からも耐
圧強度を上げる方法が開発されており、たとえば耐圧形
状としてカウンターシンク深さを深くしたり、その他の
成形部のコーナーRを小さくシャープにしたりするもの
等が開発されてきている。しかしながら、このようなコ
ーナーRがシャープになることは曲げ半径が小さくなっ
て成形加工条件がきびしくなることであるから、従来形
状のものに用いる材料よりも曲げ性に優れた高成形性、
高靱性の材料が求められる。材料の靱性が低い材料で
は、かりに蓋の成形が出来ていたとしても、コーナー部
に微細クラックが生じ、これが塗膜まで伝播して塗膜欠
陥が生じ、ひいては耐食性を劣化させることとなる。ま
た強度に関しても現行材より劣るものではメーカーが採
用せず、現行材以上の強度の材料が要求される。本発明
は、かかる状況のもとでなされたものであって、従来材
以上の強度を有し、かつ成形加工性特に曲げ性に優れた
EOE用アルミニウム合金板を提供することを目的とす
るものである。
Therefore, as a countermeasure against the recent trend toward thinner walls, a method has been developed in which not only the strength of the aluminum alloy itself used for the lid material is increased, but also the pressure resistance strength is increased from the aspect of the shape of the lid. Therefore, for example, as a pressure resistant shape, a counter sink having a deeper depth and a corner R of another molding portion made smaller and sharper have been developed. However, such a sharp corner R means that the bending radius becomes small and the molding processing condition becomes severe. Therefore, high bendability excellent in bendability as compared with the material used for the conventional shape,
Materials with high toughness are required. In the case of a material having a low toughness, even if the lid can be molded, fine cracks are generated in the corners and propagate to the coating film to cause a coating film defect, which in turn deteriorates the corrosion resistance. Also, regarding strength, if the material is inferior to the current material, the manufacturer does not adopt it, and a material stronger than the current material is required. The present invention has been made under such circumstances, and an object of the present invention is to provide an aluminum alloy plate for EOE having strength higher than that of conventional materials and excellent in formability, particularly bendability. Is.

【0004】[0004]

【課題を解決するための手段】前記目的を達成するた
め、本発明者は曲げ加工性および強度について従来材以
上の特性を得られるように化学成分調整、組織並びに製
造条件等について総合的に研究を重ねた。その結果、M
g・Mnを含めた成分調整、組織、製造条件を規制する
ならば、所期の材料特性が得られることが判明した。す
なわち、曲げ性を改善する方法として次の3点が上げら
れる。 1.冷間圧延率を下げる。 2.アルミニウムマトリックス中に存在する金属間化合
物粒子を制御する。具体的には、粗大な金属間化合物粒
子を少なくすると共に比較的小さな金属間化合物粒子の
数も少なくする。 3.再結晶粒径を微細にする。 本発明は、添加元素では、Mgの添加量を3%以上とし
て、強度を補うためにMn、Cu、CrおよびZnの添
加量を調節する。また金属組織では、鋳造時の冷却速度
を速くするなどして金属間化合物粒子の微細化を計り、
必要に応じて均質化処理を行い晶出物の分散効果を高め
る。さらに中間焼鈍・冷間圧延を調整する事により必要
強度が得られ、また曲げ性の点で優れた材料が得られる
ことを見出した。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present inventor conducted comprehensive research on chemical composition adjustment, structure, manufacturing conditions, etc. so as to obtain properties superior to conventional materials in bending workability and strength. Stacked. As a result, M
It was found that the desired material properties can be obtained by regulating the composition adjustment including g · Mn, the structure, and the manufacturing conditions. That is, the following three points can be mentioned as methods for improving bendability. 1. Reduce the cold rolling rate. 2. Controls intermetallic particles present in the aluminum matrix. Specifically, the number of coarse intermetallic compound particles is reduced and the number of relatively small intermetallic compound particles is reduced. 3. The recrystallized grain size is made fine. In the present invention, with regard to the additive element, the additive amount of Mg is set to 3% or more, and the additive amounts of Mn, Cu, Cr and Zn are adjusted to supplement the strength. In addition, in the metal structure, refining the intermetallic compound particles by increasing the cooling rate during casting,
If necessary, homogenization treatment is performed to enhance the effect of dispersing crystallized substances. Furthermore, they have found that the required strength can be obtained by adjusting the intermediate annealing and cold rolling, and a material excellent in bendability can be obtained.

【0005】すなわち本発明は、重量%で、Mg:3〜
5%、Mn:0.1〜1.0%、Si:0.3%以下お
よび組織微細化・安定化のためTi:0.005〜0.
20%を単独であるいはB:0.0005〜0.04%
とともに含有し、さらにCu:0.05〜0.5%、C
r:0.05〜0.3%、Zn:0.1〜0.5%、F
e:0.05〜0.7%のうち一種または二種以上を含
有し、かつFe+Mn≦1%以下であり、残部がAl及
び不可避的不純物からなり、最終板の表面組織のうち最
大結晶粒径(圧延方向に対して直角方向の短径)≦40
μm、いずれの箇所においても直径50μmの視野内に
存在する直径3μm以上の金属間化合物の粒子数≦5
個、直径1μm以上の金属間化合物の粒子数≦4000
個/0.2mm2であることを特徴とする曲げ性に優れ
た高強度アルミニウム合金板である。
That is, according to the present invention, Mg: 3% by weight is used.
5%, Mn: 0.1-1.0%, Si: 0.3% or less, and Ti: 0.005-0.
20% alone or B: 0.0005 to 0.04%
Contained together with Cu: 0.05 to 0.5%, C
r: 0.05 to 0.3%, Zn: 0.1 to 0.5%, F
e: One or more of 0.05 to 0.7%, Fe + Mn ≦ 1% or less, the balance being Al and inevitable impurities, and the largest crystal grain in the surface structure of the final plate. Diameter (minor axis perpendicular to rolling direction) ≤40
μm, the number of particles of an intermetallic compound having a diameter of 3 μm or more existing in a visual field of 50 μm in diameter at any location ≦ 5
Number of particles of intermetallic compound having a diameter of 1 μm or more ≦ 4000
It is a high-strength aluminum alloy plate excellent in bendability, which is characterized by the number of pieces / 0.2 mm 2 .

【0006】[0006]

【作用】[Action]

【0007】まず、本発明における化学成分の限定理由
を説明する。 Mg:Mgは強度を付与する重要な元素であり、3%以
上の添加がないと、EOEとして使用し得る強度に到達
せず、5%を超えた添加では鋳造性および冷延性の悪化
が見られ好ましくない。したがって、Mg量は3〜5%
の範囲とする。 Mn:Mnの添加は強度向上に大きな効果を示すだけで
なく再結晶粒の微細化に効果を発揮する。しかし、Mn
が0.1%未満ではその効果も少なく、1.0%を越え
ると金属間化合物のサイズを大きくして、しかもその数
を多くし曲げ性の低下を招くので好ましくない。従っ
て、Mn量は0.1〜1.0%とする。 Ti:Tiは組織を安定化させるための有効な元素であ
る。その添加量が0.005%未満ではその効果は少な
く、0.2%より多いと巨大化合物を生成し、曲げ加工
性を低下させる。従って、Ti量は0.005〜0.2
0%とする。またその効果を増すためBを添加する事も
あり、その場合、通常は0.0005〜0.04%添加
される。 Cu:Cu添加は金属間化合物Al−Cu−Mgによる
時効硬化により、強度向上に寄与する。しかし、0.0
5%未満ではその効果も少なく、0.5%を超えて過多
に添加されると強度が高すぎることによる成形加工性の
低下を招く。従って、Cu量は0.05〜0.5%とす
る。 Zn:Znの添加は金属間化合物Mg2Zn3Al2の時
効析出により強度向上を望めるが、0.1%未満ではそ
の効果はなく0.5%を超えると強度の寄与に対しては
問題無いが、耐食性を劣化させるのでこれ以下に規制す
る必要がある。従って、Zn量は0.1〜0.5%とす
る。 Cr:Crは強度向上に寄与して、0.05%未満では
その効果がなく、0.3%を超えて過多に添加されると
巨大晶出物生成により曲げ性の低下を招くため、好まし
くない。従って、Cr量は0.05〜0.3%とする。 Fe:Feの添加は鋳造時にMnとともに金属間化合物
を生成して、再結晶粒径を細かくするとともに強度向上
にも寄与する。その効果は0.05%未満ではなく、
0.7%より多くなると、金属間化合物の数を多くし曲
げ性の低下を招くので好ましくない。従ってFe量は
0.05〜0.7%とする。なおMnもFeと同様の効
果があるので、これらの総量でも規制する必要があり、
Fe+Mn≦1%以下とする。 Si:Mg添加が3%より多くなると、Siの添加はM
2Siの生成による時効硬化による強度向上は期待で
きず、粗大なMg2Si粒子を生成して曲げ性の低下を
招くので好ましくない。しかしSiは不純物として混入
するために不可避であり、従って許容される範囲とし
て、Si量は0.3%以下とした。 なお、本発明においては、Mg、MnおよびTi(B)
の含有は必須であるが、強度を得るのに必要な元素(C
u、Zn、CrおよびFe)は任意添加元素とし、少な
くとも1種以上を必要に応じて添加する。
First, the reasons for limiting the chemical components in the present invention will be explained. Mg: Mg is an important element that imparts strength. Without addition of 3% or more, the strength that can be used as EOE cannot be reached, and addition of more than 5% causes deterioration of castability and cold ductility. Is not preferable. Therefore, the amount of Mg is 3-5%
The range is. The addition of Mn: Mn not only has a great effect on the strength improvement but also exerts an effect on the refinement of recrystallized grains. However, Mn
If it is less than 0.1%, its effect is small, and if it exceeds 1.0%, the size of the intermetallic compound is increased and the number thereof is increased, resulting in a decrease in bendability, which is not preferable. Therefore, the Mn content is 0.1 to 1.0%. Ti: Ti is an effective element for stabilizing the structure. If the addition amount is less than 0.005%, the effect is small, and if it is more than 0.2%, a huge compound is formed and bending workability is deteriorated. Therefore, the Ti amount is 0.005 to 0.2.
0% In addition, B may be added in order to enhance the effect, and in that case, 0.0005 to 0.04% is usually added. Cu: Cu addition contributes to strength improvement by age hardening by the intermetallic compound Al-Cu-Mg. But 0.0
If it is less than 5%, its effect is small, and if it is added in excess of 0.5%, the strength becomes too high, resulting in deterioration of moldability. Therefore, the amount of Cu is set to 0.05 to 0.5%. The addition of Zn: Zn is expected to improve the strength by aging precipitation of the intermetallic compound Mg 2 Zn 3 Al 2 , but if it is less than 0.1%, there is no such effect, and if it exceeds 0.5%, there is a problem with the contribution of strength. However, since it deteriorates the corrosion resistance, it is necessary to regulate it below this value. Therefore, the Zn amount is 0.1 to 0.5%. Cr: Cr contributes to the improvement of strength, and if it is less than 0.05%, it has no effect, and if it is added in excess of 0.3%, it causes a decrease in bendability due to the formation of giant crystallized substances. Absent. Therefore, the Cr content is 0.05 to 0.3%. The addition of Fe: Fe forms an intermetallic compound together with Mn during casting to make the recrystallized grain size finer and contribute to the improvement of strength. The effect is not less than 0.05%,
When it is more than 0.7%, the number of intermetallic compounds is increased and bendability is deteriorated, which is not preferable. Therefore, the amount of Fe is set to 0.05 to 0.7%. Since Mn has the same effect as Fe, it is necessary to regulate the total amount of Mn.
Fe + Mn ≦ 1% or less. If the addition of Si: Mg exceeds 3%, the addition of Si becomes M
Strength improvement due to age hardening due to generation of g 2 Si cannot be expected, and coarse Mg 2 Si particles are generated, resulting in deterioration of bendability, which is not preferable. However, Si is unavoidable because it mixes in as an impurity. Therefore, the allowable amount of Si is set to 0.3% or less. In the present invention, Mg, Mn and Ti (B)
Is essential, but the element (C
u, Zn, Cr, and Fe) are optional additional elements, and at least one kind is added if necessary.

【0008】次に、本発明における組織の限定理由につ
いて説明する。本発明はFeおよびMnによる晶出化合
物の分散およびサイズを制御する意味で、Fe+Mnの
総量を規制し、さらにSi量を規制する事によりSiに
よる粗大な生成物(Mg2Si)を少なくするものであ
る。具体的には、3μm以上の金属間化合物が、ミクロ
的(半径50μm)に偏析すると、最終の冷間圧延によ
り転位の偏析が大きくなり、この部分が曲げ割れの起点
となる。この領域に3μm以上の金属間化合物が5個以
上存在するとこの影響が大きく出る。従って、最終板の
表面組織のいずれの箇所においても直径50μmの視野
内に存在する直径3μm以上の金属間化合物の粒子数を
5個以下とする。また粗大な金属間化合物の粒子が無く
ても1μm以上の金属間化合物の粒子が4000個/
0.2mm2以上存在する事により粒子間距離が小さく
なり、あたかも粗大な金属間化合物の粒子が存在するか
のように作用して、冷間圧延時に転位の偏析が起り曲げ
割れの起点となる。従って、最終板の表面組織のいずれ
の箇所においても直径1μm以上の金属間化合物の粒子
数を4000個/0.2mm2以下とする。また再結晶
粒が粗くなると、曲げ性だけでなくその他の成形性およ
び絞り成形時の肌粗れなどによる成形品の外観の不良等
が起り良くないが、再結晶粒が40μmより粗いものが
なければ問題はない。そこでMn、Fe及びCr添加を
行い結晶粒を微細化する。よって、本発明における組織
限定は、最終板の表面組織のうち最大結晶粒径(圧延方
向に対して直角方向の短径)≦40μm、いずれの箇所
においても直径50μmの視野内に存在する直径3μm
以上の金属間化合物の粒子数≦5個、直径1μm以上の
金属間化合物の粒子数≦4000個/0.2mm2であ
ることとする。
Next, the reasons for limiting the organization of the present invention will be described. The present invention controls the total amount of Fe + Mn in order to control the dispersion and size of the crystallized compound by Fe and Mn, and further controls the Si amount to reduce the coarse product (Mg 2 Si) by Si. Is. Specifically, when an intermetallic compound of 3 μm or more segregates microscopically (radius 50 μm), dislocation segregation becomes large due to the final cold rolling, and this portion becomes a starting point of bending cracks. If there are five or more intermetallic compounds having a size of 3 μm or more in this region, this effect becomes significant. Therefore, the number of particles of the intermetallic compound having a diameter of 3 μm or more existing in the visual field of 50 μm in diameter at any location on the surface structure of the final plate is set to 5 or less. Even if there are no particles of coarse intermetallic compounds, 4000 particles / particles of intermetallic compounds of 1 μm or more are present.
The presence of 0.2 mm 2 or more reduces the inter-particle distance and acts as if coarse intermetallic compound particles exist, causing segregation of dislocations during cold rolling to become the origin of bending cracks. .. Therefore, the number of particles of the intermetallic compound having a diameter of 1 μm or more is set to 4000 particles / 0.2 mm 2 or less at any position on the surface texture of the final plate. When the recrystallized grains become coarse, not only the bendability but also other moldability and the appearance of the molded product due to the surface roughness during drawing and the like are not good, but the recrystallized grains must be coarser than 40 μm. If there is no problem. Therefore, Mn, Fe and Cr are added to refine the crystal grains. Therefore, the structure limitation in the present invention is that the maximum crystal grain size (minor axis in the direction perpendicular to the rolling direction) of the surface structure of the final plate ≦ 40 μm, and the diameter of 3 μm existing in the visual field of 50 μm in diameter at any position.
It is assumed that the number of particles of the intermetallic compound is ≦ 5 and the number of particles of the intermetallic compound having a diameter of 1 μm or more is 4,000 / 0.2 mm 2 .

【0009】次に、上記成分範囲のアルミニウム合金に
おいて上記組織を得るための製造方法について説明す
る。主な製造プロセスとしては次のものが考えられる。 (1)CC鋳造→圧延(*1)→冷延→中間焼鈍[CAL(*
2)]→冷延 鋳造時のMn等の固溶により強度向上をはかることがで
き、最終の冷延率を少なくすることができる。 (2)CC鋳造→圧延(*1)→CAL焼鈍(*3)→冷延→中
間焼鈍[CAL(*2)]→冷延 2回のCAL焼鈍を施すことにより組織の均質化が計れ
る。また、(1)と同様に鋳造時のMn等の固溶により
強度向上をはかることができ、最終の冷延率を少なくす
ることができる。 (3)CC鋳造→均熱(*4)→圧延(*5)→中間焼鈍[CA
L(*2)]→冷延 鋳造後の均熱により組織の均質化および晶出化合物の球
状化・微細分散化がはかれる。またCAL中間焼鈍によ
り溶体化効果による強度向上がはかれる。 (4)CC鋳造→圧延(*6)→均熱(*4)→圧延(*5)→中間
焼鈍[CAL(*2)]→冷延 (3)と同様に鋳造後の均熱により組織の均質化および
晶出化合物の球状化・微細分散化がはかれ、またCAL
中間焼鈍により溶体化効果による強度向上がはかれる。 (5)CC鋳造→均熱(*4)→圧延(*5)→中間焼鈍[バッ
チ(*2)]→冷延 (3)と同様に鋳造後の均熱により組織の均質化および
晶出化合物の球状化・微細分散化がはかれる。また冷間
圧延率を比較的多くとることで、バッチ中間焼鈍でも目
的強度に到達することができる。 (6)CC鋳造→圧延(*6)→均熱(*4)→圧延(*5)→中間
焼鈍[バッチ(*2)]→冷延 (4)と同じ工程で中間焼鈍をバッチ炉で行なったもの
であり、(4)と同様に鋳造後の均熱により組織の均質
化および晶出化合物の球状化・微細分散化がはかれる。
また冷間圧延率を比較的多くとることで、バッチ中間焼
鈍でも目的強度に到達する。 以下、各製造工程について説明する。 :鋳造 鋳造時に晶出する金属間化合物粒子を微細化させるため
に冷却速度の速い連続鋳造圧延(冷却速度50℃/s以
上(CCまたはCC鋳造と以下略す)により鋳造するこ
とを必須とする。この時の鋳造板は板厚15mm以下
で、これより厚いと所望の晶出物サイズが得られない。
また、板厚から2mmより薄くなると最終板まで鋳造組
織が残存して成形性を阻害する。 *1:圧延 冷間圧延でもよいが、鋳造直後の余熱を利用して温間又
は熱間圧延を併用する事により変形抵抗が小さい状態で
の圧延となり、圧延の省エネルギーをはかることがで
き、また圧延板のクラウンコントロールも期待できる。
この場合、圧延率が30%以上ないと次工程のCAL焼
鈍で均一微細な結晶粒が得られない。 *2:中間焼鈍 CAL焼鈍 加熱・冷却速度1℃/s以上、到達温度400〜600
℃、保持時間は10分以内で溶体化効果による強度向上
をはかる。到達温度が400℃以下では再結晶せず、ま
た600℃以上では局部的な共晶融解発生が発生するた
め、好ましくは570℃以下がよい。保持時間は長い方
が溶体化効果は大きいが、高温における酸化皮膜生成に
よる外観の悪化を考慮すると10分以内がよい。上記製
造プロセス(1)(2)のように均熱工程を経ない材料
の場合、結晶粒の微細化効果があるCALによる中間焼
鈍は必須となる。 バッチ焼鈍 加熱・冷却速度100℃/h以下、到達温度300〜5
00℃、保持時間は実用的には0.5〜10h程度がよ
い。均熱工程を経た材料でないと再結晶粒径は粗大で不
均一になる。 *3:CAL中間焼鈍 CAL焼鈍することにより組織の均質化がはかれ、曲げ
性の改善に効果がある。 *4:均熱 組織の均質化および晶出化合物の球状・微細分散がはか
れ、曲げ性の改善に効果がある。到達温度は500〜5
80℃で保持時間は0.5h以上必要である。長時間で
はより均質化効果が増大するが、実製造条件との兼合で
時間を決めればよい。500℃以下ではその効果も無
く、580℃以上では共晶融解を引き起こす可能性があ
る。 *5:均熱後の圧延 冷間圧延でもよいが均熱直後の余熱を利用して温間又は
熱間圧延を併用する事により、変形抵抗が小さい状態で
の圧延とすることにより圧延の省エネルギーをはかるこ
とができるだけでなく、圧延板のクラウンコントロール
も期待することができる。この場合、圧延率が30%以
上ないと次工程の中間焼鈍で均一微細な結晶粒が期待で
きない。 *6:均熱前の圧延 *4の均質化処理を行う前に均熱処理しやすい板厚まで
圧延してもよい。この時の圧延方法は*1と同じであ
る。ただし圧下率に関しては、特に規定しない。 :最終冷間圧延 いずれの製造プロセスにおいても、目的強度を得るため
には最終圧延率は30%以上必要である。この最終板に
は通常塗装焼付による加熱処理が施されて使用される
が、この塗装焼付の前に時効硬化を付加して強度アップ
を狙う、もしくは強度調整や安定化のために100〜2
50℃の保持30分以上の最終焼鈍を施してもよい。
尚、連続鋳造圧延材の場合、鋳造時の酸化皮膜が存在す
るために、製造安定性及び製品外観の改善の意味からも
酸・苛性液等による電気的・化学的エッチングを施すか
または機械的に酸化皮膜を除去する方が好ましい。また
上記*4の均熱処理は特に表面酸化が著しくなるので、
好ましくは酸素濃度1%以下が良い。低酸素濃度雰囲気
の均熱であっても、また大気中雰囲気均熱でも表面酸化
皮膜の除去を行なうことが好ましい。
Next, a manufacturing method for obtaining the above-mentioned structure in the aluminum alloy having the above-mentioned component range will be described. The main manufacturing processes are as follows. (1) CC casting → rolling (* 1) → cold rolling → intermediate annealing [CAL (*
2)] → Cold rolling The strength can be improved by solid solution of Mn or the like during casting, and the final cold rolling rate can be reduced. (2) CC casting → rolling (* 1) → CAL annealing (* 3) → cold rolling → intermediate annealing [CAL (* 2)] → cold rolling The structure can be homogenized by performing CAL annealing twice. Further, similarly to (1), the strength can be improved by solid solution of Mn or the like during casting, and the final cold rolling rate can be reduced. (3) CC casting → soaking (* 4) → rolling (* 5) → intermediate annealing [CA
L (* 2)] → Cold rolling Uniformity of the structure and spheroidization / fine dispersion of the crystallized compound are achieved by soaking after casting. Further, strength enhancement due to the solution treatment effect can be achieved by the CAL intermediate annealing. (4) CC casting → rolling (* 6) → soaking (* 4) → rolling (* 5) → intermediate annealing [CAL (* 2)] → cold rolling As in (3), the structure is obtained by soaking after casting. Homogenization and spheroidization / fine dispersion of crystallized compounds, and CAL
The intermediate annealing improves the strength by the solution treatment effect. (5) CC casting → soaking (* 4) → rolling (* 5) → intermediate annealing [batch (* 2)] → cold rolling As in (3), homogenization and crystallization of the structure by soaking after casting. Sphericalization and fine dispersion of the compound can be achieved. Further, by setting the cold rolling ratio to be relatively large, the target strength can be reached even by batch intermediate annealing. (6) CC casting → rolling (* 6) → soaking (* 4) → rolling (* 5) → intermediate annealing [Batch (* 2)] → cold rolling (4) Similar to (4), homogenization of the structure and spheroidization / fine dispersion of the crystallized compound are achieved by soaking after casting.
Further, by setting the cold rolling ratio to be relatively large, the target strength can be reached even in the batch intermediate annealing. Hereinafter, each manufacturing process will be described. : Casting In order to refine intermetallic compound particles crystallized during casting, continuous casting and rolling with a high cooling rate (cooling rate of 50 ° C./s or more (CC or CC casting abbreviated below) is essential for casting. At this time, the cast plate has a plate thickness of 15 mm or less, and if it is thicker than this, a desired crystallized substance size cannot be obtained.
Further, when the plate thickness becomes thinner than 2 mm, the cast structure remains up to the final plate and hinders the formability. * 1: Cold rolling may be used, but by using the residual heat immediately after casting to perform warm or hot rolling together, rolling with a small deformation resistance can be achieved, and energy saving of rolling can be achieved. We can also expect crown control of the rolled plate.
In this case, unless the rolling ratio is 30% or more, uniform and fine crystal grains cannot be obtained by the CAL annealing in the next step. * 2: Intermediate annealing, CAL annealing, heating / cooling rate 1 ° C / s or more, ultimate temperature 400-600
The temperature and the holding time are within 10 minutes to improve the strength by the solution treatment effect. If the ultimate temperature is 400 ° C. or lower, recrystallization does not occur, and if it is 600 ° C. or higher, local eutectic melting occurs, so the temperature is preferably 570 ° C. or lower. The longer the holding time is, the larger the solution treatment effect is, but it is preferably 10 minutes or less in consideration of the deterioration of the appearance due to the formation of an oxide film at a high temperature. In the case of a material that does not go through a soaking process like the above manufacturing processes (1) and (2), the intermediate annealing by CAL that has the effect of refining the crystal grains is essential. Batch annealing Heating / cooling rate 100 ° C / h or less, ultimate temperature 300 to 5
Practically, the holding time at 00 ° C. is preferably about 0.5 to 10 hours. Unless the material is subjected to a soaking process, the recrystallized grain size is coarse and non-uniform. * 3: CAL intermediate annealing The CAL annealing homogenizes the structure and is effective in improving bendability. * 4: The soaking structure is homogenized and the crystallized compound is spherically and finely dispersed, which is effective in improving bendability. Ultimate temperature is 500-5
A holding time of 0.5 h or more is required at 80 ° C. The homogenizing effect is further increased for a long time, but the time may be determined in consideration of the actual manufacturing conditions. If the temperature is 500 ° C. or lower, there is no such effect, and if it is 580 ° C. or higher, eutectic melting may occur. * 5: Rolling after soaking Cold rolling may be used, but by using the residual heat immediately after soaking together with warm or hot rolling, rolling with a small deformation resistance can save energy for rolling. Not only can it be achieved, but the crown control of the rolled plate can also be expected. In this case, unless the rolling ratio is 30% or more, uniform and fine crystal grains cannot be expected in the intermediate annealing in the next step. * 6: Rolling before soaking * Before performing the homogenization treatment of * 4, you may roll to a plate thickness that facilitates soaking. The rolling method at this time is the same as that of * 1. However, the reduction ratio is not specified. : Final cold rolling In any manufacturing process, a final rolling rate of 30% or more is required to obtain the target strength. This final plate is usually used after being subjected to a heating treatment by paint baking, and is subjected to age hardening before the paint baking to increase the strength, or to adjust the strength or stabilize the strength by 100-2.
The final annealing may be performed at 50 ° C. for 30 minutes or more.
In the case of continuously cast and rolled material, an oxide film is present during casting, so electrical / chemical etching with an acid / caustic solution, etc. is performed or mechanically applied from the viewpoint of improving manufacturing stability and product appearance. It is more preferable to remove the oxide film. Also, since the soaking treatment of * 4 above causes remarkable surface oxidation,
The oxygen concentration is preferably 1% or less. It is preferable to remove the surface oxide film even when soaking in a low oxygen concentration atmosphere or soaking in the atmosphere.

【0010】[0010]

【実施例】次に、本発明の実施例について説明する。表
1は実施例に用いたアルミニウム合金の合金成分組成で
ある。
EXAMPLES Next, examples of the present invention will be described. Table 1 shows the alloy composition of the aluminum alloy used in the examples.

【0011】[0011]

【表1】 [Table 1]

【0012】ここでAは本発明の特許請求の範囲記載の
成分範囲を満たすものである。またBも本発明の合金で
あるが、Aに対してMg量を減らして、そのかわりC
r、Cu、Zn量を増加させて強度を得ている。Cは比
較合金であり、Mg:2.5%と本発明の成分範囲から
外れてMg量が少ないものである。またDは比較合金で
あり、Mn:0.05%と本発明の成分範囲から外れて
Mn量が少ないものである。またEも比較合金であり、
Dとは逆にMn量、Fe量およびその和がMn:0.8
0%、Fe:0.35%、Fe+Mn=1.15%と請
求の範囲を超えているものである。またFも比較合金で
あり、Si:0.40と本発明の成分範囲から外れてS
i量が過剰にあるものである。
Here, A satisfies the component range described in the claims of the present invention. B is also an alloy of the present invention, but the amount of Mg is reduced with respect to A, and C is used instead.
Strength is obtained by increasing the amounts of r, Cu, and Zn. C is a comparative alloy, and Mg is 2.5%, which is out of the composition range of the present invention and has a small amount of Mg. Further, D is a comparative alloy, and Mn is 0.05%, which is out of the composition range of the present invention and has a small amount of Mn. E is also a comparative alloy,
Contrary to D, the Mn content, the Fe content and the sum thereof are Mn: 0.8.
0%, Fe: 0.35%, Fe + Mn = 1.15%, which exceeds the claimed range. Further, F is also a comparative alloy, and Si: 0.40, which is out of the composition range of the present invention, S
The i amount is excessive.

【0013】次に各実施例の製造方法を表2に示す。な
お、表において「DC」とあるのは、DC鋳造法で板厚
500mmに鋳造したもの、「CC」とあるのは、連続
鋳造圧延法で板厚7mmに鋳造したものである。またN
o2の温間圧延は入り側温度250℃、出側温度200
℃の条件で行い、No4の熱間圧延は入り側温度400
℃、出側温度300℃の条件で行なった。中間焼鈍条件
は、「CAL」とあるのは、CALで加熱・冷却速度は約2
0℃/s、到達温度は表記載の温度、保持無しの条件で
行なったものであり、また「BAF」とあるのは、バッチ
焼鈍炉により加熱・冷却速度は約35℃/h、到達温度は
表記載の温度、保持は2時間の条件で行なったものであ
る。
Next, Table 2 shows the manufacturing method of each embodiment. In the table, "DC" means that the plate was cast to a thickness of 500 mm by the DC casting method, and "CC" means that the thickness was 7 mm when the continuous casting and rolling method was used. Also N
In the o2 warm rolling, the inlet temperature is 250 ° C and the outlet temperature is 200.
No. 4 hot rolling is performed at the inlet side temperature of 400.
C. and the outlet temperature was 300.degree. The intermediate annealing condition is "CAL" because it is CAL and the heating / cooling rate is about 2
0 ° C / s, the temperature reached is the temperature shown in the table, and the temperature was not held. "BAF" means that the heating / cooling rate by the batch annealing furnace was approximately 35 ° C / h, the temperature reached. Is the temperature shown in the table and the holding was carried out under the condition of 2 hours.

【0014】[0014]

【表2】 [Table 2]

【0015】表2に示す各試料番号について、以下説明
する。No1は従来例であり、合金成分は本発明の範囲
に入るが、製造プロセスが従来から行なわれているDC
鋳造により鋳造し加熱、熱延、冷延を施し、中間焼鈍は
CALで行なっている。No2は前記製造プロセス
(1)に該当する発明例であり、CC鋳造、温間圧延、
冷延、CAL中間焼鈍、冷延としたものである。No3
はNo2に対する比較例であり、中間焼鈍をバッチ焼鈍
炉で行なったものである。No4は前記製造プロセス
(3)に該当する発明例であり、CC鋳造後に均熱を施
し、また中間焼鈍はCALで行なったものである。No
5は前記製造プロセス(4)に該当する発明例であり、
CC鋳造後に圧延した後に均熱を施し、また中間焼鈍は
CALで行なったものである。No6は前記製造プロセ
ス(5)に該当する発明例であり、CC鋳造後に均熱を
施し、また中間焼鈍はバッチ炉で行なったものである。
No7は前記製造プロセス(2)に該当する発明例であ
り、2回CAL焼鈍を行なったものである。No8はN
o5と同じく前記製造プロセス(4)に該当する発明例
だが、合金Bを用いたものである。No9は比較例であ
り、No4の発明例と同じ製造プロセスだが成分組成が
本発明から外れている合金Cを用いたものである。No
10は比較例であり、No1の従来例に対して成分組成
が本発明から外れている合金Dを用いたものである。N
o11は比較例であり、成分組成が外れている合金Eを
用いて前記製造プロセス(3)により製造したものであ
る。No12は比較例であり、No11と同様で成分組
成が外れている合金Fを用いたものである。
Each sample number shown in Table 2 will be described below. No. 1 is a conventional example, and although the alloy components are within the scope of the present invention, the DC of which the manufacturing process has been conventionally performed
Casting is performed by casting, heating, hot rolling, and cold rolling are performed, and intermediate annealing is performed by CAL. No. 2 is an example of the invention corresponding to the manufacturing process (1), and CC casting, warm rolling,
Cold rolling, CAL intermediate annealing, and cold rolling were performed. No3
Is a comparative example for No. 2, in which intermediate annealing was performed in a batch annealing furnace. No. 4 is an invention example corresponding to the manufacturing process (3), in which CC casting is followed by soaking, and intermediate annealing is performed by CAL. No
5 is an invention example corresponding to the manufacturing process (4),
After CC casting, rolling is performed, soaking is performed, and intermediate annealing is performed by CAL. No. 6 is an invention example corresponding to the manufacturing process (5), in which CC casting is followed by soaking, and intermediate annealing is performed in a batch furnace.
No. 7 is an invention example corresponding to the manufacturing process (2), in which CAL annealing was performed twice. No8 is N
Similar to o5, it is an invention example corresponding to the manufacturing process (4), but using alloy B. No. 9 is a comparative example, which uses the alloy C having the same manufacturing process as that of the invention example of No. 4 but having a component composition deviated from the present invention. No
Reference numeral 10 is a comparative example, which is an alloy D having a composition different from that of the present invention with respect to the conventional example of No. 1. N
Reference numeral o11 is a comparative example, which is manufactured by the manufacturing process (3) using the alloy E having a deviated composition. No. 12 is a comparative example, and the alloy F having the same composition as that of No. 11 but having a different composition was used.

【0016】上記製造方法により作成した最終板につい
て、塗装焼付相当の270℃x20秒のオイルバス処理
した後、強度、成形性、組織の評価を行なった。その結
果を表3に示す。
The final plate prepared by the above manufacturing method was subjected to an oil bath treatment at 270 ° C. for 20 seconds, which was equivalent to coating baking, and then the strength, formability and microstructure were evaluated. The results are shown in Table 3.

【0017】[0017]

【表3】 [Table 3]

【0018】ここで、TSは引張強さで単位はN/mm
2、またYSは耐力で単位はN/mm2、またElは伸び
で単位は%である。曲げ性は、幅30mm長さ40mm
の試験片を圧延方向に平行に半径0.3mmの曲率で1
80°曲げを行い、曲げ戻しした後の試験片を引張試験
してその破断荷重(N)で評価した。金属組織について
は晶出物および最大結晶粒で評価した。晶出物1として
板表面を観察した際の半径50μmの視野内の3μm以
上の粗大な金属間化合物粒子の個数のうち、最も大きな
値すなわち最大偏析部の値を記した。また晶出物2とし
て、板表面観察の0.2mm2の視野内に存在する微細
な1μm以上の金属間化合物の粒子の個数(個/0.2m
m2)を記した。また最大結晶粒の単位はμmである。
Here, TS is the tensile strength and the unit is N / mm.
2 , YS is proof stress in N / mm 2 , and El is elongation in%. Flexibility is width 30mm length 40mm
The test piece of 1 is parallel to the rolling direction and has a radius of 0.3 mm.
The test piece after being bent at 80 ° and bent back was subjected to a tensile test and evaluated by its breaking load (N). The metal structure was evaluated based on the crystallized substances and the maximum crystal grains. Of the number of coarse intermetallic compound particles of 3 μm or more in the visual field of radius 50 μm when observing the plate surface as the crystallized substance 1, the largest value, that is, the value of the maximum segregated portion is shown. Also, as crystallized substances 2, the number of fine particles of intermetallic compound having a size of 1 μm or more existing in the visual field of 0.2 mm 2 of the plate surface observation (piece / 0.2 m
m 2 ). The unit of the maximum crystal grain is μm.

【0019】上記表3に示す通り、いずれの条件におい
ても従来例・比較例に対して発明例は引張強さ、耐力等
の強度は従来材と同等もしくは従来材以上であり、かつ
曲げ性は従来材よりはるかに優れている。以下、個々に
ついて説明する。No1は従来例であり、引張強さ37
0N/mm2、耐力300N/mm2の値を示し、曲げ性
は900Nである。No2は発明例であり、引張強さ、
耐力ともほぼ従来例と同等だが、曲げ性ははるかに向上
している。なお、No2と同じ合金組成、同じ製造プロ
セスだが中間焼鈍をバッチ焼鈍炉で行なったNo3の比
較例では、最大結晶粒の大きさが本発明の組織要件の範
囲を超えており、曲げ性も従来例より悪くなっている。
No4は発明例であり、粗大な晶出物(晶出物1)も微
細な晶出物(晶出物2)もともに少なく、また結晶粒の
大きさも小さくなっている。その結果、従来材と比較し
て引張強さ、耐力とも向上しており、また曲げ性は従来
材の3倍にまで向上しており、すぐれた性能を示してい
る。No5は発明例であり、曲げ性が従来材の2倍にま
で向上しているとともに、引張強さ、耐力が約20N/
mm2強くなっている。No6は発明例であり、晶出物
1、晶出物2ともやや多くまた結晶粒の大きさもやや大
きくなっているが、その量は本発明の請求の範囲内であ
ることから従来材と比較して充分良好な性能を示してい
る。No7は発明例であり、CAL焼鈍を2回行なった
ことにより結晶粒が微細化しており曲げ性が従来材より
優れているとともに伸びも従来材に匹敵するものであ
る。No8は発明例で、Mg量を減らしそのかわりC
r、Cu、Zn量を増加させて強度を得るようにした合
金Bを用いたものである。No2、No5と同様に曲げ
性が従来材より向上しているとともに、引張強さ、耐力
が10〜20N/mm 2強くなっている。No9は比較
例であり、No4の発明例と同じ製造プロセスだが成分
組成が本発明から外れてMg量が少ない合金Cを用いた
もので、強度が低下しているとともに曲げ性も従来例よ
り悪くなっている。No10は比較例であり、Mn量が
少ない合金Dを用いたもので、従来例と比較して晶出物
は少ないものの、結晶粒が粗大化しており最大結晶粒の
大きさが本発明から外れており、その結果引張強さ、耐
力は従来材とほぼ同等だが曲げ性は悪くなっている。N
o11は比較例であり、Mn量、Fe量およびその和が
本発明から外れている合金Eを用いたもので、微細な晶
出物(晶出物2)の量も本発明から外れており、その結
果従来例より引張強さが低く伸びも小さく、また曲げ性
も悪くなっている。No12は比較例であり、Si量が
本発明から外れている合金Fを用いたもので、粗大な晶
出物(晶出物1)も本発明の範囲より多くなっている。
その結果、強度はほぼ従来材と同等だが曲げ性が非常に
悪くなっている。以上述べたように、本発明の特許請求
の範囲を満たす発明例はいずれも引張強さ、耐力、伸び
等の強度は従来材と同等ないしは従来材より20N/m
2程度強くなっており、しかも、曲げ性は従来材より
はるかに優れ最大で3倍の性能を示している。
As shown in Table 3 above, under any condition
Even if the invention example is compared with the conventional example and the comparative example, the tensile strength, proof strength, etc.
Has a strength equal to or higher than conventional materials, and
Bendability is far superior to conventional materials. Below, individually
explain about. No. 1 is a conventional example and has a tensile strength of 37.
0 N / mm2, Yield strength 300 N / mm2Shows the bendability
Is 900 N. No. 2 is an example of the invention, tensile strength,
The yield strength is almost the same as the conventional example, but the bendability is much improved.
is doing. In addition, the same alloy composition and the same manufacturing professional as No2
The ratio of No. 3 which performed intermediate annealing in a batch annealing furnace
In a comparative example, the size of the largest grain is within the range of the structural requirement of the present invention.
The bendability is worse than that of the conventional example.
No. 4 is an example of the invention, and a coarse crystallized product (crystallized product 1) is fine.
There are few fine crystallized substances (crystallized substance 2), and
The size is also getting smaller. As a result, compared to conventional materials
Both tensile strength and proof strength have been improved, and bendability has been improved.
It has been improved to 3 times that of wood and shows excellent performance.
It No. 5 is an example of the invention, which has twice the bendability of conventional materials.
The tensile strength and proof stress are about 20N /
mm2It's getting stronger. No. 6 is an example of the invention, crystallized product
1 and crystallized substance 2 are slightly large, and the size of crystal grains is also large.
However, the amount is within the scope of the claims of the present invention.
Therefore, it shows sufficiently good performance compared with conventional materials.
It No. 7 is an invention example, and CAL annealing was performed twice.
As a result, the crystal grains are made finer and the bendability is better than that of conventional materials.
It is excellent and has an elongation comparable to that of conventional materials.
It No. 8 is an example of the invention, in which the amount of Mg is reduced and C is used instead.
When the strength is increased by increasing the amount of r, Cu, Zn.
Gold B is used. Bending like No2 and No5
The tensile strength and proof stress are improved as well as the conventional materials.
Is 10 to 20 N / mm 2It's getting stronger. No9 is comparison
It is an example, the same manufacturing process as the invention example of No. 4
An alloy C whose composition is out of the present invention and which has a small amount of Mg was used.
However, the strength is lowered and the bendability is also different from the conventional example.
It's getting worse. No. 10 is a comparative example, and the amount of Mn is
A small amount of alloy D is used, which is a crystallized substance compared to the conventional example.
Although there are few, the crystal grains are coarse and
The size is outside the scope of the present invention, resulting in tensile strength,
The force is almost the same as the conventional material, but the bendability is poor. N
o11 is a comparative example, and the Mn amount, the Fe amount and the sum thereof are
The alloy E, which is out of the scope of the present invention, is used to produce fine crystals.
The amount of the product (crystal product 2) is also outside the scope of the present invention.
Compared to the conventional example, the tensile strength is lower, the elongation is smaller, and the bendability is higher.
Is getting worse. No. 12 is a comparative example, and the amount of Si is
Alloy F which is out of the present invention is used, and coarse crystals
The amount of the product (crystallized product 1) also exceeds the range of the present invention.
As a result, the strength is almost the same as the conventional material, but the bendability is very high.
It's getting worse. As described above, the claims of the present invention
The invention examples satisfying the range of
Etc. has the same strength as the conventional material or 20 N / m than the conventional material
m2It is stronger, and bendability is better than conventional materials.
It is far superior and shows up to 3 times the performance.

【0020】[0020]

【効果】以上詳述したように、本発明によれば、ビール
缶、炭酸飲料缶等のEOE材において要求される強度を
満たすとともに曲げ加工性に優れ、高強度薄肉化の傾向
に対して充分対応できる高強度アルミニウム合金板を提
供することができる。しかも、本発明の成分および組織
要件を満たすその製造方法として特殊な方法を用いる必
要はなく、従って性能の安定性ならびにコスト等の製造
面においても優れたものである。本発明に係る曲げ加工
性に優れたアルミニウム合金板を用いることにより、強
度の高い缶蓋の需要に対しても、単に材料の強度のみに
依存するのではなく、蓋の形状に工夫をこらすことで耐
圧性の高い蓋を設計考案することができるようになり、
従って強度設計等において自由度が大幅に広がるもので
ある。
As described in detail above, according to the present invention, the strength required for EOE materials such as beer cans, carbonated beverage cans, etc. is satisfied, bending workability is excellent, and high strength and thinning tendency are sufficient. It is possible to provide a high-strength aluminum alloy plate that can be used. Moreover, it is not necessary to use a special method as a manufacturing method for satisfying the components and structural requirements of the present invention, and therefore, it is also excellent in manufacturing stability such as stability of performance and cost. By using the aluminum alloy plate excellent in bending workability according to the present invention, even if the demand for a high-strength can lid is increased, the shape of the lid can be devised instead of merely depending on the strength of the material. With this, it became possible to design and devise a lid with high pressure resistance,
Therefore, the degree of freedom in strength design and the like is greatly expanded.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Mg:3〜5%、Mn:0.
1〜1.0%、Si:0.3%以下および組織微細化・
安定化のためTi:0.005〜0.20%を単独であ
るいはB:0.0005〜0.04%とともに含有し、
さらにCu:0.05〜0.5%、Cr:0.05〜
0.3%、Zn:0.1〜0.5%、Fe:0.05〜
0.7%のうち一種または二種以上を含有し、かつFe
+Mn≦1%以下であり、残部がAl及び不可避的不純
物からなり、最終板の表面組織のうち最大結晶粒径(圧
延方向に対して直角方向の短径)≦40μm、いずれの
箇所においても直径50μmの視野内に存在する直径3
μm以上の金属間化合物の粒子数≦5個、直径1μm以
上の金属間化合物の粒子数≦4000個/0.2mm2
であることを特徴とする曲げ性に優れた高強度アルミニ
ウム合金板。
1. By weight%, Mg: 3-5%, Mn: 0.
1-1.0%, Si: 0.3% or less and microstructure refinement
For stabilization, Ti: 0.005 to 0.20% alone or together with B: 0.0005 to 0.04%,
Further, Cu: 0.05 to 0.5%, Cr: 0.05 to
0.3%, Zn: 0.1-0.5%, Fe: 0.05-
Fe containing one or more of 0.7% and Fe
+ Mn ≦ 1% or less, the balance consisting of Al and unavoidable impurities, and the maximum crystal grain size (minor axis in the direction perpendicular to the rolling direction) ≦ 40 μm of the surface texture of the final plate, diameter at any location Diameter 3 in the field of view of 50 μm
Number of particles of intermetallic compound of μm or more ≦ 5, number of particles of intermetallic compound of diameter 1 μm or more ≦ 4000 / 0.2 mm 2
A high-strength aluminum alloy plate with excellent bendability, which is characterized by
JP13151892A 1992-04-24 1992-04-24 High-strength aluminum alloy plate for can lids with a countersink with excellent bendability Expired - Fee Related JP3255963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13151892A JP3255963B2 (en) 1992-04-24 1992-04-24 High-strength aluminum alloy plate for can lids with a countersink with excellent bendability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13151892A JP3255963B2 (en) 1992-04-24 1992-04-24 High-strength aluminum alloy plate for can lids with a countersink with excellent bendability

Publications (2)

Publication Number Publication Date
JPH05302139A true JPH05302139A (en) 1993-11-16
JP3255963B2 JP3255963B2 (en) 2002-02-12

Family

ID=15059929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13151892A Expired - Fee Related JP3255963B2 (en) 1992-04-24 1992-04-24 High-strength aluminum alloy plate for can lids with a countersink with excellent bendability

Country Status (1)

Country Link
JP (1) JP3255963B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024940A1 (en) * 1996-12-04 1998-06-11 Alcan International Limited A1 alloy and method
WO1999013118A1 (en) * 1997-09-11 1999-03-18 Nippon Light Metal Company Ltd. Aluminum alloy sheet for spot welding
JP2001303164A (en) * 2000-04-24 2001-10-31 Sky Alum Co Ltd Aluminum hard sheet for can cover and its producing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024940A1 (en) * 1996-12-04 1998-06-11 Alcan International Limited A1 alloy and method
US6544358B1 (en) 1996-12-04 2003-04-08 Alcan International Limited A1 alloy and method
WO1999013118A1 (en) * 1997-09-11 1999-03-18 Nippon Light Metal Company Ltd. Aluminum alloy sheet for spot welding
US6369347B1 (en) 1997-09-11 2002-04-09 Nippon Light Metal Company, Ltd. Aluminum alloy sheet for spot welding
CN1097096C (en) * 1997-09-11 2002-12-25 日本轻金属株式会社 Aluminum alloy sheet for spot welding
KR100564077B1 (en) * 1997-09-11 2006-03-27 니폰 라이트 메탈 컴퍼니 리미티드 Aluminum Alloy Sheet For Spot Welding
JP2001303164A (en) * 2000-04-24 2001-10-31 Sky Alum Co Ltd Aluminum hard sheet for can cover and its producing method

Also Published As

Publication number Publication date
JP3255963B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JP2009221567A (en) Aluminum alloy sheet for positive pressure coated can lid, and method for producing the same
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP3255963B2 (en) High-strength aluminum alloy plate for can lids with a countersink with excellent bendability
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JPH07310153A (en) Production of aluminum alloy sheet excellent in strength ductility and stability
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH10259464A (en) Production of aluminum alloy sheet for forming
JP2000234158A (en) Production of aluminum alloy sheet for can barrel
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP3260227B2 (en) Al-Mg-Si based alloy sheet excellent in formability and bake hardenability by controlling crystal grains and method for producing the same
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JPH06228696A (en) Aluminum alloy sheet for di can body
JP2000001730A (en) Aluminum alloy sheet for can body, and its production
JPH0533107A (en) Production of hard aluminum alloy sheet excellent in strength and formability
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH062090A (en) Manufacture of high strength aluminum alloy sheet for forming small in anisotropy
JP2003213358A (en) Al-Mg ALLOY ROLLED SHEET TEMPERED MATERIAL HAVING EXCELLENT BENDING WORKABILITY AND PRODUCTION METHOD THEREFOR
JP2613522B2 (en) Aluminum alloy plate for stay tub
JPH06136491A (en) Production of aluminum alloy sheet for forming with low ear rate
JP3156549B2 (en) Hard Al alloy sheet for can body with excellent formability and its manufacturing method
JPH06101002A (en) Production of aluminum alloy sheet reduced in ear rate excellent in formability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20071130

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees