JPH06136491A - Production of aluminum alloy sheet for forming with low ear rate - Google Patents

Production of aluminum alloy sheet for forming with low ear rate

Info

Publication number
JPH06136491A
JPH06136491A JP31151092A JP31151092A JPH06136491A JP H06136491 A JPH06136491 A JP H06136491A JP 31151092 A JP31151092 A JP 31151092A JP 31151092 A JP31151092 A JP 31151092A JP H06136491 A JPH06136491 A JP H06136491A
Authority
JP
Japan
Prior art keywords
rolling
rate
temperature
strength
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31151092A
Other languages
Japanese (ja)
Inventor
Shinji Teruda
伸二 照田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP31151092A priority Critical patent/JPH06136491A/en
Publication of JPH06136491A publication Critical patent/JPH06136491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To obtain an aluminum alloy sheet for forming, suitable for two-piece can body material, excellent in strength and formability, and reduced in ear rate, by using a hot rolled plate prepared by means of continuous casting and rolling as a stock. CONSTITUTION:An aluminum alloy having a composition containing 0.5-2.0% Mg, 0.5-1.8% Mn, 0.1-0.7% Fe, 0.05-0.5% Si, 0.005-0.20& Ti, and 0.0001-0.05% B, and one or more kinds among 0.05-0.5% Cu, 0.05-0.3% Cr, and 0.1-0.5% Zn is cast to 10-50mm plate thickness at (1 to 20)m/min solidification boundary moving velocity, heated and held at 560-620 deg.C for >=1min, hot-rolled at 230-600 deg.C, and cold-rolled. Then the resulting cold rolled sheet is subjected to annealing under the conditions of 400-600 deg.C ultimate temp., >=1 deg.C/s average temp. rise rate, <=10min holding time, and cooling down to <=150 deg.C at >=1 deg.C/s cooling rate, and then to cold rolling at >=40% rolling rate, by which, in the surface microstructure, the maximum crystalline grain size in a direction perpendicular to rolling direction is regulated to <=60mum and intermetallic compounds of >=5mum is allowed to exist by >=500 pieces/mm<2>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耳率・強度及び成形加
工性にすぐれたアルミニウム板の製造方法に関するもの
であり、更に詳しく述べるなら2ピースアルミニウム缶
胴(DI缶)用のAl−Mn−Mg系のアルミニウム合
金板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum plate having excellent ear ratio, strength and moldability. More specifically, it is Al-Mn for a two-piece aluminum can body (DI can). And a method for manufacturing a Mg-based aluminum alloy plate.

【0002】[0002]

【従来の技術】従来、JIS3004合金硬質板は、強
度を上げる為に高度の冷間圧延した場合でも比較的良好
な成形性を有することから、缶胴材に用いられる事が多
い。この硬質板は、均質化処理後、常法に従って熱間圧
延され、次いで、冷間圧延を施してから、或いは施さず
に中間焼鈍を行なうことにより製造されることが多い。
しかしながら、近年缶材として用いられるAl合金板は
薄肉化と高強度化が進められている。これはより強度の
高い薄板を利用することによる経済効果を期待したもの
である。このため近年における連続焼鈍炉(CAL)の
普及に伴い、中間焼鈍で高温到達及び急速冷却が可能と
なり、これによる溶体化効果を利用して比較的最終冷延
率が少なくても高強度が得られる製造プロセスも提案さ
れている。
2. Description of the Related Art Conventionally, a JIS 3004 alloy hard plate is often used as a body of a can because it has a relatively good formability even when it is cold-rolled to a high degree in order to increase its strength. This hard plate is often manufactured by homogenizing, then hot rolling according to a conventional method, and then performing intermediate annealing with or without cold rolling.
However, in recent years, Al alloy plates used as can materials have been made thinner and have higher strength. This expects an economic effect by using a thin plate having higher strength. For this reason, with the widespread use of continuous annealing furnaces (CAL) in recent years, it has become possible to reach a high temperature and perform rapid cooling by intermediate annealing, and the solutionizing effect of this makes it possible to obtain high strength even if the final cold rolling reduction is relatively small. A manufacturing process is also proposed.

【0003】[0003]

【発明が解決しようとする課題】従来の缶材の製造法
は、500mm厚のDC鋳塊を500℃以上の加熱後熱
間圧延を行なう方法を採用しているが、近年缶材向けに
連続鋳造圧延した熱延コイルを利用しようとする方法も
提案されている。この方法はインラインで鋳造から鋳造
の余熱を利用して熱延までを行なうことから省エネルギ
ー・省コストに優れている。しかし、特許出願公表平成
4−503534号公報に見られるように、この方法に
より製造された缶材は従来のDC鋳造材と比較して耳率
の制御が難しくなる。しかも、鋳造後の圧延率が少ない
ために鋳造組織が多く残り、組織の均一性に問題が生
じ、そのためDI缶成形時のフランジ成形性に劣ること
も判明している。本発明は、かかる問題を解決して連続
鋳造圧延した熱延コイルをもとにして、DC材に比較し
ても耳率・強度さらには成形性の点で引けを取るどころ
かむしろ良好な特性の材料を製造することを目的とする
ものである。
The conventional method for manufacturing a can material employs a method in which a DC ingot having a thickness of 500 mm is heated at 500 ° C. or higher and then hot-rolled. A method of using a hot rolled coil that has been cast and rolled has also been proposed. This method is excellent in energy saving and cost saving since it performs in-line casting and hot rolling using the residual heat of casting. However, as can be seen in the patent application publication No. Hei 4-503534, the can material produced by this method is more difficult to control the ear rate than the conventional DC cast material. Moreover, it has been found that a large amount of the cast structure remains due to a low rolling ratio after casting, which causes a problem in the uniformity of the structure, resulting in poor flange formability during DI can forming. The present invention solves such a problem and is based on a hot-rolled coil which is continuously cast and rolled, and has a rather excellent characteristic rather than a DC material in terms of ear ratio, strength and formability. It is intended to produce materials.

【0004】[0004]

【課題を解決するための手段】本発明者は連続鋳造圧延
された材料の均質性を確保するために、560〜620
℃の均質化処理を施す工程の追加と、耳率の制御が容易
でしかも溶体化効果による塗装焼付後の強度低下の少な
いCAL中間焼鈍の採用により前記目的を達成すること
ができることを見いだし本発明を為すに至った。すなわ
ち、Mg:0.5〜2.0%、Mn:0.5〜1.8
%、Fe:0.1〜0.7%、Si:0.05〜0.5
%、組織微細化・安定化のためTi:0.005〜0.
20%を単独であるいはB:0.0001〜0.05%
とともに含有し、さらに、Cu:0.05〜0.5%、
Cr:0.05〜0.3%、Zn:0.1〜0.5%の
1種または2種以上を含有し、残部Alおよび不純物か
らなるアルミニウム合金を、凝固界面の移動速度が1〜
20m/minで、仕上り板厚が10〜50mmとする
鋳造を行い、鋳造後560〜620℃の温度範囲で1分
以上加熱保持し、その後、230〜600℃の温度範囲
で熱間圧延し、必要に応じて冷間圧延を施した後、到達
温度が400〜600℃、焼鈍開始時の温度から到達温
度までの平均昇温速度を1℃/s以上、到達温度に到達
後保持時間10分以内、1℃/s以上の冷却速度で15
0℃以下に冷却後する焼鈍を行い、その後、圧延率40
%以上の冷間圧延を施し、冷間圧延後の表面ミクロ組織
が圧延方向に対して直角方向の最大結晶粒径(短径)が
60μm以下で、5μm以上の金属間化合物が500個
/mm2 以上存在する事を特徴とする強度及び成形性に
すぐれた耳率の低い成形用アルミニウム合金板の製造方
法である。
In order to ensure the homogeneity of continuously cast and rolled material, the inventor has found that 560 to 620
It has been found that the above object can be achieved by adding a step of carrying out a homogenizing treatment at ℃, and by adopting CAL intermediate annealing in which the ear ratio can be easily controlled and the strength reduction after baking by the solutionizing effect is small. Came to do. That is, Mg: 0.5 to 2.0%, Mn: 0.5 to 1.8.
%, Fe: 0.1 to 0.7%, Si: 0.05 to 0.5
%, Ti: 0.005 to 0.
20% alone or B: 0.0001 to 0.05%
And Cu: 0.05-0.5%,
An aluminum alloy containing one or more of Cr: 0.05 to 0.3% and Zn: 0.1 to 0.5%, the balance of which is Al and impurities, has a moving speed of 1 to 1 at the solidification interface.
At 20 m / min, casting is performed with a finished plate thickness of 10 to 50 mm, after casting, heating and holding is performed at a temperature range of 560 to 620 ° C for 1 minute or more, and then hot rolling is performed at a temperature range of 230 to 600 ° C. After performing cold rolling as necessary, the reached temperature is 400 to 600 ° C., the average temperature rising rate from the temperature at the start of annealing to the reached temperature is 1 ° C./s or more, and the holding time after reaching the reached temperature is 10 minutes. 15 at a cooling rate of 1 ° C / s or more
Annealing is performed after cooling to 0 ° C. or lower, and then the rolling rate is 40
% Or more, and the surface microstructure after cold rolling has a maximum crystal grain size (minor diameter) of 60 μm or less in the direction perpendicular to the rolling direction and 500 / mm of intermetallic compounds of 5 μm or more It is a method for producing an aluminum alloy sheet for forming which has excellent strength and formability and has a low earring rate, which is characterized by the presence of two or more.

【0005】[0005]

【作用】まず、本発明における化学成分の限定理由を説
明する。下記合金成分は、アルミニウムの強度を高める
と共に、耳率や成形性の制御を目的として添加するもの
である。 Mg;MgはSi・Cuとの共存によりMg2 Siある
いはAl-Cu-Mgによる時効析出硬化が望め、本発明
のように溶体化効果をもたせる中間焼鈍を施す場合に
は、特に塗装焼付後の強度低下を抑えるのに効果が有
る。更にMg単独でも固溶体強化の効果がある元素であ
る。このように強度向上には不可欠な元素であるが、M
gが0.5%未満ではその効果が少なく使用しうる強度
に到達せず、2%を超えて添加した場合には、絞り成形
上は問題がないが、加工硬化しやすくなる為に再絞り性
やしごき性の悪化が見られ好ましくない。したがってM
g量は0.5〜2%の範囲とする。 Mn;Mnは強度向上に寄与するとともに成形性向上に
有効な元素である。特に本発明が目指す用途である缶胴
材では、しごき成形されるためにとりわけMnは重要と
なる。アルミニウム板のしごき成形において、通常エマ
ルジョンタイプの潤滑剤が用いられているが、Mn系晶
出物が少ない場合には同程度の強度を有していてもエマ
ルジョンタイプ潤滑剤だけでは潤滑能が不足し、ゴーリ
ングと呼ばれる擦り疵や焼付きといった外観不良が発生
する。この現象は、晶出物の大きさ、量、種類に影響さ
れることが知られており、Mnはその晶出物を形成する
のに不可欠な元素である。Mn量が0.5%未満ではM
n化合物による固体潤滑的な効果が得られない。一方
1.8%を超えると、MnAl6 の初晶巨大金属間化合
物が発生して著しく成形性を損う。したがってMn量は
0.5〜1.8%の範囲とする。 Fe;FeはMnの晶出や析出を促進し、アルミニウム
マトリクス中のMn固溶量やMn系不溶性化合物の分散
状態を制御するために必要な元素である。Fe量が0.
1%未満では適正な化合物分散状態を得ることが難し
く、また0.7%を超えると添加されたMnとともに初
晶巨大化合物を生成させやすくなり成形性を著しく損
う。したがってFe量は0.1〜0.7%の範囲とす
る。 Si;SiはMg2 Si系化合物の生成による時効硬化
により強度向上に寄与する。また本発明ではDI成形に
必要な晶出物の適正な分散状態を得るのにFeとともに
作用する重要な元素である。Si量が0.05%未満で
はその効果が得られず、0.5%を超えると晶出物分散
については飽和し時効硬化は容易に得られるものの硬く
なりすぎて成形性を阻害する。したがってSi量は0.
05%〜0.5%の範囲とする。 Ti、B;通常のアルミニウム合金においては、鋳塊結
晶粒微細化・安定化のためにTi及びBを微量添加する
ことが行われており、本発明においてもTi:0.00
5〜0.20%を単独であるいはB:0.0001〜
0.05%とともに含有することを必須とする。Ti量
が0.005%未満ではその効果が得られず、0.2%
を超えると初晶TiAl3 が晶出して成形性を阻害す
る。したがってTi量は0.005〜0.20%の範囲
とする。またTiと共にBを添加するとこの効果が向上
する。ただしBを添加する場合、0.0001%未満で
はその効果がなく、0.05%を超えるとTiB2 の粗
大粒子が混入して成形性を害することから、Bは0.0
001〜0.05%の範囲とする。
First, the reasons for limiting the chemical components in the present invention will be explained. The following alloy components are added for the purpose of enhancing the strength of aluminum and controlling the ear ratio and formability. Mg; Mg can be aged precipitation hardening by Mg 2 Si or Al-Cu-Mg due to coexistence with Si / Cu, and when performing intermediate annealing having a solutionizing effect as in the present invention, especially after coating baking. It is effective in suppressing the decrease in strength. Furthermore, Mg alone is an element that has the effect of strengthening the solid solution. Although it is an element that is indispensable for improving strength, M
If g is less than 0.5%, the effect is small and the strength that can be used is not reached, and if added in excess of 2%, there is no problem in draw forming, but it is easy to work harden, so redrawing And ironing property are deteriorated, which is not preferable. Therefore M
The g amount is in the range of 0.5 to 2%. Mn; Mn is an element that contributes to the improvement of strength and is effective in improving the formability. In particular, in the can body material, which is an application aimed at by the present invention, Mn is particularly important for ironing. Emulsion type lubricants are usually used in ironing of aluminum sheets, but if Mn-based crystallized substances are small, even if they have similar strength, the emulsion type lubricants alone lack sufficient lubricating ability. However, appearance defects such as scratches and seizure called "goring" occur. It is known that this phenomenon is affected by the size, amount, and type of crystallized substances, and Mn is an essential element for forming the crystallized substances. If the Mn content is less than 0.5%, M
The solid lubrication effect of the n compound cannot be obtained. On the other hand, if it exceeds 1.8%, primary crystal giant intermetallic compounds of MnAl 6 are generated, and formability is significantly impaired. Therefore, the amount of Mn is set in the range of 0.5 to 1.8%. Fe; Fe is an element necessary for promoting crystallization and precipitation of Mn and controlling the amount of Mn solid solution in the aluminum matrix and the dispersed state of the Mn-based insoluble compound. Fe content is 0.
If it is less than 1%, it is difficult to obtain a proper compound dispersion state, and if it exceeds 0.7%, a primary crystal giant compound is likely to be formed together with the added Mn, and formability is significantly impaired. Therefore, the amount of Fe is set to the range of 0.1 to 0.7%. Si; Si contributes to the strength improvement by age hardening due to the formation of the Mg 2 Si-based compound. Further, in the present invention, it is an important element that works together with Fe to obtain a proper dispersed state of crystallized substances necessary for DI molding. If the amount of Si is less than 0.05%, the effect cannot be obtained, and if it exceeds 0.5%, the dispersion of crystallized substances is saturated and age hardening is easily obtained, but it becomes too hard and hinders moldability. Therefore, the Si content is 0.
The range is from 05% to 0.5%. Ti, B; In ordinary aluminum alloys, a small amount of Ti and B is added for refining and stabilizing ingot crystal grains, and in the present invention, Ti: 0.00
5 to 0.20% alone or B: 0.0001 to
It is essential to contain it together with 0.05%. If the amount of Ti is less than 0.005%, the effect cannot be obtained and 0.2%
If it exceeds, primary TiAl 3 crystallizes and hinders formability. Therefore, the Ti amount is set in the range of 0.005 to 0.20%. Further, when B is added together with Ti, this effect is improved. However, when B is added, if it is less than 0.0001%, it has no effect, and if it exceeds 0.05%, coarse particles of TiB 2 are mixed and impair the formability, so that B is 0.0
The range is 001 to 0.05%.

【0006】Cu,Cr,Znはいずれも強度向上に寄
与する元素で本発明ではこれらの一種以上を含有させ
る。 Cu;Cuは焼付け処理時のAl−Cu−Mg系析出物
の析出過程で起る時効硬化を利用して強度向上に寄与す
る元素である。Cuが0.05%未満ではその効果は得
られず、一方0.5%を超えて添加した場合、時効硬化
は容易に得られるものの硬くなりすぎて成形性を阻害す
る。したがって、Cu量は0.05〜0.5%の範囲と
する。 Cr;Crは強度向上に効果的な元素であるが、添加量
が0.05%未満ではその効果が少なく、また0.3%
を超えると巨大晶出物生成により成形性の低下を招き好
ましくない。したがってCr量は0.05〜0.3%の
範囲とする。 Zn;Znの添加はMg2Zn3Al2 の時効析出により
強度向上に寄与するが、0.1%未満ではその効果はな
く、0.5%を超えると耐食性を劣化させるためこれ以
下に規制する必要がある。したがってZn量は0.1〜
0.5%の範囲とする。以上の各成分の残部はAl及び
不可避的不純物とする。
Cu, Cr, and Zn are elements that contribute to the improvement of strength, and in the present invention, one or more of them are contained. Cu: Cu is an element that contributes to the strength improvement by utilizing the age hardening that occurs in the precipitation process of Al-Cu-Mg-based precipitates during the baking treatment. If the Cu content is less than 0.05%, the effect cannot be obtained. On the other hand, if the Cu content is more than 0.5%, age hardening is easily obtained, but it becomes too hard and hinders moldability. Therefore, the amount of Cu is set to the range of 0.05 to 0.5%. Cr; Cr is an element effective in improving strength, but if the addition amount is less than 0.05%, its effect is small, and 0.3%
If it exceeds, the formation of a huge crystallized product causes deterioration of moldability, which is not preferable. Therefore, the amount of Cr is set to 0.05 to 0.3%. Zn; Zn addition contributes to the strength improvement by aging precipitation of Mg 2 Zn 3 Al 2 , but if it is less than 0.1%, it has no effect, and if it exceeds 0.5%, the corrosion resistance deteriorates, so the content is controlled below this. There is a need to. Therefore, the Zn content is 0.1
The range is 0.5%. The balance of each of the above components is Al and inevitable impurities.

【0007】次に本発明における製造プロセスについて
説明する。 鋳造;先ず、前述の合金組成を有するアルミニウム合金
を凝固界面の移動速度を1〜20m/minかつ仕上り
板厚を10〜50mmの条件で鋳造して鋳造板を製造す
る。仕上り板厚が10mmより薄い場合、あるいは凝固
界面移動速度が20m/minより速い場合にはDI加
工時のしごき成形に必要な適正なる晶出物分布が得られ
ず、金属間化合物が微細となり5μm以上の金属間化合
物が500個/mm2 より少なくなりDI時にゴーリン
グが起る。仕上り板厚が50mmより厚い場合は、その
後のインラインでの圧延による熱延板を得るのが難し
く、インラインとしない場合でも缶材として通常用いら
れる長さにおいて取扱が難しくなる。凝固界面の移動速
度は生産性の点より1m/minより速いこととする。
その他の望ましい条件としては、表面部の冷却速度はデ
ンドライト樹枝間測定により算出される冷却速度で10
0℃/secより遅い方がよく、この値より速い場合に
は晶出物が微細化してしまい、ゴーリングの発生につな
がる。したがって、溶湯と最初に接触・冷却されるとこ
ろには例えば銅のように熱伝導度が速い材質のものを用
いることを避けることが好ましい。また、本鋳造で得ら
れた材料ではその後の熱延上りの状態で、コーティング
と呼ばれる筋状の欠陥が発生する。これは、素材特性
上、機械的性質等では問題ないが、本発明における用途
である缶材では外観品質が問題となるため板表面層を機
械的または化学的に除去することが望ましい。 均熱;次いで上記の鋳塊に対して、均質化処理としての
加熱を施す。この点が本発明の特徴の一つであり、鋳造
上りでは550℃より低い温度であるものを560〜6
20℃に加熱して1分以上の保持を行ない均質化をはか
る。600℃を越える温度の場合は短時間でよいが、5
60℃程度の低温では5分以上保持することが望まし
い。560℃以下の温度ではインラインでの均質化効果
は少なく、逆に620℃以上の温度では局所融解などが
起り外観を損ねるとともに、軟化によりハンドリング等
において不都合が生ずる。 熱間圧延 上記均熱処理の後に引き続き熱間圧延を行なう。熱間圧
延上りの条件は、とくに規制はしないが、熱延性を考慮
すると230℃以上の上り温度が好ましい。入側は60
0℃より低い温度であることがコーティングの点で好ま
しい。目的とする板厚が薄い場合には、必要に応じて所
要の板厚まで熱延・冷間圧延を合せて減厚することがの
ぞましい。 中間焼鈍 次いで、少なくとも400℃以上の高温に加熱処理す
る。400℃以上でないとCu・Mg・Si等の金属元
素の固溶が進まずに、溶体化効果による強度向上が望め
ない。また到達温度の上限は600℃とする。高温であ
る方がより溶体化効果による強度向上が望めるが、この
温度より高温になると、共晶融解に基づく軟化による製
造上の不都合および製品の外観を損う恐れが有る。ま
た、材料が400℃を超えた温度範囲にある時間は10
分以内となるような保持を行う。これより長時間となる
と、表面の酸化皮膜の形成により焼鈍終了後の冷間圧延
性や製品の外観を損ねる。平均昇温速度は1℃/s以上
が好ましく、これより遅いとCu、Mg、Si等の合金
元素の析出が進み析出物が粗大化してしまい、高温での
加熱保持によっても析出物中の合金元素を固溶させるの
に時間がかかる。本鋳造材は通常DC鋳造材と比較して
Mn等の固溶量が多く、このために中間焼鈍の加熱速度
が遅いと析出速度と再結晶速度との競合により再結晶時
にMn等の析出が起り結晶粒の成長を阻害し、Zene
r−drag効果により再結晶粒の粗大化を引き起こ
し、圧延方向に直角方向の最大結晶粒径(短径)が60
μm以上の結晶粒が多数生成することになる。その結
果、深絞り性、ネッキング成形性が悪くなる。従って昇
温速度は速い方が良い。到達温度からの冷却速度は1℃
/s以上とする。これより遅いと固溶した合金元素が冷
却過程で析出してしまい、溶体化効果による強度向上へ
の寄与が少なくなる。上気の焼鈍工程は、溶体化効果の
顕著な冷却速度の早い焼鈍により塗装焼付後の強度低下
を少なくするものであり、通常のCAL焼鈍により達成
することができるが、特にこれに限定されるものではな
い。このように上記の中間焼鈍により合金元素を固溶さ
せ塗装焼付時の時効析出硬化りより強度低下を少なく出
来るため、焼鈍後の冷間圧延において圧延率が少なくて
加工硬化量が少なくとも所望の強度が得られ充分に耳率
の制御が可能となる。さらに耳率の制御を行なうために
は、本発明者らがすでに出願した特願平4−14671
7号明細書記載のバッチ焼鈍による部分再結晶処理の後
に5〜30%軽圧下してさらにCAL中間焼鈍を施すプ
ロセスの採用、特願平4−166974号明細書記載の
CAL焼鈍による部分再結晶処理の後5〜30%軽圧下
してさらにCAL中間焼鈍を施すプロセスの採用、さら
には特願平4−263065号明細書記載のCAL2ス
テップの焼鈍による方法によって達成することができ
る。本焼鈍により焼鈍終了後の最大再結晶粒は40μm
以下となり、成形性特に深絞り成形およびネッキング成
形のように絞り成形時の成形しわの発生が少なくなる。 冷間圧延 その後冷間圧延を施すが、冷間圧延率は40%以上ない
と必要強度が得られない。 最終焼鈍 上記冷間圧延後、必要に応じて100〜200℃程度の
最終焼鈍を施すことにより深絞り性の改善が望める。
Next, the manufacturing process in the present invention will be described. Casting: First, a cast plate is manufactured by casting an aluminum alloy having the above-mentioned alloy composition under the conditions that the moving speed at the solidification interface is 1 to 20 m / min and the finished plate thickness is 10 to 50 mm. If the finished plate thickness is less than 10 mm, or if the solidification interface moving speed is faster than 20 m / min, the appropriate crystallized product distribution necessary for ironing during DI processing cannot be obtained, and the intermetallic compound becomes fine and 5 μm. The above intermetallic compounds are less than 500 / mm 2, and galling occurs at DI. When the finished plate thickness is thicker than 50 mm, it is difficult to obtain a hot-rolled plate by in-line rolling thereafter, and even when it is not in-line, it is difficult to handle in a length usually used as a can material. The moving speed of the solidification interface is higher than 1 m / min in terms of productivity.
As another desirable condition, the cooling rate of the surface portion is 10 which is the cooling rate calculated by the measurement between dendrite dendrites.
It is better to be slower than 0 ° C./sec, and if it is faster than this value, the crystallized substance becomes finer, leading to the occurrence of galling. Therefore, it is preferable to avoid using a material having a high thermal conductivity, such as copper, at a place where the molten metal is first contacted and cooled. Further, in the material obtained by the main casting, streak-like defects called coating occur in the state of subsequent hot rolling. This is not a problem in terms of mechanical properties or the like in terms of material properties, but since the appearance quality becomes a problem in the can material that is used in the present invention, it is desirable to mechanically or chemically remove the plate surface layer. Soaking: Next, the ingot is heated as a homogenizing treatment. This point is one of the features of the present invention, and the one having a temperature lower than 550 ° C. in the ascending casting is 560 to 6
Heat to 20 ° C. and hold for 1 minute or more to homogenize. If the temperature exceeds 600 ° C, it may take a short time, but 5
It is desirable to hold for 5 minutes or more at a low temperature of about 60 ° C. At a temperature of 560 ° C. or lower, the in-line homogenizing effect is small, and conversely, at a temperature of 620 ° C. or higher, local melting or the like occurs to impair the appearance, and softening causes inconvenience in handling and the like. Hot Rolling After the soaking treatment, hot rolling is continued. The conditions for hot rolling up are not particularly limited, but in view of hot ductility, an up temperature of 230 ° C. or higher is preferable. 60 on the entry side
From the viewpoint of coating, a temperature lower than 0 ° C is preferable. When the target plate thickness is thin, it is desirable to reduce the thickness by hot rolling and cold rolling to the required plate thickness as necessary. Intermediate annealing Next, heat treatment is performed at a high temperature of at least 400 ° C or higher. If it is not higher than 400 ° C., solid solution of metal elements such as Cu, Mg and Si does not proceed, and strength improvement due to solution effect cannot be expected. The upper limit of the ultimate temperature is 600 ° C. The higher the temperature, the more the strength can be expected to be improved by the solution treatment effect. However, if the temperature is higher than this temperature, there is a risk of inconvenience in production due to softening due to eutectic melting and deterioration of the appearance of the product. Also, the time when the material is in the temperature range over 400 ° C is 10
Hold it for less than a minute. If the time is longer than this, the formation of an oxide film on the surface impairs the cold rolling property after the annealing and the appearance of the product. The average heating rate is preferably 1 ° C./s or more, and if it is slower than this, precipitation of alloying elements such as Cu, Mg, Si, etc. proceeds and the precipitates become coarse, and the alloys in the precipitates are also retained by heating at high temperature. It takes time to form a solid solution with an element. Compared with the DC cast material, the present cast material usually has a large amount of solid solution of Mn and the like. Therefore, if the heating rate of the intermediate annealing is slow, the precipitation rate and the recrystallization rate compete with each other, so that Mn or the like precipitates during recrystallization. Zene, which hinders the growth of crystal grains
The r-drag effect causes coarsening of recrystallized grains, and the maximum crystal grain size (minor diameter) in the direction perpendicular to the rolling direction is 60.
Many crystal grains with a size of μm or more are generated. As a result, deep drawability and necking formability deteriorate. Therefore, it is better that the temperature rising rate is faster. The cooling rate from the ultimate temperature is 1 ℃
/ s or more. If it is slower than this, solid-dissolved alloy elements will precipitate during the cooling process, and the contribution to the strength improvement due to the solution treatment effect will decrease. The upper-air annealing step is intended to reduce the strength reduction after coating baking by annealing at a high cooling rate with a remarkable solution treatment effect, and can be achieved by ordinary CAL annealing, but is not particularly limited thereto. Not a thing. As described above, since the alloying elements are solid-dissolved by the intermediate annealing described above and the strength reduction can be less than the age precipitation hardening during coating baking, the rolling rate is low in the cold rolling after annealing and the work hardening amount is at least the desired strength. It is possible to control the ear rate sufficiently. In order to further control the ear rate, Japanese Patent Application No. 4-14671 filed by the present inventors has already filed.
Adoption of a process in which a partial recrystallization treatment by batch annealing described in No. 7 is followed by a 5-30% light reduction and a further CAL intermediate annealing is performed. Partial recrystallization by CAL annealing described in Japanese Patent Application No. 4-166974. This can be achieved by adopting a process in which a CAL intermediate annealing is further carried out after the treatment by lightly reducing the pressure by 5 to 30%, and further, a method by the CAL two-step annealing described in Japanese Patent Application No. 4-263065. The maximum recrystallized grain after annealing is 40 μm due to main annealing
The following is obtained, and in particular, the formation of wrinkles during drawing such as deep drawing and necking is reduced. Cold rolling After that, cold rolling is performed, but the required strength cannot be obtained unless the cold rolling rate is 40% or more. Final Annealing After the cold rolling, it is possible to improve the deep drawability by performing final annealing at about 100 to 200 ° C., if necessary.

【0008】[0008]

【実施例】以下、本発明の実施例について説明する。表
1に示す化学成分を有するアルミニウム合金を表2に示
す製造方法により圧延、熱処理し試料を作成した。表1
に示す合金Aは本願発明の合金組成の範囲をみたすもの
であり、合金BはMg,Mn量が外れている比較合金で
ある。表2の鋳造の「方法」の欄で「DC」とあるのは
DC鋳造、「CC」とあるのは連続鋳造圧延によるもの
を意味し、「速度」欄は凝固界面の移動速度(m/mi
n)である。また鋳造、熱延、冷延、最終焼鈍の各「板
厚」の単位はmmであり、均熱の欄、中間焼鈍・最終焼
鈍の条件の欄は温度×保持時間を示す。ただし保持時間
が「0」となっているのは温度到達後直ちに(保持無し
で)冷却に移ったことを示すものであり、熱延の欄の
「温度」の単位は℃である。なお中間焼鈍後の冷間圧延
率は60%である。表1、表2で下線を付した箇所が本
発明を外れる条件である。
EXAMPLES Examples of the present invention will be described below. An aluminum alloy having the chemical composition shown in Table 1 was rolled and heat treated by the manufacturing method shown in Table 2 to prepare a sample. Table 1
Alloy A shown in 1) satisfies the range of the alloy composition of the present invention, and Alloy B is a comparative alloy in which the amounts of Mg and Mn are deviated. In the column of "Method" of casting in Table 2, "DC" means DC casting, "CC" means that by continuous casting and rolling, and "Speed" column means the moving speed (m / m) of the solidification interface. mi
n). The unit of each "plate thickness" of casting, hot rolling, cold rolling, and final annealing is mm, and the column of soaking and the column of conditions of intermediate annealing / final annealing show temperature × holding time. However, the holding time of "0" indicates that the cooling was started immediately (without holding) after the temperature reached, and the unit of "temperature" in the hot rolling column is ° C. The cold rolling rate after the intermediate annealing is 60%. The underlined portions in Tables 1 and 2 are conditions outside the present invention.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】得られた試料について元板と塗装ベーキン
グ相当の200℃x20minの熱処理後各々の引張強
さ(TS:N/mm2 )、耐力(YS:N/mm2 )、
伸び(EL:%)を調べ、元板について38mmφ肩R
2.5mmのポンチを用いて66mmφサークルをクリ
アランス30%で深絞りを行って耳率(%)も測定し
た。その結果を表3に示す。また実際にDI成形を行っ
て連続成形性の確認を行い、ゴーリング(縦疵)による
缶切れが生じたものは表3の「連続」の欄に×を、缶切
れしなかったものには○を記した。さらに実際に得られ
たDI缶に塗装焼付を行なった後、4段ネッキングを行
ないこの時のしわの発生程度を観察し、表3の「ネッ
ク」の欄に良好材には○、不良材にはXの印を付けた。
その後フランジ成形を100缶行ない、割れが1個以上
発生したものは「フランジ」の欄をX、発生の無いもの
は○とした。最大結晶粒径は、板表面において偏光ミク
ロ組織を観察して、長円の短径の最大値(μm)を観察
した。金属間化合物の観察は、表面部を研磨後画像解析
装置で2値化して、5μm以上の化合物の個数(個/m
2 )をカウントした。その結果を表3に示す。
With respect to the obtained sample, the tensile strength (TS: N / mm 2 ) and proof stress (YS: N / mm 2 ) of each of the base plate and the heat treatment of 200 ° C. × 20 min corresponding to coating baking,
Elongation (EL:%) is checked and the original plate is 38mmφ shoulder R
The ear ratio (%) was also measured by deep-drawing a 66 mmφ circle with a clearance of 30% using a 2.5 mm punch. The results are shown in Table 3. In addition, DI molding was actually performed to check the continuous formability, and those with cans that were broken due to goring (longitudinal defects) were marked with an X in the "Continuous" column of Table 3, and those that were not broken were ○. Was written. Furthermore, after painting and baking the DI cans actually obtained, four stages of necking were performed and the degree of wrinkling at this time was observed. Marked with an X.
After that, 100 cans of flange formation were carried out. When one or more cracks were generated, the "flange" column was marked with X, and when no cracks were generated, it was marked with ◯. Regarding the maximum crystal grain size, the polarization microstructure was observed on the plate surface, and the maximum value (μm) of the minor axis of the ellipse was observed. Observation of the intermetallic compound was performed by binarizing the surface portion with an image analyzer after polishing, and measuring the number of compounds of 5 μm or more (pieces / m 2
m 2 ) was counted. The results are shown in Table 3.

【0012】[0012]

【表3】 [Table 3]

【0013】以下、各々について説明する。No.3は
発明例であり、合金成分組成、製造方法ともに本願発明
の範囲内にはいるものであり、この均熱処理を行なうこ
とにより、耳率・強度で従来材を越える優れた性能が得
られ、その他の性能でも従来材と同等のものが得られ
た。No.1は合金組成は本発明の範囲に含まれるが、
DC鋳造で鋳造しCAL中間焼鈍を行なった従来例であ
り、発明例と比較してベーキング後の耐力が低く、また
耳率も高いものとなっている。No.2は発明合金を用
いて連続鋳造圧延した材料だが、鋳造後の加熱保持を施
さない点が相違する比較例である。加熱保持を行なった
材料(No.3)に比べて、強度・DI性は同等である
が、耳率およびネッキング・フランジング成形性に劣る
結果となる。No.4はNo.3の中間焼鈍をバッチ炉
による焼鈍とした比較例であり、強度・耳率が劣り、さ
らには結晶粒が粗くなりネッキング成形性にやや劣る結
果となっている。No.5は連続鋳造圧延によるもので
あるが、仕上りの板厚が7mmと薄くなっており、この
ため晶出物が微細となる結果、DI連続成形においてゴ
ーリングによる缶切れという問題が生じている。No.
6は合金成分が本発明から外れた場合(5052)であ
り、製法も本発明から外れる(製法自体は通常のCAL
の製法でNo.1の従来例と同じ)比較例で、Mn,F
eが少ないためDI成形時にゴーリングによる缶切れが
生じ連続DI成形できないという問題が生じている。
Each of these will be described below. No. No. 3 is an example of the invention, and the alloy composition and the manufacturing method are within the scope of the present invention. By carrying out this soaking treatment, excellent performances over the conventional material in ear ratio and strength are obtained, The other performances were similar to those of the conventional material. No. 1, the alloy composition is included in the scope of the present invention,
This is a conventional example in which DC casting is performed and CAL intermediate annealing is performed, and the yield strength after baking is low and the earring rate is high as compared with the invention examples. No. No. 2 is a material obtained by continuous casting and rolling using the invention alloy, but is a comparative example which is different in that it is not heated and held after casting. Compared with the material (No. 3) heated and held, the strength and DI property are the same, but the ear ratio and the necking / flanging formability are inferior. No. No. 4 is No. This is a comparative example in which the intermediate annealing of No. 3 is performed by a batch furnace, and the strength and earring rate are poor, and further, the crystal grains become coarse and the necking formability is slightly poor. No. No. 5 is due to continuous casting and rolling, but the finished plate thickness is as thin as 7 mm, and as a result, the crystallized substance becomes fine, resulting in a problem of can-out due to galling in DI continuous molding. No.
No. 6 is a case where the alloy component is out of the present invention (5052), and the production method is also out of the present invention (the production method itself is a normal CAL).
No. (Same as the conventional example of No. 1), Mn, F
Since the amount of e is small, there is a problem that continuous DI molding cannot be performed due to can breakage due to galling during DI molding.

【0014】[0014]

【効果】以上詳述したように、本発明によればCAL焼
鈍材の溶体化効果により、塗装焼付時の強度低下が少な
くDI成形前の缶胴材の強度は低くても塗装焼付後の強
度が十分得られDI成形性がよくなるという利点を持
つ。さらに、従来のDC材よりも合金成分の固溶量が多
い状態を維持することができることから強度を高くする
ことができ、それにより中間焼鈍後の冷間圧延率が少な
くても済み、その結果耳率が低くなるという利点も合わ
せ持つ。このように本発明にかかる方法によれば、強度
的に優れるとともに耳率が低く、総合的な成形性、特に
DI成形性に優れた良好なアルミニウム合金板を得るこ
とができる。従って、特に缶材などの塗装焼付け処理が
施される用途に適した材料を提供することができる。
[Effect] As described in detail above, according to the present invention, the strength reduction after baking is small even though the strength of the can body material before DI molding is low due to the solutionizing effect of the CAL annealed material and the decrease in strength during baking. Is obtained and the DI moldability is improved. Further, since it is possible to maintain a state in which the amount of solid solution of the alloy component is larger than that of the conventional DC material, it is possible to increase the strength, thereby reducing the cold rolling rate after the intermediate annealing, which results in It also has the advantage of low ear coverage. As described above, according to the method of the present invention, it is possible to obtain a good aluminum alloy sheet which is excellent in strength and has a low ear rate and excellent in overall formability, particularly DI formability. Therefore, it is possible to provide a material that is particularly suitable for applications such as can materials that are subjected to paint baking.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Mg:0.5〜2.0%(重量%で、以下
同じ)、Mn:0.5〜1.8%、Fe:0.1〜0.
7%、Si:0.05〜0.5%、組織微細化・安定化
のためTi:0.005〜0.20%を単独であるいは
B:0.0001〜0.05%とともに含有し、さら
に、Cu:0.05〜0.5%、Cr:0.05〜0.
3%、Zn:0.1〜0.5%の1種または2種以上を
含有し、残部Alおよび不純物からなるアルミニウム合
金を、凝固界面の移動速度が1〜20m/minで、仕
上り板厚が10〜50mmとする鋳造を行い、鋳造後5
60〜620℃の温度範囲で1分以上加熱保持し、その
後、230〜600℃の温度範囲で熱間圧延し、必要に
応じて冷間圧延を施した後、到達温度が400〜600
℃、焼鈍開始時の温度から到達温度までの平均昇温速度
を1℃/s以上、到達温度に到達後保持時間10分以
内、1℃/s以上の冷却速度で150℃以下に冷却する
焼鈍を行い、その後、圧延率40%以上の冷間圧延を施
し、冷間圧延後の表面ミクロ組織が圧延方向に対して直
角方向の最大結晶粒径(短径)が60μm以下で、5μ
m以上の金属間化合物が500個/mm2 以上存在する
事を特徴とする強度及び成形性にすぐれた耳率の低い成
形用アルミニウム合金板の製造方法。
1. Mg: 0.5 to 2.0% (weight%, the same applies hereinafter), Mn: 0.5 to 1.8%, Fe: 0.1 to 0.
7%, Si: 0.05 to 0.5%, Ti: 0.005 to 0.20% alone or together with B: 0.0001 to 0.05% for microstructuring / stabilization, Furthermore, Cu: 0.05-0.5%, Cr: 0.05-0.
Aluminum alloy containing 3%, Zn: 0.1 to 0.5% of 1 type or 2 types or more, and the balance Al and impurities, the moving speed of the solidification interface is 1 to 20 m / min, and the finished plate thickness. Is cast to 10 to 50 mm, and after casting 5
After heating and holding in the temperature range of 60 to 620 ° C. for 1 minute or more, hot rolling is then performed in the temperature range of 230 to 600 ° C., and cold rolling is performed as necessary, and then the ultimate temperature is 400 to 600.
C., annealing at which the average temperature rising rate from the temperature at the start of annealing to the reached temperature is 1 ° C./s or more, the holding time is 10 minutes after reaching the reached temperature, and the cooling rate is 150 ° C. or less at a cooling rate of 1 ° C./s or more. After that, cold rolling with a rolling rate of 40% or more is performed, and the surface microstructure after cold rolling has a maximum crystal grain size (minor axis) in the direction perpendicular to the rolling direction of 60 μm or less and 5 μm or less.
strength and manufacturing method of the low excellent ear index moldability molding aluminum alloy sheet for intermetallic compounds or m is characterized by the presence 500 / mm 2 or more.
JP31151092A 1992-10-27 1992-10-27 Production of aluminum alloy sheet for forming with low ear rate Pending JPH06136491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31151092A JPH06136491A (en) 1992-10-27 1992-10-27 Production of aluminum alloy sheet for forming with low ear rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31151092A JPH06136491A (en) 1992-10-27 1992-10-27 Production of aluminum alloy sheet for forming with low ear rate

Publications (1)

Publication Number Publication Date
JPH06136491A true JPH06136491A (en) 1994-05-17

Family

ID=18018105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31151092A Pending JPH06136491A (en) 1992-10-27 1992-10-27 Production of aluminum alloy sheet for forming with low ear rate

Country Status (1)

Country Link
JP (1) JPH06136491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120621A (en) * 1996-07-08 2000-09-19 Alcan International Limited Cast aluminum alloy for can stock and process for producing the alloy
EP3234208B1 (en) 2014-12-19 2020-04-29 Novelis Inc. Aluminum alloy suitable for the high speed production of aluminum bottle and the process of manufacturing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120621A (en) * 1996-07-08 2000-09-19 Alcan International Limited Cast aluminum alloy for can stock and process for producing the alloy
EP3234208B1 (en) 2014-12-19 2020-04-29 Novelis Inc. Aluminum alloy suitable for the high speed production of aluminum bottle and the process of manufacturing thereof

Similar Documents

Publication Publication Date Title
JPS58224141A (en) Cold roller aluminum alloy plate for forming and its manufacture
JP2008045192A (en) Aluminum alloy sheet showing excellent ridging-mark resistance at molding
JP4939091B2 (en) Manufacturing method of aluminum alloy plate with excellent bending workability
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
CA2588046A1 (en) Aluminum alloy sheet and method for manufacturing the same
JPS626740B2 (en)
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP2005240113A (en) Aluminum alloy sheet having excellent ridging mark property
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
JPH09268341A (en) Baking-coated al alloy sheet for can lid material, excellent in stress corrosion cracking resistance in score part, and its production
JP3644819B2 (en) Method for producing aluminum alloy plate for can body
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH06136491A (en) Production of aluminum alloy sheet for forming with low ear rate
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JPH10259464A (en) Production of aluminum alloy sheet for forming
JP2011144410A (en) METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET
JPH06228696A (en) Aluminum alloy sheet for di can body
JP2006283112A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2021095619A (en) Aluminum alloy sheet for cap material and method for producing the same
JP3713614B2 (en) Method for producing aluminum alloy plate for can body